建模思想在初中数学中的应用
2017-05-19吕春花
吕春花
摘要:建模思想在数学教材的设计与教学中有着十分重要的作用,对相关问题的解决有着具有举足轻重的意义,它可以把日常生活中不具体的问题转变为实际的数学问题,架起与数学公式、定义沟通的桥梁,从而激发学生学习的兴趣、加深对数学问题的理解,对提升学生的数学应用能力有着极大的帮助。本文将对建模思想核心特点进行叙述,使用鲁教材中的数学实例为例,研究构建建模思想的一些方法和其在初中数学教材中的应用。
关键词:初中数学;数学建模;鲁教版
建模思想来源于构建主义,其原理是对数学现象的研究探讨,总结出的一类抽象的数学模式,通过对物体数量关系的量化,制作出的一种精准的数学模型,这种数学模型是主动学习及思考过程的代表,也是一种将复杂转化为简单的思考方式,而在鲁教版的初中数学教材中,它有着导向性的作用。初中年龄的学生有着其特有的思考方式,如果能尽早而准确的为他们建立数学模型,对整个初中数学教育有着十分重要的意义,更能为以后的高中数学教学起到铺陈的作用。
一、建模思想应用的意义
1、有助于培养学生主动思考能力。在当前的格局下,数学教育一般侧重于学生对书本知识的理解和掌握能力,而建模思想则不同,它主要侧重于由学生自行探索学习规律,对于在实际生活中遇到的一下复杂的数学问题,建模思想主要的作用在于讨论各个自变量之间的相互影响并推导出数学模型来总结掌握的数学关系,它培养的自主思考自主学习的能力对学生数学思维的培养有着举足轻重的意义。
2、有助于启蒙初中学生数学学习。初中生有着其特殊的思维特点,对于知识的掌控能力强,对新方法的适应能力也强,施教者对其的建模思维的培育也较为容易,在这种情况下,更应侧重于培养学生的数学建模思想并使其付诸应用。
3、有助于激发学生的学习兴趣。初中生有着思维开阔适应力强的特点,易于接受新的事物,对其感兴趣的事情有着无可比拟的关注,所以在实际教学过程中,他们更倾向于一些参与性较强的活动,在教学过程中对于感官上的感知也为敏感。[1]而建模思想正好与抽象的数学问题相左,十分形象,也更有想象空间,学生更愿意,也更容易接受,对于这种不抽象的事物,学生们心怀积极,教学的参与性也就更强,效果也就更好。
二、培养初中学生数学建模思想的途径
1、思想和方法并重。在任意一门学科中,学科思想和技能的培养都是并驾齐驱的,对于任何一方面的舍弃都会使教育进入误区,数学的学习也是一样,数学思想是整个数学学科的主干,也是数学学习的基础,如果没有了数学思想,在施教过程中就会显得空乏,而只重视数学思想而不重视数学方法,整个课堂教育又会变得毫无意义,在实际教育过程中,这二者必定是相结合的,只有如此,学生们对数学知识的掌控才会更加稳固。随着时间的推移,具象的知识内容或许会淡忘,但是数学建模的思想却不会,它能够继续在生活中为我们指明道路,让我们向更加深远的知识领域前进。
2、注重讨论和交流。在数学教学中,传统教学模式很容易使教学进入四维定势,,所以在教学中教师必须要掌控和充分调动课堂,进行有趣味的课堂教学来调动学生的积极性。将讲述和研究相结合,来使学生在课堂中的参与程度更高,并拓宽学生的求知能力。
教师在这时的作用,就是要了解什么是学生感兴趣的,从而使课堂教学由枯燥变得生动,课堂气氛如果是热烈而有参与性的,学生的思维就会被充分调动起来,教学效果也就会变得更好。经验表明,所有带有创造性意义的学习能力都是在一种愉快放松的教学氛围中形成的,为人师表,正是应该为学生创造这样一种环境,使学生在学习中获得更深刻的印象[2]。
3、借助案例激发思维。当施教者在对学生建模思想的培养当中,若果能举出实际的例子,从实例切入,从而分析问题,就能总结学习经验,从而解决问题。
在数学(鲁教版九年级)教材中,有这样一个例题:
在空白处填上适当的数字:
①1,2,3,4,5, ,7,......
②2,5,10,17,26, ,5,......
③4,16,36,64,100, ,196, ,......
④, , , , ,......
⑤0,3,8,15,24, ,48,......
在上面的例題中,我们分析可以得知,几组数字之间有着某种联系,观察可以得到行空下的数字应为6,再次观察下,我们也可以看出其他空白处的数字,通过前后数字的和差商积运算,也可以得知空白处所缺少的数字,在科学的推断下,这些貌似复杂的数字之间的关系也就明了了。
4、情景教学提升建模意识。在现实生活中,我们处处可以看到数学的应用。一些股票的计算,银行储蓄都是一些直白的数学问题,而街道上行驶中的车辆,和商店打折的计算,又是一些隐性的数学问题,施教者需要结合教学实际,集合汇总生活中的数学问题,再糅合数学建模思想,在课堂上提出适当的实例,使得学生们易于接受,思维能力更加形象,解决问题的能力也可以得到提高。[3]
5、分析吃透教材内容。鲁教版的数学教材在教学过程中十分实用,因为它给学生提供了大量的实例,使得数学建模变得更加容易教学,对于一个问题,老师可从各个角度出发,对实例的条件进行变换,进而提出更多的问题,来增加学生建模的熟练度,也可以将理论和实际问题向结合,进而促进学生的积极探求,来进一步提升学生的数学建模能力。[4]
三、结语
在初中数学教学中加入建模思想,不只是能让学生感受到数学是一门并不抽象的学科,也可以让学生体会到数学和数学建模思想相结合对实际问题的解决十分便利,进而对数学产生更为浓郁的兴趣,但教学经验也告诉我们,这是一项长期工程,不可能一下子成功,教师也应培养学生自主建模的能力,教育的目的才能得以达成。
参考文献
[1] 唐秋洁. 融入数学建模思想的中职数学教学实践研究[D].四川师范大学,2014.
[2] 徐礼刚. 在中学数学教学中渗入数学建模思想的研究[D].华中师范大学,2013.
[3] 龚雪. 中学数学教学中数学建模思想的融入[D].长春师范学院,2011.
[4] 胡庆婉. 数学课堂教学与数学建模思想相结合的探索[J]. 科技信息,2010,(21):525+536.