APP下载

新生儿猝死综合征基因学研究进展

2017-04-04张月涵黄全勇

实用医药杂志 2017年4期
关键词:基因突变基因型婴儿

张月涵,黄全勇

新生儿猝死综合征基因学研究进展

张月涵,黄全勇*

新生儿猝死综合征是一周岁以下的婴儿不明原因的突然意外死亡,是新生儿意外死亡的一种病因,该病病因迄今未明。通过复习近些年国外学者关于新生儿猝死综合征的研究,探讨新生儿猝死综合征的主要危险因素、脑部激素变化,以及与新生儿猝死综合征相关的基因型,如与长QT综合征相关的KCNE2、SCN5A、RyR2、CAV-3基因,基因测序方法检测MAOA基因、与炎症反应和新生儿猝死综合征相关基因研究,提供有关新生儿猝死综合征的研究进展和研究方向,为以后新生儿猝死综合征发病机制和病因探索提供新思路。

新生儿猝死综合征;危险因素;激素变化;基因突变

1970年,Beckwith首次对新生儿猝死综合(sudden infant death syndrome,SIDS)进行定义:“任何婴儿或年幼儿童的意外死亡,无历史性预兆,尸检结果未能查明死亡原因”[1],但是这个定义没有确定具体年龄范围或提及新生儿猝死综合征的共同特征,因此没有得到学界的认可。直到1991年,Willinger等人对新生儿猝死综合征重新定义为:“一周岁以内的新生儿不明原因的意外死亡,通过系统的尸体解剖、死亡现场勘查、临床病例回顾等一系列调查研究仍不能查明死因”[2]。该定义20多年来为全世界学者所广泛接受。目前,美国疾病预防控制中心的定义是:“一周岁以下的婴儿突然意外死亡,在调查研究前未能找到确切死因”[3]。

新生儿的死亡率1970年超过5/1000的活产婴儿死亡率,2012年减少到1.2/1000。新生儿猝死综合征是新生儿第一个月死亡的主要原因[4]。

1 新生儿猝死综合征的主要危险因素

1.1 俯卧体位睡眠时俯卧体位的婴儿发生反流和窒息的风险是最高的[5]。并且俯卧位婴儿更有可能是奶粉喂养和暴露于被动吸烟的环境中,这可能增加发生新生儿猝死综合征的危险性[6]。同时,俯卧位会增加二氧化碳重复吸入的风险,导致体内氧含量降低和最终的死亡[7]。另外,低体重儿、早产儿、13~24周的婴儿采取俯卧睡姿,基于出生前的一些危险因素直到出生后的一段脆弱时期,在发育过程中触发SIDS[8]。

1.2 吸烟孕妇吸烟与SIDS有显著的流行病学关联,McDonald等人研究发现怀孕期间吸烟的孕妇分娩出的新生儿,在感染或高体温时每分通气量(VE)或心率(HR)无明显改变,呼吸暂停的频率却独立增加;同时,吸烟者受到细菌侵袭后炎症系统会诱导出更强的细胞因子反应[9],香烟中的物质可以沉积在上皮细胞上和增加潜在病原体的黏附力[10]。

1.3 感染无论细菌感染抑或是病毒感染,均会有发生SIDS的可能性。病毒感染,可以通过诱导细菌的宿主受体或诱导出新的受体从而增加与细菌的结合力[11,12]。各种细菌的结构抗原或外毒素可作为超级抗原(如脂多糖)激活大量炎细胞诱发炎症反应[13]。葡萄球菌和/或其毒素感染在SIDS病例中占很大比例,80%~90%的婴儿感染金黄色葡萄球菌后Lewis(-)抗原表达[14]。

2 新生儿猝死综合征脑部激素变化

近期研究显示增食欲素具有神经保护作用[15,16],其部分功能是减少脂质氧化、细胞凋亡和炎症反应[17-20]。增食欲素依靠调节脑的免疫细胞——小胶质细胞起到保护脑神经的作用[21]。与非SIDS相比,SIDS婴儿下丘脑和脑桥的增食欲素免疫反应降低,增食欲素(orexin)水平降低与磷酸化蛋白激酶RNA样内质网激酶(pPERK)相关,pPERK减少增食欲素的翻译,pPERK还抑制脑桥多神经元,这也表明促进蛋白表达的丢失和大量脑干神经元的修复功能存在一个共同通路[22]。

SIDS通常伴有脑干中缝5-羟色胺(5-HT)系统功能障碍[23],5-HT减少26%[24]。Barrett KT等人建立模型证实出生后5~8 d是缺氧症的过度死亡期,出生后一段特定时期缺氧性致命损伤是由部分中缝功能障碍导致,即使中缝核功能轻度障碍也有可能会大幅降低婴儿出生早期缺氧窒息的自主复苏能力[25]。

3 新生儿猝死综合征相关基因突变研究

长QT综合征(LQTS)是婴儿的遗传性心脏离子通道疾病,导致室性心律失常和最终死亡,目前已知的基因型有13个[26],如婴儿 KCNE2基因突变[27]、SCN5A[28]、RyR2基因突变[29]等。SCN5A编码心肌电压门控Na+通道,能够产生心肌和专门传导组织兴奋性和传导性的大峰值Na+电流[30]。随着遗传性心律失常综合征性SIDS病例的出现,产生一个以SCN5A为中心功能改变的SIDS发病机制[28]。6.5%的白种人SIDS的发病机制涉及SCN5A的初级突变或罕见基因变异[31,32],5%~10%的长QT综合征患者存在SCN5A基因突变[31]。研究表明RyR2基因突变可引起舒张期肌浆网Ca2+渗出引发致命性心律失常和SIDS,RyR2突变导致慢性低水平Ca2+渗出,除增加心源性猝死的风险还与心肌病相关[29]。CAV-3编码的微囊蛋白-3(Cav-3)主要在肌细胞中表达,是质膜微囊形成的关键基因[33,34]。CAV-3基因突变和心肌钠通道SCN5A编码基因共同表达增加后期Na+电流和9型LQT、SIDS疾病相关[35,36]。基于大量的SIDS婴儿系统的尸体解剖得出CAV3为SIDS特别是在>6个月SIDS发病机制的候选基因,估计目前5%~10%的SIDS病例和超过1/3的>6个月SIDS发病机制是与长QT综合征类似的致命性心律失常性疾病相关[37]。研究结果表明K897T基因多肽性的表达和KCNH2等位基因分离,终止密码子突变导致宫内胎儿2型LQT、室性心动过速和最终的SIDS[38]。

基因测序是早期发现SIDS的重要科学方法,James提出,婴儿尸体解剖时利用全基因组或全外显子测序所提供的信息能够更广泛地了解人类基因的功能,以及进行遗传咨询[4]。尤其是对男婴X染色体测序是十分有价值的,因为新生儿猝死综合征男女比例为3∶2[4],且男女基因型最大的区别是正常男性只有一条X染色体。X染色体携带大约5%的基因组,存在1000个基因区[39]。X染色体上的单胺氧化酶A(MAOA)基因可使突触重摄取单胺能神经递质的功能失活,MAOA基因可调节去甲肾上腺素和血清素系统的突触前递质[40]。

Highet等人的研究SIDS婴儿证实感染可能通过白细胞介素1(IL-1)受体拮抗药A2基因介导的免疫应答通路影响白细胞介素1的释放[41]。特别是香烟烟雾与白介素-10(G-1082A)基因表达低水平的抗炎症反应相关[42]。AA基因型主要是SIDS高风险群组基因型,Moscovis等人体外研究显示,这种基因型的吸烟者细胞反应性是最低的[43]。黄素单加氧酶3(FMO3)影响全身尼古丁代谢[44],黄素单加氧酶3(FMO3)的G472A多肽性可以作为新生儿母亲吸烟与SIDS危险因素的参考指标,父母可以通过检测472A基因得知吸烟可能增加SIDS的风险[45]。此外,G等位基因在通气抑制时起保护效应,P2Y1 G等位纯合子基因在呼吸反应中起重要作用,该基因的缺乏是SIDS的病因[46]。

特殊基因型参与SIDS进程,例如TNFG-308A基因型AA和新生儿猝死综合征具有关联性,澳大利亚24%的SIDS婴儿测试中检测到白种人中罕见的TNFG-308AA等位基因[47]。

综上所述,SIDS是一种病因未明的1周岁以内新生儿不明原因的意外死亡,其发病机制未明。目前的研究主要是寻找与SIDS相关的危险因素,降低发生SIDS的风险,有效控制SIDS的死亡率。脑是人体最精细的器官,脑内激素变化与SIDS相关。基因型的研究,有利于早期筛查SIDS高风险人群,为后期预防和控制做准备。同时,从分子生物学领域,寻找SIDS病因和治疗SIDS方法。为以后的科学研究提供一定的参考价值。

[1]Beckwith JB.Discussion of terminology and definition of thesudden infant death syndrome//Bergman AB,Beckwith JB,Ray CG.Washington:Sudden Infant Death Syndrome:Proceedings of the Second International Conference on the Causes of Sudden Death in Infants Seattle[M].University of Washington Press,1970:14-22.

[2]Willinger M,James LS,Catz C.Defining the sudden infant death syndrome(SIDS):deliberations of an expert panel convened by the National Institute of Child Health and Human Development[J].Pediatr Pathol,1991,11(6):677-684.

[3]Centers for Disease Control and Prevention(CDC).Sudden unexpected infant death and sudden infant death syndrome(2016)[EB/OL].Available from:http://www.cdc.gov/sids/pdf/suddenunexpectedinfant-death.pdf.

[4]James Alfred Morris.The genomic load of deleteriousmutations:relevance to death in infancy and childhood[J].Front Immunol,2015,6(1):105.

[5]Henderson-Smart DJ,Ponsonby AL,Murphy E.Reducing the risk of sudden infant death syndrome:a review of the scientific literature[J].J Paediatr Child Health,1998,34(2):213-219.

[6]Lindgren C,Thompson JM,Haggblom L,et al.Sleeping position,breastfeeding,bedsharing and passive smoking in 3-month-old Swedish infants[J].Acta Paediatr,1998,87(10):1028-1032.

[7]Krous HF,Beckwith JB,Byard RW,et al.Sudden infant death syndrome and unclassified sudden infant deaths:a definitional and diagnostic approach[J].Pediatrics,2004,114(3):234-238.

[8]Oyen N,Markestad T,Skaerven R,et al.Combined effects of sleeping position and prenatal risk factors in sudden infant death syndrome:the Nordic Epidemiological SIDS Study[J]. Pediatrics,1997,100(4):613-621.

[9]McDonald FB,Chandrasekharan K,Wilson RJ,et al.Interactive effects of maternal cigarette smoke,heat stress,hypoxia and lipopolysaccharide(LPS)on neonatal cardiorespiratory and cytokine responses[J].Am J Physiol Regul Integr Comp Physiol,2016,12:ajpregu.00062.

[10]El Ahmer OR,Essery SD,Saadi AT,et al.The effect of cigarette smoke on adherence of respiratory pathogens to buccal epithelial cells[J].FEMS Immunol Med Microbiol,1999,23(1):27-36.

[11]Raza MW,El Ahmer OR,Ogilvie MM,et al.Infection with respiratory syncytial virus enhances expression of native receptors for non-pilate Neisseria meningitidis on HEp-2 cells[J]. FEMS Immunol Med Microbiol,1999,23(2):115-124.

[12]El Ahmer OR,Raza MW,Ogilvie MM,et al.Binding of bacteria to HEp-2 cells infected with influenza A virus[J].FEMS Immunol Med Microbiol,1999,23(4):331-341.

[13]Caroline Blackwell,Sophia Moscovis,Sharron Hall,et al.Exploring the risk factors for sudden infant deaths and their role in inflammatory responses to infection[J].Front Immunol,2015,6(1):44.

[14]Blackwell CC,MacKenzie DA,James VS,et al.Toxigenic bacteria and sudden infant death syndrome(SIDS):nasopharyngeal flora during the first year of life[J].FEMS Immunol Med Microbiol,1999,25(1/2):51-58.

[15]Butterick TA,Billington CJ,Kotz CM,et al.Orexin:Pathways to obesity resistance?[J].Rev Endocr Metab Disord,2013,14(4):357-364.

[16]Kotz C,Nixon J,Butterick T,et al.Brain orexin promotes obesity resistance[J].Ann N Y Acad Sci,2012(1264):72-86.

[17]Butterick TA,Nixon JP,Billington CJ,et al.Orexin A decreases lipid peroxidation and apoptosis in a novel hypothalamic cell model[J].Neurosci Lett,2012,524(1):30-34.

[18]Sokolowska P,Urbańska A,Biegańska K,et al.Orexins protect neuronal cell cultures against hypoxic stress:an involvement of Akt signaling[J].JMol Neurosci,2014,52(1):48-55.

[19]Sokolowska P,e Urbańska A,Namiecińska M,et al.Orexins promote survival of rat cortical neurons[J].Neurosci Lett,2012,506(2):303-306.

[20]Xiaoxing Xiong,Robin E,White,Lijun Xu,et al.Mitigation of murine focal cerebral ischemia by the hypocretin/orexin system is associated with reduced inflammation[J].Stroke,2013,44(3):764-770.

[21]Duffy CM,Yuan C,Wisdorf LE,et al.Role of orexin A signaling in dietary palmitic acid-activated microglial cells[J]. Neurosci Lett,2015,606(2):140-144.

[22]Hunt NJ,Waters KA,Machaalani R.Promotion of the unfolding protein response in Orexin/Dynorph in neurons in sudden infant death syndrome(SIDS):Elevated peak and ATF4 expression[J].Mol Neurobiol,2016,10(29):78.

[23]Kinney HC,Richerson GB,Dymecki SM,et al.The brainstem and serotonin in the sudden infant death syndrome[J].Ann Rev Pathol,2009,4(5):517-550.

[24]Duncan JR,Paterson DS,Hoffman JM,et al.Brainstem serotonergic deficiency in sudden infant death syndrome[J].JAMA,2010,303(4):430-437.

[25]Barrett KT,Dosumu-Johnson RT,Daubenspeck JA,et al.Partial raphe dysfunction in neurotransmission is sufficient to increase mortality after anoxic exposures in mice at a critical period in postnatal development[J].J Neurosci,2016,36(14):3943-3953.

[26]Glengarry JE,Crawford J,Morrow PL,et al.Long QT molecular autopsy in sudden infant death syndrome[J].Arch Dis Child,2014,99(7):635-640.

[27]Sauer CW,Marc-Aurele KL.A Neonate with susceptibility to long QT syndrome type 6 who presented with ventricular fibrillation and sudden unexpected infant death[J].Am J Case Rep,2016,17(5):544-548.

[28]Van Norstrand DW,Valdivia CR,Tester DJ,et al.Molecular and functional characterization of novel glycerol-3-phosphate dehydrogenase 1-like gene(GPD1-L)mutations in sudden infant death syndrome[J].Circulation,2007,116(20):2253-2259.

[29]Tester DJ,Dura M,Carturan E,et al.A mechanism for sudden infant death syndrome(SIDS):Stress-induced leak via ryanodine receptors[J].Heart Rhythm,2007,4(6):733-739.

[30]Bennett PB,Yazawa K,Makita N,et al.Molecular mechanism for an inherited cardiac arrhythmia[J].Nature,1995,376(6):683-685.

[31]Wang DW,Desai RR,Crotti L,et al.Jr Cardiac sodium channeldysfunction in sudden infant death syndrome[J].Circulation,2007,115(3):368-376.

[32]Arnestad M,Crotti L,Rognum TO,et al.Prevalence of long-QT syndrome gene variants in sudden infant death syndrome[J].Circulation,2007,115(3):361-367.

[33]Balijepalli RC,Kamp TJ.Caveolae,ion channels and cardiac arrhythmias[J].Prog Biophys Mol Biol,2008,98(2):149-160.

[34]Li S,Galbiati F,Volonte D,et al.Mutational analysis of caveolin-induced vesicle formation.Expression of caveolin-1 recruits caveolin-2 to caveolae membranes[J].FEBS Lett,1998,434(1):127-134.

[35]Vatta M,Ackerman MJ,Ye B,et al.Mutant caveolin-3 induces persistent late sodium current and is associated with long-QT syndrome[J].Circulation,2006,114(20):2104-2112.

[36]Cronk LB,Ye B,Kaku T,et al.Novel mechanism for sudden infant death syndrome:Persistent late sodium current secondary to mutations in caveolin-3[J].Heart Rhythm,2007,4(2):161-166.

[37]Cronk LB,Ye B,Kaku T,et al.A Novel mechanism for sudden infant death syndrome(SIDS):Persistent late sodium current secondary to mutations in caveolin-3[J].Heart Rhythm,2007,4(2):161-166.

[38]Nof E,Cordeiro JM,Pérez GJ,et al.A common single nucleotide polymorphism can exacerbate long QT type 2 syndrome leading to sudden infant death[J].Circ Cardiovasc Genet,2010,3(2):199-206.

[39]Klintschar M,Heimbold C.Association between a functional polymorphism in the MAOA gene and sudden infant death syndrome[J].Pediatrics,2012,129(3):e756-761.

[40]Highet AR,Berry AM,Goldwater PN.Distribution of interleukin-1 receptor antagonist genotypes in sudden unexpected death in infancy(SUDI):unexplained SUDI have a higher frequency of allele 2[J].Ann Med,2010,42(1):64-69.

[41]Caroline Blackwell,Sophia Moscovis,Sharron Hall,et al.Exploring the risk factors for sudden infant deaths and their role in inflammatory responses to infection[J].Front Immunol,2015,6(1):44.

[42]Moscovis SM,Gordon AE,Al Madani OM,et al.Interluekin-10 and sudden infant death syndrome[J].FEMS Immunol Med Microbiol,2004,42(1):130-138.

[43]Chenoweth MJ,Zhu AZ,Cox LS,et al.Variation in P450 oxidoreductase(POR)A503V and flavin containing monooxygenase(FMO)-3 E158K is associated with minor alterations in nicotine metabolism but does not alter cigarette consumption[J].Pharmacogenet Genomics,2014,24(3):172-176.

[44]Poetsch M,Czerwinski M,Wingenfeld L,et al.A common FMO3 polymorphism may amplify the effect of nicotine exposure in sudden infant death syndrome(SIDS)[J].Int J Legal Med,2010,124(4):301-306.

[45]Laer K,Vennemann M,Rothamel T,et al.Association between polymorphisms in the P2RY1 and SSTR2 genes and sudden infant death syndrome[J].Int J Legal Med,2013,127(6):1087-1091.

[46]Moscovis SM,Gordon AE,Al Madani OM,et al.Genetic and environmental factors affecting TNF-αresponses in relation to sudden infant death syndrome[J].Front Immunol,2015,6(3):374.

[2016-10-09收稿,2016-11-05修回]

[本文编辑:韩仲琪]

重 要 提 醒

近期,有读(作)者反映互联网上有不法网站冒充我刊接受作者投稿,并要求缴纳审稿费、版面费,为防止作者上当受骗,我们提醒广大作者慎重对待。特声明如下:

(1)本刊对所有来稿一律免收审稿费。

(2)《实用医药杂志》唯一投稿网址是http://qeyy.cbpt.cnki.net/,没有其他投稿网址。

(3)本刊只接受邮局汇款和刷卡付款,请务必核对稿号(共10位数字,无字母,2017XXXXXX)、金额、汇款电话及地址等信息,并联系编辑部。

汇款联系电话:0531-51619233 王超 0421-619233(军线)

请提高警惕,谨防上当受骗。

本刊编辑部

Research progress on the relevant genes of sudden infant death syndrome

ZHANG Yue-han,HUANG Quan-yong.Pathological Department of Basic Medical College,Dali University,Yunnan,Dali 671000,China

Sudden infant death syndrome is a sudden unexplained infant death under age of 1,which is one kind of infant death reason.The cause of disease is unknown.This article aims to review foreign scholars in recent years on sudden infant death syndrome research,so as to explore the main risk factors of sudden infant death syndrome,brain hormone changes,and neonatal study on genotype related sudden infant death syndrome,such as long QT syndrome associated with KCNE2,SCN5A,RyR2,CAV-3 gene,gene sequencing of MAOA gene detection method,and inflammation related genes and sudden infant death syndrome,to provide the relevant gene research progress and research direction of sudden infant death syndrome,so that providing new ideas for the pathogenesis and etiology of sudden infant death syndrome.

Sudden infant death syndrome;Risk factor;Hormone change;Gene mutation

R722.19

A

10.14172/j.issn1671-4008.2017.04.035

671000云南大理,大理大学基础医学院病理学教研室(张月涵,黄全勇)

黄全勇,Email:HQY07926@126.com

猜你喜欢

基因突变基因型婴儿
艺术家婴儿推车
管家基因突变导致面部特异性出生缺陷的原因
基因突变的“新物种”
管家基因突变导致面部特异性出生缺陷的原因
纵向发展 应对“婴儿潮”
西安地区育龄妇女MTHFRC677T基因型分布研究
婴儿为何会发笑?
婴儿的救赎
作物遗传育种研究进展Ⅴ.表型选择与基因型选择
从EGFR基因突变看肺癌异质性