研究生矩阵论课程教学改革探索
2017-06-04王诗云刘勇进
王诗云+刘勇进
【摘 要】矩阵论是一门重要的研究生基础课程,在很多领域有广泛的应用。文章首先阐述了矩阵论课程概况和研究生数学基础,然后提出课件板书结合、学生参与讨论矩阵论在其他学科的应用,以激发学生的学习兴趣,提高学生利用数学理论研究专业问题的能力。
【關键词】矩阵论 教学改革 数学文化 应用
一、引言
矩阵在很多领域中都有应用,矩阵论课程与很多专业密切相关,学习该课程有助于为学生后续的研究工作奠定数学基础;加之本门课程的选修人数多,专业杂,因此,对本门课程的教学方法进行研究是非常必要的。矩阵论课程在许多学科中都有重要的应用,是很多专业的必修课程。为了让学生的学习更有目的,更有热情,让更多的学生参与课堂讨论,增强学习兴趣,我们希望在课堂教学中加入矩阵论在各专业中的应用部分,采取的形式为教师介绍,学生讨论。目前已有一些文献对研究生基础课程的教学方法进行了研究。例如罗尧成、谢安邦(2008)在《论研究生教育课程体系开发的三个理论基础》中研究了研究生课程体系开发的理论基础;黄敏(2010)、刘碧玉(2013)等研究了矩阵论课程的教学方法。
本文针对研究生矩阵论课程探讨了板书与课件结合、将该课程与其他学科相联系等教学改革方法,旨在激发学生学习兴趣,提高授课效率,从而进一步提高学生的数学能力和科研能力,为学生进一步学习和从事科研工作打下坚实的基础。
二、矩阵论课程概况和研究生数学基础
矩阵论的基本内容包括线性空间与线性算子,内积空间与等积变换,若当标准型,赋范线性空间与矩阵范数,矩阵的微积分运算及其应用,广义逆矩阵及其应用,矩阵的分解等。矩阵论课程的定理和例题的推导部分很多,理论性较强,因此目前我校授课以讲解和板书为主。上课学生来自不同院校20余个不同专业,班级人数达200多人。相对于小班型授课而言,大班型授课的质量更容易受教师的音量、板书的轻重、光线的明暗等因素的影响,特别是坐在教室后排的学生更易受到影响。这就意味着学生的听课质量、课堂秩序难以保证。因此,教师应寻求新的教学方法,以激发学生的学习兴趣,提高学生的听课质量。
由于研究生本科阶段属于不同的院校,所学专业也各不相同,因此学生的数学能力与基本功差距很大。矩阵论课程的先修课程为线性代数。对于线性代数这门课程,一般工科院校教师只重视计算方法和计算技巧的传授,不重视推理和证明;而矩阵论课程的推理与证明内容很多,这对于学生能力而言是一个挑战。另外,对于不同专业,线性代数课程的要求也不尽相同。就授课学时而言,有32学时的,有40学时的,还有48学时的;就授课内容而言,有线性代数A、线性代数B、线性代数C之分。尽管学生的基础差异较大,但是教师希望80%以上甚至90%以上的学生都能很快地适应教学,不放弃,不掉队。要做到这一点,教师就必须探索相应的教学方法,使更多的学生积极参与课堂的学习与讨论,打牢数学基础,提高思维能力。
未来从事科学研究的人必须具备相应的数学基础。数学,是从事科研工作必不可少的工具;数学能力,是科研工作者必须具备的素质。因此,保证数学课程的教学质量尤为重要。但是,高校的数学课程较为晦涩难懂,很多学生不喜欢“定理—证明—定理—证明”的循环模式,觉得很枯燥抽象。因此,必须对数学课程进行教学改革。
三、课件与板书结合
课堂上,大容量、快节奏的人机对话经常让学生目不暇接,给人印象最深的只是直观的图像和影像,而作为课堂教学最重要环节的交流思考却常常被忽视,实际教学效果并不理想。
课件授课省时省力,教师可以随时翻阅讲过的重要内容;可以增强教学的丰富性、生动性等。但是,课件授课也有其不足之处。比如,定理的推理和分析过程直接呈现,速度较快,学生不易记住;学生长时间盯着屏幕看,容易造成视觉疲劳,听课效果下降;降低了教师随机发挥的灵活性等。
相比而言,板书灵活性强,能与各个教学环节紧密结合起来,可以有效地控制课堂节奏,也不受课前教学设计的限制,具有随机应变的优势;并且板书速度要慢一些,推理过程一步步呈现,便于学生理解,便于师生互动,有利于学生对知识的吸收。
矩阵论作为研究生的基础课程,班型大,课时较紧张。单纯板书教学,虽然容易抓住学生的注意力,推导清晰,但同时也浪费时间;而利用课件教学,虽然灵活、便捷,但学生看屏幕的时间过长,容易疲劳,很难保证两小时内注意力一直集中。因此,教师可以将一些习题、定理内容用课件讲解,并用板书进行详细的推演,将课件与板书有效结合起来,取长补短,提高授课效果。
四、课堂讨论矩阵论在其他学科的应用
随着科学技术的发展,矩阵的相关理论与研究方法日益成为现代科技领域必不可少的应用工具。数值分析、微分方程、优化理论、控制理论、概率统计、力学、电子学等很多学科都与矩阵论有着密切的联系。因此,矩阵理论具有更为广阔的应用前景。
由于研究生有一定的自学能力和表达能力,因此,教师在设计习题时,要给学生发挥能力的机会。具体的,可以将学生分成小组,鼓励学生自主研究一些课题,小组成员合作完成题目的设计、选择等工作。在习题课上,各小组派代表主讲。这样就可以增强学生的学习兴趣,激发学生学习本课程的动力。
数学是从事科学研究必需的工具,而矩阵论课程也在很多领域都有应用。教师要引导学生发现矩阵论课程与其所学专业之间的联系,并在课堂上与师生分享他们的发现与学习心得。这样可以促进师生、生生之间的互动,实现教学相长,也为学生了解其他学科专业打开了一扇窗户,拓宽了学生的视野。
五、传播数学文化
数学,是一种改造世界的工具,改变了人类的物质生活和精神生活。“数学文化作为人类基本的文化活动之一,与人类整体文化血肉相连,在现代意义下,数学文化作为一种基本的文化形态,是属于科学文化范畴的,从系统的观点看,数学文化可以表述为以数学科学体系为核心,以数学的思想、精神、知识、方法、技术、理论等所辐射的相关文化领域为有机部分的一个具有强大精神与物质功能的动态系统。”[4]数学的不断发展是与人类不断继承、传播、发扬数学文化分不开的。因此,教师在传授数学知识的同时,应注重数学文化的传播,让越来越多的学生为这种文化所吸引,从而更好地服务于社会。
六、小结
随着科技的日新月异,数学作为基础学科以及科研的重要工具,越来越多地应用到其他领域的科学研究中。矩阵论课程与其他工科学科有着密切的联系。教师应重视创新该课程的教学方法与手段,提高教学质量,进一步提高学生的学习能力与科研能力。
【参考文献】
[1]罗尧成,谢安邦.论研究生教育课程体系开发的三个理论基础[J].教育研究,2008(04):30-35.
[2]黄敏.工科研究生《矩阵理论》课程创新性教学方法的探讨[J].贵州师范学院学报,2010(03):12-15.
[3]刘碧玉,刘庆平,唐先华.工科研究生矩阵理论课程教学改革的探索与实践[J].数学理论与应用,2013,33(01):125-128.
[4]黄秦安.数学文化观念下的数学素质教育[J].数学教育学报,2001,10(03):12-17.