枸杞振动采收机理分析与试验
2017-07-12李成松王丽红杨兰涛
何 苗,坎 杂,李成松,王丽红,杨兰涛,王 哲
(石河子大学机械电气工程学院,石河子 832003)
枸杞振动采收机理分析与试验
何 苗,坎 杂,李成松※,王丽红,杨兰涛,王 哲
(石河子大学机械电气工程学院,石河子 832003)
为深入研究枸杞振动采收机理,该文基于果-蒂分离条件及枸杞枝条间的动态传递特性进行试验研究分析,获得枸杞振动采收条件。利用振动分离试验台进行结果枝果-蒂振动分离试验,探寻最优采摘效果的振动参数组合,即激振频率18.22 Hz、激振振幅7.87 mm和枝条通过装置的行进速度20.93 mm/s,分析该组合参数下结果枝的加速度响应,获得枸杞果-蒂分离条件。在田间采用高速摄像系统对枸杞枝条间的振动传递情况进行跟踪拍摄,并用高速运动分析软件ProAnalyst对枸杞枝条的动态响应进行分析,获得枸杞三级枝和结果枝(四级枝)的加速度响应关系。对试验结果进行分析,获得了不同激振情况下枸杞振动采收所需加速度,即当所有结果枝被直接激振时,被激振处的加速度需要达到518.38~551.06 m/s2,结果枝末端加速度需要达到347.64~390.56 m/s2;当存在结果枝未被直接激振,而三级枝全部被直接激振时,三级枝被激振处加速度需要达到1 738.20~1 952.80 m/s2。该文研究结果可为枸杞机械化采收提供参考。
农作物;机械化;振动;枸杞;动态响应
0 引 言
枸杞作为一种食药同源食品,具有预防癌症、降低血糖血压、延缓衰老等多种保健功效[1-2],在中国的种植面积也逐年增加[3]。枸杞属于无限花序植物,每年需采摘多次[4],人工采收存在劳动强度大、效率低、费用高等问题[5-7]。现有研究表明,振动式装置在果品采收上具有明显优势[8],因此研究果-蒂分离条件及枸杞植株的振动传递特性,寻求振动采收机理具有重要意义。
So[9]选取枸杞枝条进行枸杞振动分离室内试验,确定了成熟果实分离率最高时主要因素的参数;张最等[10]对枸杞结果枝进行仿真分析确定了合理的迫振载荷施加位置和振动角频率,但上述文献并未对枸杞三级枝与四级枝之间的振动动态响应进行研究。
国内外对果品采收机理开展了大量研究,Bentaher等[11]通过仿真分析得到测试点加速度并判断橄榄果枝分离惯性力的大小;Chen等[12-17]通过加速度传感器测试树枝上各测试点的振动加速度分析了樱桃、银杏等果树的振动动态响应;瞿维等[18]采用高速摄像仪对杏树树枝的能量传递进行了研究;王长勤等[19-26]通过振动试验研究了影响黑加仑、核桃等果品果-蒂分离率的主要影响因素;李成松[27]采用理论和试验相结合的方法研究了葡萄果-蒂分离的条件和主要影响因素。
本文拟将加速度作为动态响应的主要指标[28],研究分析枸杞果-蒂分离条件和枸杞枝条间动态响应关系,确定不同激振情况下激振处所需加速度范围,以期为枸杞机械化采收提供参考。
1 枸杞结果枝的果-蒂振动分离试验
前期调研统计分析,枸杞植株主要由一个主枝及四级分枝组成,树形示意图如图1所示。枸杞果实均集中在结果枝(四级枝)上,结果枝相对其他分枝较为纤细,且呈下垂状。枸杞振动采收原理是激振源激振枝条,枝条上的果实获得加速度响应从而形成惯性力,当果实获得的加速度大于果-蒂分离所需加速度时果实脱落[8]。
图1 枸杞植株树形示意图Fig.1 Diagram of wolfberry tree structure
影响果-蒂分离的主要因素为惯性力、激振时间、成熟度等[29]。惯性力的主要影响因素为激振频率和振幅[30]。将激振频率、激振振幅和激振时间作为影响枸杞结果枝果-蒂振动分离率的主要因素,由于试验装置固定不动,激振时间由枝条通过装置的行进速度决定(以下简称行进速度)。通过颜色判别,将全果鲜红或黄红的果实称为成熟果实,将全果青绿和半青绿的果实称为未成熟果实。统计每次振动试验结果枝上落果数和未落果数,按式(1)计算分离率。
式中P为分离率,%;N1为落果数;N2为未落果数。因采摘期成熟果实和未成熟果实同时挂枝,需进行选择性采摘,所以试验时将成熟果实果-蒂分离率和未成熟果实果-蒂分离率作为响应指标。
本文拟通过试验获得最优采摘效果下的振动组合参数,最优采摘效果定义为成熟果实分离率达到最大及未成熟果实分离率达到最小。
1.1 材料与方法
本振动分离试验台包括:DC-300-3/SV-0505 电动振动试验系统(苏州苏试试验仪器股份有限公司)、TC55运动控制系统(北京多普康自动化技术有限公司)、57BYGHT直线步进电机(上海汉霞自动化科技有限公司)、振动分离试验机架及振动杆,如图2所示。结果枝振动分离过程采用FASTEC-TS4型高速摄像仪(美国,Fastec Imaging公司)进行跟踪拍摄。试验时间为2016月8月28日,结果枝采摘地点为新疆生产建设兵团第七师一二四团一连,采用随机抽样的方法得到60枝结果枝,试验在采样后当天完成。试验过程:由电动振动试验系统带动振动杆提供激励,枸杞结果枝枝条装夹在振动分离试验机架上,结果枝由直线步进电机驱动开始做匀速直线运动,离开振动区域后停止,速度由运动控制系统控制,结果枝在匀速直线运动过程中受到振动激励,实现果-蒂分离。
图2 振动分离试验台结构示意图Fig.2 Stracture diagram of vibration separation test bench
根据试验条件及预试验分析,确定了振动试验台的激振频率、激振振幅以及行进速度3个因素的主要水平。试验采用二次回归通用旋转组合设计方法,试验因素水平及编码表如表1,共进行20组试验,每组重复3次,试验结果取平均值,采用Design—Expert 8.0.5软件进行试验方案设计,试验数据如表2。
表1 试验因素水平及编码表Table 1 Test factor level and coding table
表2 试验方案及结果Table 2 Test protocol and results
1.2 试验结果与分析
1.2.1 试验结果
通过Design-Expert 8.0.5 软件对试验数据进行方差分析,如表3所示。成熟果实分离率M和未成熟果实分离率I所对应的回归方程为式(2)和式(3)。
式中A、B、C为频率、振幅和速度的编码值。
表3 回归模型的方差分析Table 3 Variance analysis of regression models
由回归方程中系数绝对值大小可知各因素对成熟果实分离率和未成熟果实分离率的影响,对成熟果实分离率各因素的影响大小关系为:A>B>C,对未成熟果实分离率各因素的影响大小关系为:A>B>C。
1.2.2 参数优化
1.2.3 试验验证
为验证最终优化参数,从新疆生产建设兵团第七师一二四团一连采摘结果枝条30枝,在振动分离试验台上进行验证试验,并用高速摄像系统跟踪拍摄。试验结果为:成熟果实分离率为95.18%,未成熟果实分离率为6.43%,与优化参数对应结果基本相符。
1.2.4 枸杞果-蒂分离条件
通过1.2.3验证试验发现,每次果-蒂分离过程至少需要振动杆激励枝条10次以上,从验证试验的30段视频中任选10段,每段中选取10次振动杆激励结果枝时结果枝的运动过程。利用ProAnalyst软件分析结果枝的振动动态响应,分析可知结果枝每受到振动杆一次激励都会产生一系列加速度波动,从而使得结果枝产生摆动,这一系列加速度中会存在一个最大值,由此获得结果枝被激振处的最大加速度值(共计100个)和结果枝末端的最大加速度值(共计100个),根据数据总量和极差大小确定组数与组距,分别做出频数分布图如图3所示。
分析数据可知,结果枝被激振处频数最大的最大加速度均值为534.73 m/s2,95%的置信区间为[518.38,551.06];结果枝末端频数最大的最大加速度均值为369.10 m/s2,95%置信区间[347.64,390.56]。由此获得枸杞果-蒂分离条件:当结果枝被直接激振时,被激振处加速度需要达到518.38~551.06 m/s2,结果枝末端加速度需要达到347.64~390.56 m/s2;当结果枝未被直接激振时,需要通过直接激振三级枝将振动能量传递到结果枝末端,保证结果枝末端加速度达到347.64~390.56 m/s2。
图3 结果枝被激振处与末端最大加速度频数分布Fig.3 Frequency number distribution of maximum acceleration for vibrated position and end of fruit branch
2 枸杞枝条振动响应试验
振动采收时通常利用振动源直接激振结果枝实现果蒂分离,但当结果枝未被直接激振时,需依靠三级枝的振动能量传递来实现结果枝上果-蒂分离。现已获得枸杞果-蒂分离条件,需要对三级枝与结果枝的振动传递响应进行研究。
本流域属亚热带气候,高温湿润多雨,具有明显的干湿季节。东江流域多年平均降水量在1 500 mm~2 400 mm之间,其中4月—9月占全年降雨的80%以上。东江洪水具有水情复杂、洪水遭遇种类繁多等特点。由锋面雨造成的洪水峰型较肥硕,涨水缓慢。由台风雨造成的洪水峰型尖瘦,涨落变化快,一次洪水过程一般为6 d~8 d。东江三角洲的潮汐属不规则半日潮,日潮不等现象显著。由于受径流和台风的影响,年最高潮位一般出现于汛期。
2.1 试验材料与方法
试验仪器为FASTEC-TS4型高速摄像仪,分辨率1 280×1 024像素,帧速率250帧/s,采用高速运动分析软件ProAnalyst进行后期处理。激振源采用尼龙杆,长度为530 mm、直径为15 mm。试验时间为2016年9月23日,试验地点在新疆生产建设兵团第七师一二四团一连,枸杞品种为精杞一号,4 a生植株,选取样本100组。
试验时,对枸杞植株三级枝施加单次随机激励,该激励方向以地面为参考系,与地面平行且垂直于高速摄像仪拍摄平面。高速摄像标记点位置如图4所示,取两个三级枝B1、B2的中点为标记点1和标记点2,因结果枝末端离激振源较远,果实脱落所需能量较大、时间较长[18],为保证所有果实获得足够的激振能量,所以将结果枝B3末端处节点作为标记点3。
试验分为2个内容:1)为寻求结果枝与父级三级枝的动态响应关系,对标记点2施加单次随机激励,获取标记点2和标记点3的加速度响应,选取100组样本分别进行试验。2)为寻求结果枝与相邻三级枝的动态响应关系,对标记点1施加单次随机激励,获取标记点1和标记点3的加速度响应,选取100组样本分别进行试验。
图4 高速摄像标记点位置示意图Fig.4 Schematic diagram of high-speed camera marking point position
激励过大会对植株造成损伤,激励过小结果枝末端加速度无法满足果-蒂分离条件,根据预试验结果本试验在2种激励条件下进行:1)在尽量不对植株造成损伤的情况下对植株施加激励,按照试验内容分别选取100组样本进行试验;2)在保证结果枝末端能满足果-蒂分离条件情况下对植株施加激励,为减少对植株的损伤,按照试验内容分别选取20组样本进行试验。
2.2 结果与分析
2.2.1 结果枝与父级三级枝动态响应关系
以单次随机激励为例,标记点2与标记点3的加速度响应如图5所示。由图5可知,标记点3的最大加速度产生时间相对于标记点2存在滞后现象,分别获取每组试验标记点2和标记点3的加速度响应,对每组试验标记点2和标记点3产生最大加速度的时间差进行统计分析,得到时间差平均值为0.032 s,标准差为0.008 s,即对标记点2进行激励后,振动能量需要0.032 s才能传递到标记点3。
图5 单次激励时标记点2与标记点3加速度响应Fig.5 Point 2 and point 3 acceleration response for single excitation
对100组试验数据标记点2和标记点3的最大加速度值进行统计分析,得到标记点2和标记点3最大加速度值的频数分布如图6。用SPSS软件对标记点2和标记点3最大加速度值进行统计分析,经 Shapiro-Wilk[31]正态性检验,其Sig.值均大于0.05,因此数据呈近似正态分布。分析数据得到标记点2频数最大的最大加速度的95%置信区间为[785.61,853.58],标记点3频数最大的最大加速度的95%置信区间为[154.37,175.41]。将两个标记点频数最大的最大加速度数据用SPSS软件做相关性分析,其显著性于0.05,表明数据显著相关。分析可知,若想结果枝末端加速度达到果-蒂分离条件下所需加速度347.64~390.56 m/s2,需使标记点2的加速度超过其5倍,即父级三级枝被激振处加速度需要达到1 738.20~1 952.80 m/s2。
图6 标记点2和标记点3最大加速度频数分布图Fig.6 Maximum acceleration frequency number distribution for point 2 and point 3
2.2.2 结果枝与相邻三级枝动态响应关系
标记点3的最大加速度产生时间相对于标记点1也存在滞后现象,时间差的平均值为0.048 s,标准差为0.019 s,即对标记点1进行单次随机激励后,振动能量需要0.048 s才能传递到标记点3。
标记点1与标记点3最大加速度响应频数分布如图7所示。用SPSS软件对标记点1和标记点3最大加速度值进行统计分析,经 Shapiro-Wilk正态性检验,其Sig.值均大于0.05,因此数据呈近似正态分布。分析数据得到标记点1频数最大的最大加速度的95%置信区间为[728.22,797.03],标记点3频数最大的最大加速度的95%置信区间为[117.58,131.42]。将2个标记点最大加速度数据用SPSS软件做相关性分析,其显著性小于0.05,表明数据显著相关。分析可知,若想结果枝末端加速度达到果-蒂分离条件下的加速度,需使标记点1的加速度超过其6倍,即相邻三级枝被激振处加速度需要达到2 085.84~2 343.36 m/s2。
考虑到激振加速度过大会对枸杞枝条造成损伤,建议在设计枸杞采收装置时,结构上尽量保证结果枝均被直接激振,至少保证三级枝均被直接激振;选材上振动杆可选用尼龙等柔韧性较好的材料,减少对枝条的损伤。
图7 标记点1和标记点3最大加速度频数分布Fig.7 Maximum acceleration frequency number distribution for point1 and point 3
2.2.3 枸杞枝条振动响应关系验证
在保证结果枝末端能满足果-蒂分离条件情况下对植株施加随机激励,获得结果枝与父级三级枝最大加速度值和结果枝与相邻三级枝最大加速度值各20组。对数据进行统计分析,如图8所示,虚线为各标记点最大加速度数值的平均值。
由图8可知,对于结果枝和父级三级枝的动态响应关系分析如下:标记点2最大加速度均值为1 788.25 m/s2,标记点3最大加速度均值为365.26 m/s2,标记点2与标记点3的最大加速度响应关系为4.9倍;对于结果枝和相邻三级枝的动态响应关系分析如下:标记点1最大加速度均值为2 119.71 m/s2,标记点3最大加速度均值为368.27 m/s2,标记点1与标记点3的最大加速度响应关系为5.76倍。结果枝末端加速度值均在枸杞果-蒂分离条件所需范围内,枝条间加速度响应关系也与2.2.1和2.2.2枝条间加速度响应关系一致。
图8 各标记点最大加速度统计Fig.8 Maximum acceleration statistics for each point
3 结 论
通过枸杞结果枝果-蒂振动分离试验,得到最优采摘效果的振动组合参数,即激振频率18.22 Hz、振幅7.87 mm和枝条通过装置的行进速度20.93 mm/s,经试验验证,可使成熟果实分离率达到最大95.18 %,未成熟果实分离率达到最小6.43%。枸杞果蒂分离条件为:为使枸杞果-蒂分离效果达到最优,需保证结果枝末端加速度达到347.64~390.56 m/s2。
1)振动能量从三级枝到结果枝的传递具有明显的衰减,父级三级枝到结果枝最大加速度值衰减5倍,相邻三级枝到结果枝最大加速度值衰减6倍。
2)枸杞振动采收条件:当所有结果枝均被直接激振时,被激振处的加速度需要达到518.38~551.06 m/s2;当所有三级枝均被直接激振,存在结果枝不能被直接激振时,三级枝被激振处的加速度需要达到1 738.20~1 952.80 m/s2。
[1] Harunobu A, Farnsworth N R. A review of botanical characteristics, phytochemistry, clinical relevance in efficacy and safety of Lycium barbarum fruit (Goji)[J]. Food Research International, 2011, 44(7): 1702-1717.
[2] Patrick H W, Li Hongying, Chin Manpan, et al. Effect of Lycium Barbarum(wolfberry) polysaccharides on preserving retinal function after partial optic nerve transection[J]. PLoS One, 2013, 12(8): 1-12.
[3] 曹林,张爱玲. 我国枸杞产业发展的现状阶段与趋势分析[J].林业资源管理,2015(2):4-8.
[4] 李强,叶力勤,安巍. 枸杞采摘机的适采条件[J].农机化研究,2009,31(6):126-128. Li Qiang, Ye Liqin, An Wei. The suitable working of wolfberry harvest machine[J]. Journal of Agricultural Mechanization Research, 2009, 31(6): 126-128. (in Chinese with English abstract)
[5] 赵凤勇. 枸杞机械化生产装备与技术需求分析[J]. 中国农机化,2012(2):44-45.
[6] 冯美,张宁,宋长冰. 枸杞不同成熟期果实品质研究[J]. 农业科学研究,2005,26(1):31-33. Feng Mei, Zhang Ning, Song Changbing. Study on fruits quality in different mature period of Lycium barbarum[J]. Journal of Agricultural Sciences, 2005, 26(1): 31-33. (in Chinese with English abstract)
[7] 程敬春,郭辉,韩长杰,等. 枸杞机械采摘技术研究现状及发展趋势[J]. 农业科技与装备,2012(3):12-13. Cheng Jingchun, Guo Hui, Han Changjie, et al. Present situation and analysis of Lycium barbarum mechanical picking technology research in China[J]. Agricultural Science & Technology and Equipment, 2012(3): 12-13. (in Chinese with English abstract)
[8] 陈度,杜小强,王书茂,等. 振动式果品收获技术机理分析及研究进展[J]. 农业工程学报,2011,27(8):195-200. Chen Du, Du Xiaoqiang, Wang Shumao, et al. Mechanism of vibratory fruit harvest and review of current advance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(8): 195-200. (in Chinese with English abstract)
[9] So J D. Vibratory harvesting machine for boxthorn (Lycium Chinese mill) berries[J]. Transactions of the ASAE, 2003, 46(2): 211-221.
[10] 张最,肖宏儒,丁文芹,等. 振动式枸杞采摘机理仿真分析与样机试验[J]. 农业工程学报,2015,31(10):20-28. Zhang Zui, Xiao Hongru, Ding Wenqin, et al. Mechanism simulation analysis and prototype experiment of Lycium barbarum harvest by vibration mode[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(10): 20-28. (in Chinese with English abstract)
[11] Bentaher H, Haddar M, Fakhfakh T, et al. Finite elements modeling of olive tree mechanical harvesting using different shakers[J]. Trees, 2013, 27(6): 1537-1545.
[12] Chen Du, Du Xiaoqiang, Zhang Qin, et al. Performance evaluation of two mechanical harvesters in removing cherry fruits for fresh market[C]//ASABE. American Society of Agricultural and Biological Engineers Annual International Meeting, 2011: 2473-2484.
[13] 翁凌云. 林果采收振动系统动态特性传递研究[D]. 南京:南京林业大学,2013. Weng Linyun. Research on Dynamic Properties Transmitted of Forest-Fruit Vibratory Harvester System[D]. Nanjing: Nanjing Forestry University, 2013. (in Chinese with English abstract)
[14] Du Xiaoqiang, Chen Du, Zhang Qin, et al. Dynamic responses of sweet cherry trees under vibratory excitation[J]. Biosystems Engineering, 2012, 111(3): 305-314.
[15] 林欢,许林云,宣言,等. 林果振动加速度度响应振型试验[J]. 林业工程学报,2016,1(1):100-104. Lin Huan, Xu Linyun, Xu Xuan, et al. Experimental research on the vibration mode of fruit vibration acceleration response[J]. Journal of Forestry Engineering, 2016, 1(1): 100-104. (in Chinese with English abstract)
[16] 鲍玉东. 机械采收蓝莓振动特性及数值模拟研究[D]. 哈尔滨:东北林业大学,2015. Bao Yudong. Research on Vibration Characteristics and Numerical Simulation of Blueberry Mechanization Harvesting[D]. Harbin: Northeast Forestry University, 2015. (in Chinese with English abstract)
[17] 杜小强,倪柯楠,武传宇. 基于外旋轮线轨迹的果品振动采收机构研究[J]. 农业机械学报,2016,47(3):59-66. Du Xiaoqiang, Ni Kenan, Wu Chuanyu. Vibratory harvesting mechanism for tree fruit based on epitrochoid[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(3): 59-66. (in Chinese with English abstract)
[18] 瞿维,王春耀,王学农,等. 受迫振动下杏果实树枝能量传递初探[J]. 西北农林科技大学学报:自然科学版,2014,42(7):223-227. Qu Wei, Wang Cunyao, Wang Xuenong, et al. Energy transfer of apricot fruit branch under forced vibration [J]. Journal of Northwest A&F University: Natural Science Edition, 2014, 42(7): 223-227. (in Chinese with English abstract)
[19] 王长勤,许林云,周宏平,等. 偏心式林果振动采收机的研制与试验[J]. 农业工程学报,2012,28(16):10-16. Wang Changqin, Xu Linyun, Zhou Hongping, et al. Development and experiment of eccentric-type vibratory harvester for forest-fruits[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(16): 10-16. (in Chinese with English abstract)
[20] 王业成,陈海涛,林青.黑加仑采收装置参数的优化[J]. 农业工程学报,2009,25(3):79-83. Wang Yecheng, Chen Haitao, Lin Qing. Optimization of parameters of blackcurrant harvesting mechanism[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(3): 79-83. (in Chinese with English abstract)
[21] Loghavi M, Mohseni S. The effects of shaking frequency and amplitude on detachment of lime fruit[J]. Iran Agricultural Research, 2005, 24(2): 27-38.
[22] Sessiz A, Ozcan M. Olive removal with pneumatic branch shaker and abscission chemical[J]. Journal of Food Engineering, 2006, 76(2): 148-153.
[23] Polat R, Gezer I, Guner M, et al. Mechanical harvesting of pistachio nuts[J]. Journal of Food Engineering, 2007, 79(4): 1131-1135.
[24] 刘魏. 振动式蓝毒采摘装置工作参数的试验研究[D]. 哈尔滨:东北农业大学,2014. Liu Wei. Experimental Study on Working Parameters of Vibratory Blueberry Picking Devices[D]. Harbin: Northeast Forestry University, 2014. (in Chinese with English abstract)
[25] 王敏,曹肆林,何义川,等.机械振动式沙棘采收机的试验研究[J].农机化研究,2013,35(9):202-204. Wang Min, Cao Silin, He Yichuan, et al. Experimental Research on sea buckthorn picker of mechanical vibration type[J]. Journal of Agricultural Mechanization Research, 2013, 35(9): 202-204. (in Chinese with English abstract)
[26] 散鉴龙. 杏振动采收关键因素研究与试验分析[D]. 乌鲁木齐:新疆农业大学,2014. San Jinlong. Study on the Key Factors of Vibration Harvesting Apricots and Its Experimental Analysis[D]. Urumqi: Xinjiang Agricultural University, 2014. (in Chinese with English abstract)
[27] 李成松. 酿酒葡萄振动分离机理及装置的研究[D]. 北京:中国农业大学,2015. Li Chengsong. Study on Vibration Seperation Mechanism and Equipment of Wine Grape[D]. Beijing: China Agricultural University, 2015. (in Chinese with English abstract)
[28] 贺磊盈. 面向振动采收的果树枝干三维重建方法及其动力学特性研究[D]. 杭州:浙江理工大学,2014. He Leiying. Researches on 3D Reconstruction of Fruit Tree’s Trunk and its Dynamic Characteristics for Vibratory Harvesting[D]. Hangzhou: Zhejiang Sci-Tech University, 2014. (in Chinese with English abstract)
[29] Kepner R A, Bainer R, Barger E L. 农业机械原理[M]. 崔安,张德骏译. 北京:机械工业出版社,1978.
[30] 李成松,高振江,坎杂,等. 酿酒葡萄果-蒂振动分离试验[J].农业工程学报,2015,31(9):39-44.
Li Chengsong, Gao Zhenjiang, Kan Za, et al. Experiment of fruit-pedicle vibration separation of wine grape[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(9): 39-44. (in Chinese with English abstract)
[31] 杨维忠,张甜. SPSS统计分析与行业应用案列详解[M]. 北京:清华大学出版社,2013.
Mechanism analysis and experiment on vibration harvesting of wolfberry
He Miao, Kan Za, Li Chengsong※, Wang Lihong, Yang Lantao, Wang Zhe
(College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832003, China)
Wolfberry acreage is growing increasingly year by year in China. However, artificial harvesting is labor intensive and inefficient, so harvest problem has become a bottleneck in the development of Chinese wolfberry industry. Literature shows that vibration device in fruit harvest has obvious advantages. In order to further study the mechanism of wolfberry vibration harvesting, fruit-pedicle separation conditions and dynamic transfer characteristics of wolfberry branch were analyzed, and then harvest conditions of wolfberry were obtained. Vibration harvesting usually uses vibration source to directly vibrate fruit branch (fourth branch) to achieve fruit separation, but when fruit branch is not directly vibrated, it needs to rely on vibration energy of third branch to achieve fruit-pedicle separation. Vibration separation test bench was set up, which included electric vibration test system, motion control system, vibration separation test rack, and so on. Vibratory separation test device was used to carry out fruit-pedicle vibration separation test of fruit branch, which was designed by quadratic regression universal rotary combination design method. The main factors affecting fruit-pedicle separation rate were as follows: excitation frequency, excitation amplitude and vibration time (replaced by branches travelling speed), with mature fruit separation rate and immature fruit separation rate as response index. Searching for the optimum vibration parameter combination of fruit-pedicle separation, high-speed camera system was used to analyze acceleration response of vibrated part and end part, and as a result vibration separation conditions of wolfberry were obtained. The experimental results showed that the optimal combination parameters were the excitation frequency of 18.22 Hz, the excitation amplitude of 7.87 mm and the branches traveling speed of 20.93 mm/s. And the results showed that the separation rate of mature fruit was 95.18% and the separation rate of immature fruit was 6.43%. Dynamic responses of the optimal vibration combination parameters were analyzed, and the results showed that the acceleration of vibration was 518.38-551.06 m/s2when fruit branch was directly vibrated; the vibration energy was transferred to end of fruit branch by direct excitation of third branch when fruit branch was not vibrated, and fruit branch acceleration was required to reach 347.64-390.56 m/s2. In this experiment, a single random stimulus was used to wolfberry third branch, vibration transfer of third and fruit branch was tracked by high-speed camera system, and wolfberry branch dynamic response was analyzed by a high speed motion analysis software ProAnalyst. The Shapiro-Wilk’s normal test was performed with acceleration data of third branch and fruit branch of wolfberry, corresponding confidence intervals were calculated, and then acceleration response relationship of third branch and fruit branch was obtained. The acceleration required for wolfberry vibration harvesting under different excitation conditions was obtained. Firstly, when all the fruit branches were directly vibrated, acceleration of vibration was required to reach 518.38-551.06 m/s2; secondly, when all third branches (parent third branch and adjacent third branch) were directly vibrated and part of fruit branches could not be vibrated, only the dynamic response of parent third branch and fruit branch needed to be considered, and the maximum acceleration from parent third branch to fruit branch was reduced by 5 times, with the lag time of 0.032 s, and the acceleration of parent third branches vibration needed to reach 1 738.20-1 952.80 m/s2; thirdly, when partial fruit branch and third branch (adjacent third branch) were not vibrated, the maximal acceleration value from adjacent third branch to fruit branch was attenuated by 6 times and the lag time was 0.048 s. Acceleration of adjacent third branch vibration needed to reach 2 085.84-2 343.36 m/s2. As large vibration acceleration can cause wolfberry branch injury, in the design of wolfberry harvesting device, the structure should ensure that all fruit branches are directly vibrated as far as possibly, and at least ensure that all third branches are directly vibrated; vibrating rods can use nylon and other flexible material with less damage to branches. The results of this study can provide theoretical basis for the mechanized harvest of wolfberry.
crops; mechanization; vibrations; wolfberry; dynamic response
10.11975/j.issn.1002-6819.2017.11.006
S225.99
A
1002-6819(2017)-11-0047-07
何 苗,坎 杂,李成松,王丽红,杨兰涛,王 哲. 枸杞振动采收机理分析与试验[J]. 农业工程学报,2017,33(11):47-53.
10.11975/j.issn.1002-6819.2017.11.006 http://www.tcsae.org
He Miao, Kan Za, Li Chengsong, Wang Lihong, Yang Lantao, Wang Zhe. Mechanism analysis and experiment on vibration harvesting of wolfberry[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(11): 47-53. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.11.006 http://www.tcsae.org
2016-11-15
2017-05-16
国家自然科学基金资助项目(51541509)
何 苗,女,重庆巫山人,研究方向为机械设计及理论。石河子石河子大学机械电气工程学院,832003。Email:hm_8311@163.com
※通信作者:李成松,男,四川西充人,教授,博士,博士生导师,主要研究方向为农业机械化工程。石河子 石河子大学机械电气工程学院,832003。Email:lcs_shz@163.com