蛋鸡粪工业化堆肥过程中氨氧化菌群的群落演替
2017-04-25高浩峰
周 婧,张 霞,高浩峰,胡 南
(南京工业大学生物与制药工程学院,江苏南京211800)
蛋鸡粪工业化堆肥过程中氨氧化菌群的群落演替
周 婧,张 霞,高浩峰,胡 南
(南京工业大学生物与制药工程学院,江苏南京211800)
以蛋鸡粪为研究对象,考察其在工业堆肥过程中几种主要氮化物的变化,同时应用聚合酶链式反应-变性梯度凝胶电泳(PCR-DGGE)技术检测氨氧化细菌(ammonia-oxidizing bacteria,AOB)和氨氧化古菌(ammonia-oxidizing archaea,AOA)的群落结构,并通过冗余分析(redundancy analysis,RDA)探讨环境变量对AOB群落结构的影响。结果表明:整个堆肥过程中总氮损失率为30.8%;DGGE图谱展示了一个丰富的氨氧化微生物群系,共有14种AOB及13种AOA被证实,其中,Nitrosomonas和Candidatusnitrososphaeragargensis分别是AOB及AOA的优势种属,部分Nitrosomonaseuropaea与Nitrosomonashalophila菌株存在于整个堆肥过程;AOB群落多样性指数及丰度在整个堆肥过程中呈现先降后升的变化,而AOA群落正好与之相反;RDA分析结果表明,温度和pH对AOB群落结构具有显著的负影响(P<0.05),尤其是温度对其有极显著影响(P<0.01)。本研究真实地反映了蛋鸡粪在工业堆肥过程中的氮化物浓度以及氨氧化微生物群落的变化,实验数据为畜禽粪便堆肥过程的工艺优化提供了部分参考。
氨氧化细菌;氨氧化古菌;群落结构;PCR-DGGE
氨氧化微生物包括氨氧化细菌(ammonia-oxidizing bacteria,AOB)和氨氧化古菌(ammonia-oxidizing archaea,AOA)[6-7],它们都携带执行氨氧化作用的氨单加氧酶(ammonia monooxygenase,AmoA)。AOB普遍存在于各种有机质的堆肥过程,如城市废弃物[8]、牛粪、猪粪和鸡粪等[9-10],AOA则是近年来发现的独立于AOB的进化类群,主要分布在海水、河口沉积物、土壤、活性污泥和适度高温的温泉中[11]。有研究表明在动物粪便堆肥中很难检测到AOA的存在[9-13],但也有报道指出AOA在某些堆肥过程中持续存在[14-16]。目前,关于鸡粪好氧堆肥中氨氧化菌群的报道较少,而鸡粪工业化堆肥过程中氨氧化菌群的研究未见报道。
本研究中,笔者考察湖北某有机肥厂蛋鸡粪堆肥过程中氨氧化菌群结构的变化情况,采用聚合酶链式反应-变性梯度凝胶电泳(PCR-DGGE)技术,来检测amoA基因的种类及丰度,分析不同堆肥时期AOB和AOA群落组成及结构变化,以期为鸡粪工业化堆肥过程中的氨排放减量控制提供参考。
1 材料与方法
1.1 样本采集
样本取自湖北省黄冈市溪水县某鸡粪有机肥厂,该厂采用槽式强制好氧堆肥工艺,槽总长90 m、宽8.5 m、高2 m,设置3条平行堆槽,槽下有鼓风机强制通风供氧。每天用自动翻料机对堆肥进行两次翻堆。工作时,机器沿钢轨从进料口向出料口方向滑行,随即物料被翻起并水平前移,平均每天移动3 m。槽的进料口是新鲜物料,出料口是成熟肥料,中间用温度计每隔3 m定点测量发酵槽的温度,整个堆肥过程为30 d。
自堆肥槽中,选取7个取样点,覆盖堆肥过程的升温、高温及降温期,其对应堆肥发酵时间为1、3、5、10、15、20和30 d,每个取样点取样3次作为平行对照。样本取自堆体表面下0.3 m处,每个样本采集约600 g,研钵研磨后过1 mm筛,之后分成2份,一份用于理化性质的测定,另一份用于DNA提取。
1.2 理化性质测定
1.3 PCR扩增和DGGE分析
1.3.1 DNA提取
均匀混合3个平行样本,采用PowerSoilTMDNA Isolation Kit 试剂盒(Mo-Bio Laboratories)分别提取7个堆肥样本的总DNA,提取出的DNA溶解在80 μL的TE缓冲液(10 mmol/L Tris-HCl、1 mmol/L EDTA)中。采用1%的琼脂糖凝胶电泳检测提取产物,DNA产物藏于-20 ℃备用。
1.3.2 PCR扩增
AOB的扩增采用amoA基因的特异引物Arch-amo1F/Arch-amo2R[17],AOA的扩增采用特异引物Arch-amoAF/Arch-amoAR[18],其中正向引物5’端连接有GC夹(5’-C ̄G ̄C ̄C ̄C ̄G ̄C ̄C ̄G ̄C ̄G ̄C ̄G ̄C ̄G ̄G ̄C ̄G ̄G ̄G ̄C ̄G ̄G ̄G ̄G ̄C ̄G ̄G ̄G ̄G ̄G ̄C ̄A ̄C ̄G ̄G ̄G ̄G ̄G ̄G-3’),引物由上海金斯瑞生物科技有限公司合成。AOB扩增的退火温度为65 ℃,72 ℃延伸1.5 min;AOA 扩增的退火温度为58 ℃,72 ℃延伸30 s,PCR产物用1.5%的琼脂糖电泳进行检测。
1.3.3 DGGE分析
采用DcodeTM基因突变检测系统(Bio-Rad公司)对PCR扩增产物进行电泳分离。DGGE条件:在1×Tris-乙酸-乙二胺四乙酸(TAE)缓冲液中进行,对于AOB,采用变性梯度为30%~70%(100%化学变性剂为7 mol/L尿素和体积分数40%的去离子甲酰胺),8%的聚丙烯酰胺凝胶,在60 ℃、100 V下电泳8 h;而对于AOA,采用变性梯度为35%~55%、8%的聚丙烯酰胺凝胶,在60 ℃、110 V下电泳17 h。电泳结束后,用银染法对凝胶染色30~40 min,在Gel-Doc XR凝胶成像系统(Bio-Rad公司)中观察并拍照。
1.3.4 克隆与测序
选择DGGE胶上的优势条带,在紫外灯下用灭菌手术刀进行切割,装入1.5 mL离心管中,采用Poly-Gel DNA Extraction Kit试剂盒(OMEGA公司)回收目的条带。取1 μL回收产物作为模板,使用不带GC夹的引物进行再扩增并纯化,纯化产物与pMD-19T载体连接后,在大肠杆菌DH5α中进行转化,挑取阳性克隆子送交上海金斯瑞生物科技公司测序。使用BLAST程序对测定序列进行同源性分析,并用MEGA 5.0软件进行系统发育树分析。
1.4 数据处理
DGGE图像采用Quantity One(version 4.6.2,Bio-Rad公司)软件处理,对条带的灰度值、相对位置、条带数量、相对丰度进行分析。AOB和AOA的群落多样性用Shannon-Weiner指数(H)[19]表示,表达式为
H=-∑(Ni/N)ln(Ni/N)
(1)
式中:Ni是第i个条带的扩增量,N是所在泳道条带的扩增总量。扩增量用条带波峰面积表示。
物种数据矩阵以每个条带所处泳道中亮度峰值的百分含量来建立,为降低稀有种群影响,同一泳道内所选条带的相对丰度不低于1%。采用冗余分析方法(RDA)对物种数据与环境变量进行相关性分析,利用“Monte Carlo permutation test”检验RDA排序轴特征值的显著性,找出显著影响群落结构变化的环境因子(P< 0.05),将生成的数据文件应用于Canodraw 4.5作图。
2 结果与讨论
2.1 理化参数的变化
图1 堆肥过程中理化参数的变化Fig.1 Changes of the physical and chemical parameters during the composting process
2.2 氨氧化微生物的群落结构
利用DGGE来分析氨氧化微生物的群落结构,结果见图2和图3。由图2可知:通过DGGE图谱共识别出14条AOB优势条带,升温期种群数量较多,高温期则明显降低,降温期又开始增多。AOA从高温期才开始出现,前3个样本中均未检测到amoA基因,进入降温期以后,AOA的种类与丰度又开始降低。在分别代表10 d至30 d的4条泳道中共识别出13个优势条带。
图2 堆肥样本中amoA基因的DGGE图谱Fig.2 The DGGE profiles generated with amoA gene fragments from the composting samples
图3 AOB与AOA中 amoA基因的系统发育树Fig.3 Phylogenetic trees of amoA genes amplified in AOB and AOA
由图3可知:Nitrosomonas是AOB的优势菌属;除了条带h及i鉴定为Nitrosospira之外,其余12个条带均属于Nitrosomonas,在动物粪便堆肥处理的相关报道中,Nitrosomonas也被证实是优势种群甚至是唯一种群[9,22-23];条带c、d、k和l在整个堆肥过程中都存在,c和d属于Nitrosomonaseuropaea,而k和l属于Nitrosomonashalophila。
AOA的大部分优势条带与Candidatusn ̄i ̄t ̄r ̄o ̄s ̄o ̄s ̄p ̄h ̄a ̄e ̄r ̄agargensis保持了较近的亲缘关系,后者最初发现于温泉,它在动物粪便的堆肥过程尤其是腐熟中后期中被多次发现[10,14,16],这类AOA生存于低浓度铵盐的自然环境,高浓度铵盐可抑制其生长及活性[10],这或许是堆肥前期没有发现AOA的主要原因。
在实验室模拟的鸡粪堆肥实验中,无论是AOB还是AOA,其种群丰度都较少,有些样本甚至都难以检出AOA[14],但在本研究中,检出的AOB及AOA种群非常丰富,推测的原因是实验室模拟研究是在小的相对封闭的体系进行,一定程度上减少了氨氧化微生物的自然接种途径,而工业堆肥尺度大、过程开放,增大了氨氧化微生物的自然接种能力,因而更利于种群结构的丰富。
2.3 环境变量对AOB群落结构的影响
采用Bio-Rad Quantity One 4.6.2软件对DGGE图谱进行分析,获取整个堆肥过程中AOB和AOA群落的Shannon-Weiner指数(H)和条带丰度(S),如表1所示。由表1可知:AOB种群多样性表现为30 d样本≈1 d样本 >3 d样本≈20 d样本 >15 d样本 >10 d样本≈5 d样本;这说明AOB在非高温条件下具有较高的种群多样性,而高温条件下种群则相对简单;AOA种群多样性指数自第10天出现并达到高值,之后便呈下降趋势。
表1 氨氧化菌群amoA基因的DGGE条带丰度(S)和多样性指数(H)
图4为AOB群落结构变化与环境变量关系的RDA二维排序图。由图4可知:堆肥过程中温度和pH的连线较长,且两者的箭头方向都位于第三象限,因此温度和pH与AOB菌群变化呈典型的负相关关系。在第5天至第15天的堆肥样本距离较近,而第1天和第3天、第20天和第30天的距离较远,说明AOB群落结构在堆肥前期和后期演替剧烈。采用手动选择的方式,分析得到具有显著影响的环境因子变量,结果显示温度和pH对AOB群落结构的演替有显著影响,P值分别为0.002和0.03(P<0.05),其中温度对其有极显著影响(P<0.01)。
基于DGGE图谱中amoA基因的种类及相对丰度分析可知,在蛋鸡粪的工业堆肥腐熟过程中,氨氧化反应由AOB及AOA协同执行。AOB参与了氨氧化反应的全过程,并保持了一定的相对数量,但AOB的群落结构在高温期相对简单,这是由于多数的AOB对高温敏感所致[11,23];AOA与AOB恰恰相反,其从高温期开始大量出现,其种群丰度和相对数量均随着腐熟温度的降低而逐渐下降。仅从氨氧化的角度来看,适当地降低堆体温度及pH有利于AOB种群的丰富及氨氧化能力的提高。
图4 环境变量与AOB群落结构关系的RDA二维排序Fig.4 Relationships between the community composition of AOB and environmental variables in RDA biplot
3 结论
在蛋鸡粪工业化堆肥过程中,氨氧化作用由AOB与AOA共同执行,AOB及AOA种群丰富,Nitrosomonas是AOB的优势种属,CandidatusNitrososphaeragargensis是AOA的优势种属;此外,部分Nitrosomonaseuropaea与Nitrosomonashalophila菌株存在于整个堆肥过程,温度和pH对AOB群落结构具有显著的负影响。
[1] WEI Y S,FAN Y B,WANG M J,et al.Composting and compost application in China[J].Resour Conserv Recycle,2000,30(4):277-300.
[2] MARTINS O,DEWES T.Loss of nitrogenous compounds during composting of animal wastes[J].Bioresour Technol,1992,42(2):103-111.
[3] WIGLEY T M,RAPER S C.Interpretation of high projections for global-mean warming[J]. Science,2001,293:451-454.
[4] JARVIS A,SUNDBERG C,MILENKOVSKI S,et al.Activity and composition of ammonia oxidizing bacterial communities and emission dynamics of NH3and N2O in a compost reactor treating organic household waste[J]. J Appl Microbiol,2009,106(5):1502-1511.
[5] BECK-FRIIS B,SMARS S,JONSSON H,et al.Gaseous emissions of carbon dioxide,ammonia and nitrous oxide from organic household waste in a compost reactor under different temperature regimes[J].J Agr Eng Res,2001,78(4):423-430.
[6] TREUSCH AH,LEININGER S,KLETZIN A,et al.Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling[J].Environ Microbiol,2005,7(12):1985-1995.
[7] ZENG G,ZHANG J,CHEN Y,et al.Relative contributions of archaea and bacteria to microbial ammonia oxidation differ under different conditions during agricultural waste composting[J].Bioresour Technol,2011,102(19):9026-9032.
[8] MAEDA K,TOYODA S,SHIMOJIMA R,et al.Source of nitrous oxide emissions during the cow manure composting process as revealed by isotopomer analysis of and amoA abundance in beta-proteobacterial ammonia-oxidizing bacteria[J].Appl Environ Microbiol,2010,76(5):1555-1562.
[9] YAMAMOTO N,OTAWA K,NAKAI Y.Diversity and abundance of ammonia-oxidizing bacteria and ammonia-oxidizing archaea during cattle manure composting[J]. Microb Ecol,2010,60(4):807-815.
[10] DE LA TORRE J R,WALKER C B,INGALLS A E,et al.Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol[J].Environ Microbiol,2008,10(3):810-818.
[11] HATZENPICHLER R,LEBEDEVA EV,SPIECK E,et al.A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring[J].Proc Natl Acad Sci,2008,105(6):2134-2139.
[12] REIGSTAD LJ,RICHTER A,DAIMS H,et al.Nitrification in terrestrial hot springs of Iceland and Kamchatka[J].FEMS Microbiol Ecol,2008,64(2):167-174.
[13] YAMADA T,MIYAUCHI K,UEDA H,et al.Composting cattle dung wastes by using a hyperthermophilic pre-treatment process:characterization by physicochemical and molecular biological analysis[J].J Biosci Bioeng,2007,104(5):408-415.
[14] YAMAMOTO N,OISHI R,SUYAMA Y,et al.Ammonia-oxidizing bacteria rather than ammonia-oxidizing archaea were widely distributed in animal manure composts from field-scale facilities[J].Microbes Environ,2012,27(4):519-524.
[15] XIE K,JIA X,XU P,et al.Improved composting of poultry feces via supplementation with ammonia oxidizing archaea[J].Bioresour Technol,2012,120:70-77.
[16] YAMAMOTO N,ASANO R,YOSHII H,et al.Archaeal community dynamics and detection of ammonia-oxidizing archaea during composting of cattle manure using culture-independent DNA analysis[J].Appl Microbiol Biotechnol,2011,90(4):1501-1510.
[17] ROTTHAUWE J H,WITZEL K P,LIESACK W.The ammonia monooxygenase structural geneamoA as a functional marker:molecular fine-scale analysis of natural ammonia-oxidizing populations[J].Appl Environ Microbiol,1997,63(12):4704-4712.
[18] FRANCIS C A,BEMAN J M,KUYPERS M M.New processes and players in the nitrogen cycle:the microbial ecology of anaerobic and archaeal ammonia oxidation[J].ISME J,2007,1(1):19-27.
[19] WEI D,QIAN Y,ZHANG J Z,et al.Bacterial community structure and diversity in a black soil as affected by long-term fertilization[J].Pedosphere,2008,18(5):582-592.
[20] BARRINGTON S,CHOINIRE D,TRIGUI M,et al.Effect of carbon source on compost nitrogen and carbon losses[J].Bioresour Technol,2002,83(3):189-194.
[21] 黄向东,韩志英,石德智,等.畜禽粪便堆肥过程中氮素的损失与控制[J].应用生态学报,2010,21(1):247-254.
[22] INNEREBNER G,KNAPP B,VASARA T,et al.Traceability of ammonia-oxidizing bacteria in compost-treated soils[J].Soil Biol Biochem,2006,38(5):1092-1100.
[23] OISHI R,TADA C,ASANO R,et al.Growth of ammonia-oxidizing archaea and bacteria in cattle manure compost under various temperatures and ammonia concentrations[J].Microbial Ecology,2012,63(4):787-793.
(责任编辑 荀志金)
Succession of ammonia oxidizers community composition duringindustrial composting of laying hen manure
ZHOU Jing,ZHANG Xia,GAO Haofeng,HU Nan
(College of Biotechnology and Pharmaceutical Engineering,Nanjing Tech University,Nanjing 211800,China)
In this work, concentrations of major N-compounds were determined during the composting of laying hen manure. The community of ammonia-oxidizing bacteria(AOB)and ammonia-oxidizing archaea(AOA) were also studied by polymerase chain reaction-denaturing gradient gelelectrophoresis(PCR-DGGE).The association of AOB communities with environmental and nutrient variables were studied by redundancy analysis(RDA).The total nitrogen loss was 30.8% in the whole composting process.According to the DGGE profiles,a richness of ammonia oxidizing microbial population was confirmed,and 14 AOB and 13 AOA species were detected at all composting samples.NitrosomonasandCandidatusnitrososphaeragargensiswere the dominant species of AOB and AOA,respectively.Several strains ofNitrosomonaseuropaeaandNitrosomonashalophilaexisted in the whole composting process.AOB diversity index and abundance showed the first drop and then rise,whereas AOA was just the opposite.Temperature and pH were considered as key environmental variables to lead the variation of AOB communities (P<0.05),especially the temperature (P<0.01).This study reflected the variation of N-compounds concentration and ammonia oxidizing microbial community in industrial composting of laying hen manure.The experimental data would be useful for the process optimization of manure composting.
ammonia-oxidizing bacteria; ammonia-oxidizing archaea; community composition; PCR-DGGE
10.3969/j.issn.1672-3678.2017.01.012
2016-04-15
国家自然科学基金(31270162);江苏高校品牌专业建设工程(TAPP)
周 婧(1991—),女,安徽芜湖人,研究方向:环境微生物;胡 南(联系人),副教授,E-mail:hunan@njtech.edu.cn
Q89
A
1672-3678(2017)01-0073-06