APP下载

脲酶抑制剂与硝化抑制剂对稻田土壤氮素转化的影响

2017-07-31张文学杨成春王少先孙刚刘增兵李祖章刘光荣

中国水稻科学 2017年4期
关键词:分蘖期铵态氮脲酶

张文学 杨成春 王少先 孙刚 刘增兵 李祖章 刘光荣



脲酶抑制剂与硝化抑制剂对稻田土壤氮素转化的影响

张文学#杨成春#王少先 孙刚*刘增兵 李祖章 刘光荣

(江西省农业科学院土壤肥料与资源环境研究所/国家红壤改良工程技术研究中心/农业部双季稻营养与农业环境观测实验站,南昌 330200;#并列第一作者;*通讯联系人,E-mail: sgemail@163.com)

【目的】本研究旨在阐明脲酶抑制剂(urease inhibitor, UI)和硝化抑制剂(nitrification inhibitor, NI)对稻田土壤氮素转化的影响,探讨抑制剂提高稻谷产量以及氮肥利用率的机理。【方法】本试验设在我国南方红壤稻田,共5个处理:1) 不施氮肥(CK);2) 尿素(U);3) 尿素+脲酶抑制剂(U+UI);4) 尿素+硝化抑制剂(U+NI);5) 尿素+脲酶抑制剂+硝化抑制剂(U+UI+NI);脲酶抑制剂采用N-丁基硫代磷酰三胺(NBPT),硝化抑制剂采用3,4-二甲基吡唑磷酸盐(DMPP)。在水稻分蘖期和孕穗期测定土壤脲酶活性、硝酸还原酶活性、土壤铵态氮含量、硝态氮含量以及微生物碳、氮的含量,分析NBPT与DMPP对水稻两个主要生育期土壤氮素供应的影响,比较各处理的产量以及氮肥利用率,通过逐步回归分析研究以上各指标对产量的影响,探明脲酶抑制剂NBPT与硝化抑制剂DMPP在稻田的增效机理。【结果】1) 与单施尿素相比,添加NBPT以及NBPT与DMPP配施均显著提高稻谷产量与地上部氮素回收率,两个处理分别增产6.56%与8.24%,氮素回收率提高幅度为19.4%与23.7%。2)与单施尿素相比,添加NBPT以及NBPT与DMPP配施,显著降低水稻分蘖期的土壤脲酶活性和铵态氮含量,显著提高孕穗期的铵态氮含量,而对此时期的脲酶活性无显著影响,所有处理对两个时期的硝态氮含量、硝酸还原酶活性、微生物量碳、氮含量均无显著影响;因此,NBPT对于抑制脲酶活性以及提高铵态氮含量的作用主要在孕穗期之前,而单施DMPP没有显著效应。3)从各项土壤指标与水稻产量相关性的逐步回归分析结果来看,水稻分蘖期与孕穗期稻田土壤中铵态氮含量对水稻产量影响显著,而且孕穗期的影响大于分蘖期,其余指标则对产量无显著影响。【结论】脲酶抑制剂NBPT以及NBPT与硝化抑制剂DMPP配施显著提高孕穗期土壤中的铵态氮含量,显著提高稻谷产量以及地上部氮素回收率,证明了生产上氮肥后移的重要意义。

脲酶抑制剂;硝化抑制剂;稻田;产量;氮素回收率

通过提高氮肥利用率来减小氮素损失对环境压力是近年来农业生产上的一个重要研究方向,也有学者提出了一些有效可行的技术,如改善管理措施、采取平衡施肥或计算机支持系统指导施肥[1]、改善土壤结构、发展新型肥料等[2]。而针对我国粮食供求矛盾尚未得到完全解决、地多人少、农业现代化不够发达、农村劳动力趋于减少的现状,要在有限的土地上提高粮食单产,保障粮食安全,发展一次性缓/控释氮肥是比较合理和易于推广的措施。

许多研究表明,含有脲酶抑制剂、硝化抑制剂的稳定性肥料可以有效地提高稻田的氮肥利用率与稻谷产量[3-6]。脲酶抑制剂可以抑制脲酶活性而减缓尿素的水解速度以及氨的释放速率,进而减少氨挥发与硝化反应导致的氮素损失。稻田应用结果表明,脲酶抑制剂可以有效地提高作物产量[7-10]以及氮肥利用率[8,11]。硝化抑制剂可以减少来自土壤有机质以及无机肥料的铵态氮的硝化反应,延长NH4+在土壤中的存留时间,进而降低硝态氮的浓度以及淋失、反硝化等途径导致的氮素损失[7,12,13]。另外,运用硝化抑制剂提高农业与园艺作物产量[5,14],并显著减少植物中的硝酸盐含量,提高蔬菜与饲料作物的品质[15]。硝化抑制剂和脲酶抑制剂配合施用效果更好,如,氢醌(Hydroquinone,HQ)与双氰胺(Dicyandiamide,DCD)一起施用可以促进作物生长,减少N素损失[16,17];N-丁基硫代磷酰三胺[N-(n-butyl)thiophosphoric triamide, NBPT]与DCD配施可以显著减少氨挥发、N2O排放的氮素损失[18],可以改善由于氧化亚氮排放、硝态氮淋失进入地下水等对环境的污染[2]。但关于脲酶抑制剂、硝化抑制剂及其二者配施对我国稻田氮素转化影响的研究较少,我们就尿素添加脲酶抑制剂NBPT以及硝化抑制剂3,4-二甲基吡唑磷酸盐(3,4-Dimethyl-1H- pyrazole phosphate, DMPP)对我国南方红壤稻田的无机氮转化、与氮转化相关酶活性、微生物量碳、氮含量以及氮素回收率等的影响,探讨抑制剂的增效机理,为稻田减少氮素损失、提高氮肥利用率提供科学依据,为稻田施肥提供技术指导。

1 材料与方法

1.1 试验地点

试验于2012年4月至7月在江西省农业科学院土壤肥料与资源环境研究所南昌试验基地 (28º21'12"N, 115º54'25"E)进行。该区属于亚热带湿润气候,海拔高度20 m,平均气温17.8 ℃, ≥10℃的积温为5432.20℃,无霜期长达240~307 d,年降水量1662 mm,降水季节分配不均,全年降水50%以上集中在4-6月。供试土壤为第四纪红黏土发育的潮砂泥田,土壤质地为壤土。播种前土壤有机质含量20.12 g/kg,全氮含量2.06 g/kg, 硝态氮和铵态氮含量分别为1.8 mg/kg和16.2 mg/kg,有效磷2.6 mg/kg,速效钾94.55 mg/kg,pH 4.97,土壤容重为1.19 g/cm3。

1.2 试验设计

水稻供试品种为株两优30。脲酶抑制剂为N-丁基硫代磷酰三胺(NBPT),硝化抑制剂为3,4-二甲基吡唑磷酸盐(DMPP)。氮肥为尿素(含N 46%),磷肥为钙镁磷肥(含P2O512%),钾肥为氯化钾(含K2O 60%)。

试验共设5个处理:1) 不施氮肥(CK);2) 尿素(U);3) 尿素+脲酶抑制剂(U+UI);4) 尿素+硝化抑制剂(U+NI);5) 尿素+脲酶抑制剂+硝化抑制剂(U+UI+NI)。设3次重复,各小区随机区组排列,每个小区面积30 m2(5 m × 6 m),各小区以50 cm的分隔行隔开,且保持小区间的田埂高出地面40 cm,并用塑料薄膜包裹田埂以防止串水串肥,实现各小区单灌单排的管理目的。试验中氮(N)、磷(P2O5)、钾(K2O)的用量分别为135 kg/hm2、75 kg/hm2和150 kg/hm2,抑制剂与尿素混匀施入,抑制剂用量为尿素的1%。氮肥和磷肥作基肥于移栽前一次性施入;钾肥分3次施入,40%作基肥,30%作分蘖肥,30%作孕穗肥。于2012年3月10日播种,4月23日移栽,7月20日收获(当地为双季稻种植模式,本研究以早稻为研究对象),水稻种植密度以及各项栽培管理措施同当地农民的常规管理保持一致。

在水稻分蘖期、孕穗期分别采集各小区耕层土壤样品,测定脲酶与硝酸还原酶活性、铵态氮与硝态氮含量、微生物量碳、氮含量;用于测定酶活性、铵态氮与硝态氮的土样若不能立即测定需保存于-20℃,用于测定微生物量碳、氮的土样则保存于4℃;成熟期测定各小区产量以及植株氮含量。

1.3 测定方法与计算

1.3.1 土壤中脲酶与硝酸还原酶活性的测定

脲酶活性采用NH4+释放量法测定[19],硝酸还原酶活性通过测定NO2--N产生量的方法[20]计算。

1.3.2 土壤中铵态氮与硝态氮含量的测定

土壤中的铵态氮与硝态氮含量用1 mol/L的KCl溶液浸提,采用全自动间断化学分析仪(Smartchem TM200 discrete chemistry analyzer) Smartchem 200 仪器测定。

CK-不施氮肥; U-尿素; U+UI-尿素+脲酶抑制剂; U+NI-尿素+硝化抑制剂; U+UI+NI-尿素+脲酶抑制剂+硝化抑制剂。柱上标相同小写字母者表示差异未达5%显著水平。下图同。

Fig. 1. Effects of urease inhibitor and nitrification inhibitor application on grain yield of rice

1.3.3 微生物量碳、氮含量测定与计算

土壤微生物量碳、氮含量的测定采用氯仿熏蒸-K2SO4浸提法[21-24], 其含量计算如下:

C=C/C;

N=N/N;

其中,C、N分别为土壤微生物量碳、氮含量;C、N分别为熏蒸和未熏蒸样品中有机碳、全氮含量之差;C、N为回收系数,C=0.45[21,22],N=0.54[23]。

1.3.4 植株氮素含量的测定

取植株粉碎样,用浓H2SO4-H2O2消化,用全自动间断化学分析仪(Smartchem TM200 discrete chemistry analyzer) Smartchem 200仪器测定。

1.3.5 数据处理

所有数据采用Excel 2007、SAS 9.1软件进行统计分析,运用Excel 2007软件作图。

2 结果与分析

2.1 添加脲酶抑制剂和硝化抑制剂对水稻产量的影响

对水稻籽粒产量的测定结果见图1,处理U+UI与U+UI+NI的产量显著高于处理U,而处理U+NI与处理U则无显著差异;与处理U相比,处理U+UI与U+UI+NI分别增产6.56%与8.24%。这说明添加脲酶抑制剂NBPT以及脲酶抑制剂NBPT与硝化抑制剂DMPP配施对水稻增产效果显著,而单独添加硝化抑制剂效果欠佳。

2.2 添加脲酶抑制剂和硝化抑制剂对水稻地上部氮素回收率的影响

由图2可知,处理U的氮素回收率最小,处理U+UI以及U+UI+NI与处理U的差异均达到显著水平;与处理U相比,处理U+UI以及U+UI+NI的氮素回收率分别提高了19.4%与23.7%;这说明添加NBPT以及NBPT与DMPP配施对提高水稻地上部氮素回收率效果显著,而单独添加DMPP对氮素回收率无显著影响。

2.3 土壤脲酶与硝酸还原酶活性

在水稻分蘖期与孕穗期采取土壤样品测定土壤脲酶活性与硝酸还原酶活性。由图3可知,在分蘖期,施氮处理的脲酶活性明显高于不施氮处理。处理U的脲酶活性最高,达126.58 μg/(g·h),显著高于处理U+UI与U+UI+NI,而与处理U+NI差异不显著,这说明单施尿素,脲酶活性显著升高,而脲酶抑制剂NBPT的加入,显著降低了分蘖期土壤的脲酶活性,单独添加DMPP则无明显影响;在孕穗期,不施氮肥处理(CK)的脲酶活性依然明显低于施氮处理,而施入氮肥的处理间脲酶活性无显著差异,这可能由于添加NBPT在孕穗期对脲酶活性的抑制作用基本消失导致。

图2添加脲酶抑制剂与硝化抑制剂对水稻地上部的氮素回收率的影响

Fig. 2. Effects of urease inhibitor and nitrification inhibitor application on recovery of applied N in above-ground parts of rice

图3添加脲酶抑制剂与硝化抑制剂对土壤脲酶活性的影响

Fig. 3. Effects of urease inhibitor and nitrification inhibitor application on urease activities in soil.

由图4可知,与土壤脲酶活性相比,硝酸还原酶活性始终保持在极低水平,其活性小于3 μg/(g·d),说明稻田的硝酸还原酶活性极其微弱;同一时期内,处理间无显著差异(>0.05),说明施用氮肥处理对稻田的硝酸还原酶活性没有明显影响,添加NBPT或DMPP对稻田土壤中的硝酸还原酶活性也无明显作用。

图4添加脲酶抑制剂与硝化抑制剂对土壤硝酸还原酶活性的影响

Fig. 4. Effects of urease inhibitor and nitrification inhibitor application on nitrate reductase activities in soil.

2.4 土壤铵态氮与硝态氮含量

分别在水稻分蘖期与孕穗期对土壤铵态氮、硝态氮含量进行测定,结果表明,稻田土壤中的铵态氮含量明显高于硝态氮。

由图5可知,在水稻分蘖期,处理间的差异达到显著水平,处理U的土壤铵态氮含量高达53.95 mg/kg,与处理U相比,处理U+UI和U+UI+NI的铵态氮含量显著降低,分别降低15.45%和11.06%,而处理U+NI与处理U相比无显著差异;这说明添加脲酶抑制剂NBPT显著降低了分蘖期稻田土壤的铵态氮含量,而硝化抑制剂DMPP则无此效应。在孕穗期,所有处理的土壤铵态氮含量较分蘖期均急剧下降,且处理间差异显著(<0.05)。这可能是由于从分蘖期到孕穗期水稻根系快速生长,大量吸收氮肥所致;施氮处理间比较,添加脲酶抑制剂的处理U+UI与U+UI+NI的铵态氮含量明显高于处理U与U+NI,与处理U相比,处理U+UI与U+UI+NI分别提高了铵态氮含量32.27%与40.04%,而处理U+NI与处理U之间依然没有明显差异。这些结果说明添加NBPT有效延缓了尿素水解,减慢了铵态氮的释放速率,为水稻的后期生长提供更多铵态氮肥;两种抑制剂配施的效果更佳,而单独施用DMPP对铵态氮含量则无明显影响。

由图6可知,与土壤铵态氮含量相比,硝态氮含量极低,不足铵态氮含量的2%,且同一时期内处理间的差异均不显著(>0.05),这说明添加NBPT虽然显著降低了分蘖期土壤中铵态氮的含量,但是对于硝态氮含量没有显著影响,因此,在淹水土壤中,铵态氮的含量对硝化作用影响较小。

2.5 土壤微生物量碳、氮含量

水稻分蘖期与孕穗期的土壤微生物量碳、氮含量以及微生物量碳与氮比值的结果见图7~9。这三项土壤特性指标在同一时期内处理间的差异不显著(>0.05),说明添加脲酶抑制剂、硝化抑制剂以及二者配施对微生物量碳、氮含量没有显著影响。对同一时期的微生物量碳、氮含量进行相关性分析发现,二者存在极显著正相关(<0.01)。

图5添加脲酶抑制剂和硝化抑制剂对土壤铵态氮含量的影响

Fig. 5. Effects of urease inhibitor and nitrification inhibitor application on NH4+-N content in soil.

图6 添加脲酶抑制剂和硝化抑制剂对土壤硝态氮含量的影响

Fig. 6. Effects of urease inhibitor and nitrification inhibitor application on NO3--N content in soil.

图7 添加脲酶抑制剂和硝化抑制剂对土壤微生物量碳含量的影响

Fig. 7. Effects of urease inhibitor and nitrification inhibitor application on microbial biomass carbon (MBC) content in soil

图8 添加脲酶抑制剂和硝化抑制剂对土壤微生物量氮含量的影响

Fig. 8. Effects of urease inhibitor and nitrification inhibitor application onmicrobial biomass nitrogen (MBN) content in soil.

2.6 土壤特性与产量的相关性

将水稻两个生育期土壤的脲酶活性、硝酸还原酶活性、铵态氮含量、硝态氮含量、微生物量碳、微生物量氮、碳氮比值7项指标对产量的影响进行逐步回归分析(=15)。结果表明,只有铵态氮含量进入回归方程,说明土壤铵态氮含量对产量的影响显著,而其余6项指标对产量的影响不显著;回归方程的相关参数见表1。两个时期的铵态氮含量对产量的影响均达极显著水平(<0.01),而且,其孕穗期的影响大于分蘖期(孕穗期的变量系数较大),说明氮肥对于提高水稻产量的作用显著,尤其是孕穗期的氮肥更为明显。

表1 水稻产量与分蘖期和孕穗期影响因子的逐步回归分析

回归方程为=a+b;为产量,a为系数,为因子,b为常数。

The values are fitted in the equation:=a+b;, Yield;a, Coefficient;, Factor;b, Constant.

图9 添加脲酶抑制剂和硝化抑制剂对土壤微生物量碳/氮比值的影响

Fig. 9. Effects of urease inhibitor and nitrification inhibitor application onratio of microbial biomass carbon (MBC)to microbial biomass nitrogen (MBN) in soil.

3 讨论

普通氮肥利用率低、氮素损失严重[25,26]。据统计,我国的氮肥利用率约为20%~40%[27],水稻的氮素当季回收率约27%[28],而缓/控释氮肥可以提高肥料利用率、减少氮素损失,缓解环境压力。本研究结果表明,添加脲酶抑制剂NBPT以及NBPT与硝化抑制剂DMPP配施均可以显著提高氮肥利用率,这与前人研究结果一致。

土壤脲酶活性受到诸多因素的影响,与基质浓度、温度、pH、有机质含量等因素呈正相关[29-35],在短期内可被脲酶抑制剂所抑制。本研究发现,施用氮肥显著提高了水稻分蘖期和孕穗期土壤的脲酶活性;在水稻分蘖期,添加脲酶抑制剂NBPT以及NBPT与硝化抑制剂DMPP配施处理的脲酶活性显著低于单施尿素处理,而单独添加DMPP则无明显影响,说明脲酶抑制剂对脲酶活性有较强的抑制作用,且脲酶抑制剂与硝化抑制剂配施抑制效果更佳;到孕穗期,可能由于脲酶抑制剂降解失去抑制作用(NBPT施入土壤后2周左右可降解为N、P、S等元素[13]),此时尿素完全水解,脲酶活性逐渐恢复平稳,在不同处理间无显著差异。

本研究中,硝酸还原酶活性在分蘖期与孕穗期终维持在极低水平,且不同处理间没有显著差异,这可能由于本研究中稻田长期淹水的特殊环境所致。

脲酶抑制剂可以延缓尿素水解为铵态氮,而硝化抑制剂可以阻断铵态氮的硝化作用,二者配施可以使土壤中保持更高的铵态氮,供作物吸收[36]。稻田施用脲酶抑制剂使稻谷显著增产[36]。也有报道表明,虽然添加脲酶抑制剂减少氮素损失,但增产效果不是很理想[37,38]。Freney等报道[39],添加脲酶抑制剂、硝化抑制剂、脲酶抑制剂与硝化抑制剂配施均可以提高氮素回收率。本研究发现,尿素辅以1%的脲酶抑制剂NBPT或者1%的NBPT与1%的硝化抑制剂DMPP混合用均可以显著降低水稻分蘖期土壤中的铵态氮含量、脲酶活性,显著提高孕穗期的铵态氮含量以及最终的稻谷产量与地上部的氮素回收率。

有报道指出,与不施肥处理相比,长期施用化肥会增加土壤微生物量碳、氮含量[32,40],而短期的化肥处理对土壤微生物量碳氮没有明显影响[41]。本研究发现,在水稻的分蘖期与孕穗期微生物量碳、氮在处理间均无显著差异,说明施用化肥以及添加脲酶抑制剂NBPT与硝化抑制剂DMPP对微生物生物量无显著影响。对各时期微生物量碳、氮的相关性分析表明,二者存在极显著正相关,这与Mandal[42]的报道一致。

4 结论

1)在稻田添加脲酶抑制剂NBPT或NBPT与硝化抑制剂DMPP配施对提高稻谷产量以及氮素回收率效果显著。

2)在稻田添加脲酶抑制剂以及脲酶抑制剂与硝化抑制剂配施均能显著降低水稻分蘖期土壤中的脲酶活性与铵态氮含量,提高孕穗期的铵态氮含量,而对其余指标在分蘖期和孕穗期均无显著影响。

3)对土壤特性的七项指标与产量的关系进行逐步回归分析发现,对水稻产量影响最大的是铵态氮含量;分蘖期和孕穗期的铵态氮含量对产量的影响均显著,且孕穗期的影响大于分蘖期。因此,生产上采用氮肥分次施入,且提高孕穗期氮肥的比例(氮素后移)对提高产量至关重要。

4)添加脲酶抑制剂(或脲酶抑制剂与硝化抑制剂配施)可延缓尿素水解,显著提高水稻孕穗期土壤中的铵态氮含量,这可能是其增产显著的主要原因。

[1] 彭少兵,黄见良,钟旭华,杨建昌,王光火,邹应斌,张福锁,朱庆森. 提高中国稻田氮肥利用率的研究策略.中国农业科学, 2002, 35(9): 1095-1103.

Peng S B, Huang J L, Zhong X H, Yang J C,Wang H G, Zou Y B, Zhang F S, Zhu Q S. Research strategy in improving fertilizer-nitrogen use efficiency of irrigated rice in China., 2002, 35(9): 1095-1103.(in Chinese with English abstract)

[2] Trenkel M E. Slow-and controlled-release and stabilized fertilizers//An Option for Enhancing Nutrient Efficiency in Agriculture. 2nd edn. Paris,France: International Fertilizer Industry Association, 2010.

[3] Marchesan E, Grohs M, Walter M, SilvaLS, Formentini T C. Agronomic performance of rice to the use of urease inhibitor in two cropping systems., 2013, 44(3): 594-603.

[4] Fageria N K, Carvalho M C S. Comparison of conventional and polymer coated urea as nitrogen sources for lowland rice production., 2014, 37(8): 1358-1371.

[5] Hu Y, Schraml M, von Tucher S, Li F, Schmidhalter U. Influence of nitrification inhibitors on yields of arable crops: A meta-analysis of recent studies in Germany., 2014, 8: 1735-6814.

[6] Sanz-Cobena A, Abalos D, Meijide A, Sanchez-Martin L, Vallejo A.Soil moisture determines the effectiveness of two urease inhibitors to decrease N2O emission., 2016, 21(7): 1131-1144

[7] Grant C A, Jia S, Brown K R, Bailey L D, Jia, SVolatile losses of NH3fromsurface-applied urea and urea ammonium nitrate with and without the urease inhibitors NBPT or ammonium thiosulphate., 1996, 76(3): 417-419.

[8] Malhi S, Oliver E, Mayerle G, Kruger G, Gill K S. Improving effectiveness of seedrow-placed urea with urease inhibitor and polymer coating for durum wheat and canola., 2003, 34(11-12): 1709-1727.

[9] Chaiwanakupt P, Freney J R, Keerthisinghe D G, Phongpan S, Blakeley R L. Use of urease, algal inhibitors, and nitrification inhibitors to reduce nitrogen loss and increase the grain yield of flooded rice (L.)., 1996, 22(1): 89-95.

[10] Freney J R, Keerthisinghe D G, Phongpan S, ChaiwanakuptPHarrington K J. Effect of urease, nitrification and algal inhibitors on ammonia loss and grain yield of flooded rice in Thailand., 1995 (40): 225-233.

[11] Abdallahi M M, N'Dayegamiye A. Effects of two incorporations of green manures on soil physical and biological properties and on wheat (L.) yields and N uptake., 2000, 80(1): 81-89.

[12] Di H J, Cameron K C.Reducing environmental impacts of agriculture by using a fine particle suspension nitrification inhibitor to decrease nitrate leaching from grazed pastures., 2005, 109(3): 202-212.

[13] Watson C J, Miller H, Poland P,Kilpatrick D J, Allen M D B, Garrett M K, Christianson C B. Soil properties and the ability of the urease inhibitorN-(-butyl) thiophosphoric triamide (BTPT) to reduce ammonia volatilizationfrom surface-applied urea., 1994, 26(9): 1165-1171.

[14] Pasda G, Hähndel R, Zerulla W. The new nitrification inhibitor DMPP (ENTEC)—Effects on yield and quality of agricultural and horticultural crops. Plant Nutrition: Food security and sustainability of agro-ecosystems through basic and applied research, 2002: 758-759.

[15] Montemurro F, Capotorti G, Lacertosa G, Palazzo D. Effects of urease and nitrification inhibitors application on urea fate in soil and nitrate accumulation in lettuce., 1998, 21(2): 245-252.

[16] Hou J, Dong Y, Fan Z. Effects of Coated Urea amended with biological inhibitors on physiological characteristics, yield and quality of peanut., 2014, 45(7): 896-911.

[17] Xu X K, Boeckx P, Van Cleemput O, Kazuyuki I. Mineral nitrogen in a rhizosphere soil in standing water during rice (L.) growth: Effect of hydroquinone and dicyandiamide., 2005, 109(1): 107-117.

[18] Zaman M, Saggar S, Blennerhassett JD, Singh J.Effect of urease and nitrification inhibitors on N transformation, gaseous emissions of ammonia and nitrous oxide, pasture yield and N uptake in grazed pasture system., 2009, 41(6): 1270-1280.

[19] Kandeler E, Gerber H. Short-term assay of soil urease activity using colorimetric determination of ammonium., 1988, 6(1): 68-72.

[20] Abdelmagid H M, Tabatabai M A. Nitrate reductase activity of soils., 1987, 19(4): 421-427.

[21] 鲁如坤. 土壤农业化学分析法. 北京:中国农业科技出版社,2000.

Lu R K. Analytical methods of soil and agro-chemistry. Beijing: China Agricultural Science and Technology Press, 2000.(in Chinese)

[22] Wu J, Joergensen R G, Pommerening B, Chaussod R, Brookes P C. Measurement of soil microbial biomass C by fumigation-extraction automated procedure., 1990, 22(8): 167-169.

[23] Vance E D, Brggke P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C., 1987, 19(6): 703-707.

[24] Brookes P C, Landman A, Pruden G, Jenkinson D S. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil., 1985, 17(6): 837-842.

[25] 许仙菊, 马洪波, 宁运旺, 汪吉东,张永春. 缓释氮肥运筹对稻麦轮作周年作物产量和氮肥利用率的影响. 植物营养与肥料学报, 2016, 22(2): 307-316.

Xu X J, Ma H B, Ning Y W, Wang Y D, Zhang Y C. Effects of slow-released nitrogen fertilizers with different application patterns on crop yields and nitrogen fertilizer use efficiency in rice-wheat rotation system., 2016, 22(2): 307-316. (in Chinese with English abstract)

[26] 杜君, 孙克刚, 张运红, 和爱玲, 孙克振. 控释尿素对水稻产量, 氮肥利用率及土壤硝态氮含量的影响. 中国农学通报, 2016, 32(6): 1-5.

Du J, Sun K G, Zhang Y H, He A L, Sun K Z. Effects of controlled release urea on rice yield, nitrogen use efficiency and soil nitrate nitrogen content., 2016, 32(6): 1-5. (in Chinese)

[27] 张晓果,王丹英, 计成林, 徐春梅, 陈松, 章秀福. 水稻氮素吸收利用研究进展. 中国稻米, 2015, 21(5): 13-19.

Zhang X G, Wang D Y, Ji C L, Xu C M, Chen S, Zhang X F. Nitrogen absorption and utilization on rice., 2015, 21(5): 13-19.

[28] 朱兆良, 金继运. 保障我国粮食安全的肥料问题. 植物营养与肥料学报, 2012, 19(2): 259-273.

Zhu Z L, Jin J Y. Fertilizer use and food security in China., 2012, 19(2): 259-273. (in Chinese with English abstract)

[29] Bhattacharyya P, Chakrabarti K, Chakraborty A. Microbial biomass and enzyme activities in submerged rice soil amended with municipal solid waste compost and decomposed cow manure., 2005, 60(3): 310-318.

[30] 郭天财, 宋晓, 马冬云, 王永华, 谢迎新, 岳艳军, 查菲娜. 施氮量对冬小麦根际土壤酶活性的影响. 应用生态学报, 2008, 19(1): 110-114.

Guo T C, Song X, Ma D Y, Wang Y H, Xie Y X, Yue Y J, Cha F N. Effects of nitrogen application rate on soil enzyme activities in wheat rhizosphere., 2008, 19(1): 110-114. (in Chinese with English abstract)

[31] 和文祥,朱铭莪,张一平. 汞、镉对土壤脲酶活性影响的研究:Ⅰ. 尿素浓度. 应用生态学报, 2002, 13(2): 191-193.

He W X, Zhu M G, Zhang Y P. Effects of mercury and cadmium on the activity of urease in soils:Ⅰ. Urea concentration., 2002, 13(2): 191-193. (in Chinese with English abstract)

[32] 马晓霞, 王莲莲, 黎青慧, 李花, 张树兰, 孙本华, 杨学云. 长期施肥对玉米生育期土壤微生物生物量碳氮及酶活性的影响. 生态学报, 2012, 32(17): 5502-5511. (in Chinese with English abstract)

MaX X, WangL L, LiQ H, Li H, ZhangS L, Sun B H, Yang X Y. Effects of long-term fertilization on soil microbial biomass carbon and nitrogen and enzyme activities during maize growing season., 2012, 32(17): 5502-5511.

[33] Moyo CC, Kisseli DE, Cabrera M L. Temperature effects on soil urease activity., 1989, 21(7):935-938.

[34] Singh R, Nye P H. The effect of soil pH and high urea concentrations on urease activity in soil.. 1984, 35(4): 519-527.

[35] Zhong WH, Cai Z C, Zhang H. Effects of Long-term application of inorganic fertilizers on biochemical properties of a rice-planting red soil., 2007, 17 (4): 419-428.

[36] Byrnes B H. The degradation of the urease inhibitor phenyl phosphorodiamidate in soil systems and the performance of N-(n-butyl) thiophosphoric triamide in flooded rice culture. Weihenstephan, Germany: Technical University of Munich, 1988.

[37] Byrnes BH,Freney JR. Recent developments on the use of urease inhibitors in the tropics., 1995(42): 251-259.

[38] Chien S H, Prochnow L I, Cantarella H. Recent developments of fertilizer production and use to improve nutrient efficiency and minimize environmental impacts., 2009, 102: 267-322.

[39] Freney J R. Strategies to reduce gaseous emissions of nitrogen from irrigated agriculture., 1997, 48(1-2): 155-160.

[40] Bhattacharyya P, Chakrabarti K, Chakraborty A. Microbial biomass and enzyme activities in submerged rice soil amended with municipal solid waste compost and decomposed cow manure., 2005, 60(3): 310-318.

[41] 李东坡, 梁成华, 武志杰, 陈利军, 张丽莉, 冯慧敏. 玉米苗期施用缓/控释氮素肥料养分释放特点与土壤生物活性研究. 沈阳农业大学学报, 2006, 37(1): 48-52.

Li D P, Liang C H, Wu Z J, Chen L J, Zhang L L, Feng H M. The study about characteristics of releasing nutrition and soil biological activities at maize seedling stage for using slow/controlled release nitrogen fertilizers., 2006, 37(1): 48-52. (in Chinese with English abstract)

[42] MandalA, PatraA K, Singh D, Swarup A, Masto R E. Effect of long-term application of manure and fertilizer on biological and biochemical activities in soil during crop development stages., 2007, 98: 3585-3592.

Effects of Urease Inhibitor and Nitrification Inhibitor on Nitrogen Transformation in Paddy Soil

ZHANG Wenxue#, YANG Chengchun#, WANG Shaoxian, SUN Gang*, LIU Zengbing, LI Zuzhang, LIU Guangrong

(,//,,;These authors contributed equally to this work;*,:.)

【Objective】The research is aimed to reveal the effects of urease inhibitor(UI) and nitrification inhibitor(NI) on nitrogen (N) transformation, and the fertilizer-saving mechanism of inhibitor(s). 【Method】A field experiment was conducted in the middle and lower reaches of the Yangtze River area, Southern China with a randomized design and five treatments and three replicates: 1) CK (no N fertilizer), 2) U (urea only), 3) U+UI, 4) U+NI, 5) U+UI+NI. NBPT [N–(n-butyl) thiophosphoric triamide] and DMPP [3, 4-Dimethyl-1H-pyrazole phosphate] as the urease inhibitor and nitrification inhibitor wasuniformly mixed with urea (U) at a rate of 10,000 mg/kg. The total urea, as base fertilizer,wasapplied to field before the transplanting of rice seedlings.The activities of urease and nitrate reductase, the contents of NH4+-N, NO3--N and microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) in soil were analyzed in tillering and booting stages. The rice yield and N efficiency were investigated. The mechanism of increasedyield and N efficiency due to inhibitor waselucidated by the stepwise regression analysis. 【Result】1) Compared with the normal urea treatment, NBPT addition and NBPT +DMPPsignificantly improved the grain yields and the recovery of applied N in the above-ground parts by 6.56% and 8.24%,19.4% and 23.7%, respectively.2) The addition of NBPT and NBPT + DMPP in urea significantly reduced urease activity and soil NH4+-N content at the tillering stage, and increased soil NH4+-N content at the booting stage, without obvious effects on nitrate reductase activity (NRA), soil NO3--N content and microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) in both stages. There is no significant difference in urease activity between urea and urea + NBPT at the booting stage. Therefore, the urease inhibitor NBPT was effective on inhibiting the activity of urease and improving the content of NH4+-N before the booting stage. On the contrast, adding DMPP only had no obvious effects on these indexes above. 3)The stepwise regression analysis revealed that the grain yield of rice was significantly associated with NH4+-N content in soil at the tillering and booting stages, especially, the latter. However, other properties in soil have no obvious effects on the grain yield.【Conclusion】Urea combined withNBPT and combination of NBPT + DMPPslowed down the hydrolytic action of urea and dramatically improved soil NH4+-N content in the booting stage, which is the dominate factor of improving the grain yields and the recovery of applied N in the above-ground parts. The conclusion is consistent with postponing nitrogen technique in agriculture.

urease inhibitor; nitrification inhibitor; paddy field; yield; the recovery of applied N

10.16819/j.1001-7216.2017.7008

S143.1; S511.062

A

1001-7216(2017)04-0417-08

2017-01-17

国家重点研发计划资助项目(2016YFD0200109,2016YFD0200402,2017YFD0301601);国家科技支撑计划资助项目(2015BAD23B03-01);江西省农业科学院创新基金博士启动项目(2014ZCBS009)。

修改稿收到日期:2017-03-07。

猜你喜欢

分蘖期铵态氮脲酶
不同温度环境下EICP固砂及优化试验研究
离子型稀土尾矿深层土壤剖面铵态氮污染特征及影响因素*
香稻分蘖期减氮侧深施液体肥对产量和氮素利用的影响
锰离子对引黄灌区不同质地土壤铵态氮吸附影响
中性脲酶固定化降解黄酒中尿素
不同质地土壤铵态氮吸附/解吸特征
污泥发酵液体中提取的腐植酸对脲酶活性的抑制作用
不同盐碱化土壤对NH+4吸附特性研究
脲酶菌的筛选及其对垃圾焚烧飞灰的固化
早稻二化螟的综合防治