巨噬细胞在血管炎症及动脉粥样硬化中的作用
2017-01-12孙雨萌左海奇田野
孙雨萌,左海奇,田野
动脉粥样硬化(AS)以血管壁的慢性炎症反应为特征,其并发症心肌梗死和脑卒中等是全球首要致死疾病。巨噬细胞是AS病变中最丰富的一类细胞,从AS病变形成到斑块破裂的各个阶段都起着重要作用。当局部区域的血流处于非层流状态时,血管内皮功能障碍导致循环低密度脂蛋白(LDL)渗透到血管内膜,高脂血症患者尤为明显,血管壁上LDL经过氧化等修饰后激活内皮细胞和固有免疫细胞,导致趋化因子和粘附分子表达增加,趋化循环中单核细胞在血管壁的粘附、滚动、跨内皮迁移,导致内膜单核细胞浸润。单核细胞进入血管内膜后,分化成巨噬细胞摄取修饰后的脂蛋白成为泡沫细胞。逐渐积累在内皮的泡沫细胞凋亡,若凋亡的泡沫细胞没有被及时清除,逐渐导致血栓和炎性坏死核心的形成。巨噬细胞通过分泌细胞因子和蛋白水解酶进一步加剧炎症,导致斑块稳定性下降、破裂继发血栓形成,引起缺血性事件如心肌梗死、中风。这一观点被认为是损伤形成的重要机制。但最近有研究揭示了AS斑块中巨噬细胞聚集的机制及功能。
1 巨噬细胞在血管壁聚集的机制
1.1 骨髓和脾脏来源的循环单核细胞募集 在AS病变进展中,循环中的单核细胞向炎症血管募集。在高胆固醇小鼠模型中,给予高脂饮食,Ly-6Chi单核细胞集群明显增多,Ly-6Chi单核细胞粘附于活化的血管内皮细胞、病灶转变成巨噬细胞。Ly-6Chi CCR2+型单核细胞为斑块内巨噬细胞的主要前体细胞,其向斑块募集主要取决于趋化因子受体CCR2、CCR5和CX3CR1的表达[1,2]以及内皮细胞上各种粘附分子受体的表达[3]。骨髓产生的单核细胞一直被认为是AS主要病变中单核细胞来源,并且高脂血症以及高血糖能够促进骨髓产生单核细胞[4,5]。有研究证实[6],趋化因子受体CCR2介导了骨髓来源的Ly-6Chi单核细胞游走。有研究提示造血干细胞(HSC)从骨髓迁移到脾脏进一步分化为成熟单核细胞,在粥样硬化病变部位大量聚集[7]。与CCR2介导的机制不同,脾源性单核细胞募集依赖于血管紧张素Ⅱ 1型受体AT1[8],脾脏单核细胞受到血管紧张素II刺激后开始动员[9]。
1.2 巨噬细胞局部增殖 目前AS斑块中巨噬细胞聚集的机制尚不明确。Robbins等[10]发现在病变部位固有巨噬细胞增殖约占87%,而循环招募巨噬细胞仅在疾病早期出现。AS病变形成过程中,随着病变部位增大单核细胞募集不断增多,同时,高血脂时单核细胞募集加强[11]。Sárka L等学者指出在病变早期巨噬细胞增殖活性较高,晚期则反之[12]。而且近来发现病变部位中一部分巨噬细胞是不能增殖的衰老细胞,可用药物清除[13]。在损伤后以及AS斑块中,小部分可塑血管平滑肌细胞(VSMC)广泛增殖可导致其积聚[14-16]。
1.3 VSMC分化为巨噬细胞样细胞 之前研究发现AS病变中巨噬细胞和VSMC共表达细胞标记物[17],最近研究表明[18],病变部位高达50%细胞为表达平滑肌细胞标志物的巨噬细胞。但该研究并不能确定这些细胞是源于VSMC标记物上调还是VSMCs转化为巨噬细胞。Feil等[15]研究表明在AS晚期,通过他莫昔芬诱导的Cre重组酶的表达,VSMC失标记并转化为克隆扩增的VSMC源性的类巨噬细胞。但Shankman等[16]指出,VSMC在AS斑块中发挥重要作用,同时敲除KLF4的VSMC表型在病变中也发挥重要作用。体外实验证实[19],高胆固醇可诱导VSMC转变为巨噬细胞样细胞。这些VSMC源性的巨噬细胞样细胞有着与骨髓源性巨噬细胞不同的转录谱,且无经典巨噬细胞功能[20]。
1.4 大动脉固有巨噬细胞和局部分化巨噬细胞 正常动脉壁存在固有巨噬细胞和树突状细胞。研究表明小鼠动脉壁含有两种不同来源的固有巨噬细胞,即CX3CR1+胚胎前体和出生后骨髓来源的单核细胞,这类血管中的巨噬细胞通过自我更新补充感染时的消耗来维持稳态[21]。除了动脉壁固有巨噬细胞,一些研究提出在小鼠主动脉外膜上存在一定数量的巨噬细胞祖细胞,可局部分化促进AS中巨噬细胞的聚集[22]。
胚胎发育过程中,来源于干细胞的组织固有巨噬细胞概念的提出对传统单核细胞转化为巨噬细胞的模式提出挑战[23]。特定组织的巨噬细胞来源于各种不同前体细胞,如卵黄囊源性祖细胞胚胎造血干细胞或成人造血干细胞来源的单核细胞[23]。分析巨噬细胞来源、动脉固有巨噬细胞和巨噬细胞前体细胞对AS防治意义重大。
1.5 巨噬细胞与斑块消退 逆转小鼠高胆固醇血症,斑块中的巨噬细胞减少同时斑块也减小[24]。将AS或肝脏X受体(LXR)缺失的小鼠动脉移植到野生型小鼠体内,斑块消退,趋化因子受体CCR7表达[25]。此外,van等进一步提出,损伤部位的巨噬细胞能够表达轴突导向因子及其受体等,抑制巨噬细胞迁移出病变部位,促进斑块进展[26]。另有研究提出[24],受损部位巨噬细胞的消退主要由CCR7介导。
2 巨噬细胞在动脉粥样硬化中的作用
2.1 炎症细胞因子和蛋白酶的产生 在损伤部位,巨噬细胞通过产生促炎因子及趋化因子来募集免疫细胞,参与炎症反应。斑块中巨噬细胞表达促炎因子能够加速AS进展,如肿瘤坏死因子-α(TNF-α)[27]和白介素-18(IL-18)[28]等。在Apoe-/-小鼠中,骨髓细胞白介素-1α(IL- 1α)和白介素-1β(IL-1β)表达缺失,导致AS损伤及炎症减轻[29]。骨髓细胞过表达趋化因子CCL2增加巨噬细胞在病变聚集,提示白细胞趋化因子促进斑块炎症进展[30]。此外,AS斑块中的巨噬细胞也能产生抗炎因子,白介素-13(IL-13)表达下降可加重斑块炎症及损伤[31]。
AS病变处蛋白水解程度与斑块易损和破裂相关,损伤处巨噬细胞蛋白水解活性较高,导致斑块易损和破裂[32]。Apoe-/-小鼠中证实病变晚期的巨噬细胞过表达基质金属蛋白酶-9(MMP-9),进而导致斑块易损性增加[32]。而Ldlr-/-小鼠骨髓源性巨噬细胞未表达基质金属蛋白酶-14(MMP-14),导致胶原含量增加、斑块稳定,这提示巨噬细胞表达的MMP-14与易损斑块形成相关[33]。
2.2 泡沫细胞的形成 巨噬细胞源性泡沫细胞在血管内皮形成。巨噬细胞胞内脂质积聚程度反映了胞外脂质摄取和逆向脂质运输之间的平衡。巨噬细胞通过各种清道夫受体吞噬修饰后的低密度脂蛋白(LDL),例如清道夫受体A1(MSR1)、LDL受体相关蛋白1(LRP-1)以及凝集素样氧化低密度脂蛋白受体1(LOX-1)[34]。高脂饲料喂养的Ldlr-/-小鼠LRP-1缺乏导致胆固醇在巨噬细胞聚集减少,但血液中血脂的积累并未减少,表明LRP-1减少AS损伤部位泡沫细胞形成[35]。抑制泡沫细胞形成与CD36及MSR1缺乏相关。研究指出抑制Apoe-/-小鼠CD36或MSR1表达时,尽管胆固醇在巨噬细胞的积聚减少,但仍有泡沫细胞聚集,提示脂质摄取替代途径可以弥补CD36或MSR1的缺失[36]。除了对脂质摄取的调节作用,MSR1在AS病变晚期对巨噬细胞聚集也起重要作用[10]。表达于AS斑块巨噬细胞的黏附分子受体CD146,通过增加CD36内化进一步促进氧化低密度脂蛋白的积聚。此外,CD146也能促进巨噬细胞在病变部位固定[37]。
巨噬细胞胆固醇流出依赖于ATP结合盒转运蛋白(ABC)ABCA1和ABCG1[38]。ABCA1和ABCG1相关的胆固醇流出途径不仅能调节泡沫细胞形成,还能够抑制造血干/祖细胞(HSPC)增殖和动员[39,40],Acba1-/-Abcg1-/-小鼠造血干/组细胞过度增殖,白细胞增多,髓外造血增加,引起免疫细胞在病变部位聚集。
3 巨噬细胞增殖、衰老、存活、凋亡
在AS病变晚期巨噬细胞增殖被激活。与增殖型巨噬细胞相比,病变部位也存在失去增殖能力的细胞即衰老细胞。研究指出内膜上的巨噬细胞源性衰老泡沫细胞参与AS的整个过程[17]。高脂饲料喂养的Ldlr-/-小鼠中,主动脉弓部血管内膜巨噬细胞源性泡沫细胞衰老标志物高表达,药物清除这些细胞后,TNF-α、血管粘附分子-1(VCAM-1)和单核细胞趋化蛋白-1(MCP-1)表达下降。在AS病变部位,有研究发现约20%的巨噬细胞源性泡沫细胞表达衰老标记物,衰老的巨噬细胞增加了炎性细胞因子和基质金属蛋白酶的表达,清除衰老细胞能抑制疾病进展、促进斑块稳定[13]。巨噬细胞在血脂水平正常后消退斑块和炎症[24]。
3.1 胞葬和自噬 胞葬是免疫沉默时通过巨噬细胞吞噬来清除凋亡细胞并且是维持自身免疫耐受的过程[41],有研究表明巨噬细胞的胞葬能力与AS的发生发展相关[42]。研究证实[43],MFGE8桥接凋亡细胞膜表达的磷脂酰丝氨酸(PS)和巨噬细胞上的αvβ3/β5整合素,并且免疫细胞特异性缺失MFG-E8AS的Ldlr-/-小鼠AS病变和坏死增加。最近有研究提出巨噬细胞表面MER-Tk裂解能够在AS病变中减少胞葬作用,而Ldlr-/-小鼠抗MER-TK裂解可促进胞葬作用、减少坏死[44]。在巨噬细胞表达的T细胞免疫球蛋白黏蛋白域蛋白-1(TIM-1)或TIM-4可以识别凋亡细胞上PS,Ldlr-/-小鼠中TIM-1或TIM-4表达受到抑制[45],或补体C1q基因缺乏,均减少凋亡细胞的清除,导致AS损伤加重[46]。凋亡细胞还能够表达“别吃我”信号,如CD47,其能够通过与巨噬细胞表面受体SIRPα结合阻止胞葬作用,且近来发现在AS小鼠模型中通过单克隆抗体竞争中和CD47能减少损伤形成、促进胞葬作用[47]。提示,胞葬可作为AS重要的治疗靶点。并且,巨噬细胞吞噬凋亡细胞促进了抗炎作用,其高表达抗炎因子白介素-10(IL-10)、转录生长因子-β(TGF-β)并减少促炎因子白介素-12(IL-12)和转录生长因子-α(TNF-α)的表达[48]。此外,凋亡细胞被吞噬触发其表达LXR依赖的MER-TK进一步促进胞葬作用[49]。
自噬可诱导斑块巨噬细胞氧化应激和内质网应激,若自噬相关-5基因(Atg-5)缺乏,斑块巨噬细胞凋亡和坏死则增加。并且,Atg-5缺乏时凋亡细胞不能有效通过巨噬细胞胞葬作用被清除[50]。这些结果提示巨噬细胞自噬在晚期AS中起保护作用。综上所述,了解巨噬细胞在血管炎症和动脉粥样硬化中的功能和具体机制,为疾病的治疗提供新思路。需不断深入研究巨噬细胞以及其在AS中的具体作用。
[1] Swirski FK,Libby P,Aikawa E,et al. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata[J]. J Clin Invest,2007,117(1):195-205.
[2] Tacke F. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques[J]. J Clin Invest,2007,117(1):185-94.
[3] Gerhardt T. Monocyte trafficking across the vessel wall[J]. Cardiovasc Res,2015,107(3):321-30.
[4] Nagareddy P,Murphy A,Stirzaker R,et al. Hyperglycemia Promotes Myelopoiesis and Impairs the Resolution of Atherosclerosis[J]. Cell Metab,2013,17(5):695.
[5] Soehnlein O,Swirski FK. Hypercholesterolemia links hematopoiesis with atherosclerosis[J]. Trends Endocrinol Metab,2013,24(3):129-36.
[6] Serbina NV,Pamer EG. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2[J]. Nat Immunol,2006,7(3):311-7.
[7] Robbins CS,Chudnovskiy A,Rauch PJ,et al. Extramedullary Hematopoiesis Generates Ly-6Chigh Monocytes That Infiltrate Atherosclerotic Lesions[J]. Circulation,2012,125(2):364-74.
[8] Swirski FK,Nahrendorf M,Etzrodt M,et al. Identification of Splenic Reservoir Monocytes and Their Deployment to Inflammatory Sites[J].Science,2009,325(5940):612.
[9] Mellak S,Oufella HA,Esposito B,et al. Angiotensin II Mobilizes Spleen Monocytes to Promote the Development of Abdominal Aortic Aneurysm in Apoe-/- Mice[J]. Arterioscler Thromb Vasc Biol,2015,35(2):378.
[10] Robbins CS,Hilgendorf I,Weber GF,et al. Local proliferation dominates lesional macrophage accumulation in atherosclerosis[J].Nat Med,2013,19(9):1166-72.
[11] Swirski FK,Pittet MJ,Kircher MF,et al. Monocyte accumulation in mouse atherogenesis is progressive and proportional to extent of disease[J]. Proc Natl Acad Sci U S A,2006,103(27):10340-5.
[12] Šárka L,Gabriel G,Jean-Claude C,et al. Characterization of Proliferating Lesion-Resident Cells During All Stages of Atherosclerotic Growth:[J]. J Am Heart Assoc,2016,5(8):e003945.
[13] Childs BG,Baker DJ,Wijshake T,et al. Senescent intimal foam cells are deleterious at all stages of atherosclerosis[J]. Science,2016,354(6311):472.
[14] Chappell J,Harman JL,Narasimhan VM,et al. Extensive proliferation of a subset of differentiated, yet plastic, medial vascular smooth muscle cells contribute to neointimal formation in mouse injury and atherosclerosis models[J]. Circ Res,2016,119(12):1313-23.
[15] Feil S,Fehrenbacher B,Lukowski R,et al. Transdifferentiation of Vascular Smooth Muscle Cells to Macrophage-Like Cells During Atherogenesis[J]. Circ Res,2014,115(7):662-7.
[16] Shankman LS,Gomez D,Cherepanova OA,et al. KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis[J]. Nat Med,2015,21(6):628-37.[17] Andreeva ER,Pugach IM,Orekhov AN. Subendothelial smooth muscle cells of human aorta express macrophage antigen in situ and in vitro[J]. Atherosclerosis,1997,135(1):19-27.
[18] Allahverdian S,Chehroudi AC,Mcmanus BM,et al. Contribution of intimal smooth muscle cells to cholesterol accumulation and macrophage-like cells in human atherosclerosis[J]. Circulation,2014,131(3):1551-9.
[19] Rong JX,Shapiro M,Trogan E,et al. Transdifferentiation of mouse aortic smooth muscle cells to a macrophage-like state after cholesterol loading[J]. Proc Natl Acad Sci USA,2003, 100(23):13531-6.
[20] Vengrenyuk Y,Nishi H,Long X,et al. Cholesterol Loading Reprograms the MicroRNA-143/145-Myocardin Axis to Convert Aortic Smooth Muscle Cells to a Dysfunctional Macrophage-Like Phenotype[J].Arter Thromb Vasc Biol,2015,35(3):535-46.
[21] Ensan S,Li A,Besla R,et al. Self-renewing resident arterial macrophages arise from embryonic CX3CR1(+) precursors and circulating monocytes immediately after birth[J]. Nat Immunol,2015,17(2):159.
[22] Psaltis PJ,Puranik AS,Spoon DB,et al. Characterization of a resident population of adventitial macrophage progenitor cells in postnatal vasculature[J]. Circ Res,2014,115(3):364-75.
[23] Ginhoux F,Guilliams M. Tissue-Resident Macrophage Ontogeny and Homeostasis[J]. Immunity,2016,44(3):439-49.
[24] Potteaux S,Gautier EL,Hutchison SB,et al. Suppressed monocyte recruitment drives macrophage removal from atherosclerotic plaques of Apoe-/- mice during disease regression[J]. J Clin Invest,2011,121(5):2025.
[25] Feig JE,Pinedatorra I,Sanson M,et al. LXR promotes the maximal egress of monocyte-derived cells from mouse aortic plaques during atherosclerosis regression[J]. J Clin Invest,2010,120(12):4415-24.
[26] van Gils JM,Derby MC,Fernandes LR,et al. The neuroimmune guidance cue netrin-1 promotes atherosclerosis by inhibiting the emigration of macrophages from plaques[J]. Nat Immunol,2012,13(2):136-43.
[27] Ohta H,Wada H,Niwa T,et al. Disruption of tumor necrosis factoralpha gene diminishes the development of atherosclerosis in ApoE-deficient mice[J]. Atherosclerosis,2005,180(1):11-7.
[28] Whitman SC,Ravisankar P,Daugherty A. Interleukin-18 enhances atherosclerosis in apolipoprotein E(-/-) mice through release of interferon-gamma[J]. Circ Res,2002,90(2):34-8.
[29] Kamari Y,Shaish A,Shemesh S,et al. Reduced atherosclerosis and inflammatory cytokines in apolipoprotein-E-deficient mice lacking bone marrow-derived interleukin-1α[J]. Biochem Biophys Res Commun,2011,405(2):197-203.
[30] Aiello RJ,Bourassa PAK,Lindsey S,et al. Monocyte Chemoattractant Protein-1 Accelerates Atherosclerosis in Apolipoprotein E-Deficient Mice[J]. Arterioscler Thromb Vasc Biol,1999,19(6):1518-25.
[31] Cardiloreis L,Gruber S,Schreier SM,et al. Interleukin-13 protects from atherosclerosis and modulates plaque composition by skewing the macrophage phenotype[J]. Embo Mol Med,2012,4(10):1072-86.
[32] Silvestreroig C,de Winther MP,Weber C,et al. Atherosclerotic plaque destabilization: mechanisms, models, and therapeutic strategies[J].Circ Res,2014,114(1):214-26.
[33] Schneider F,Sukhova GK,Aikawa M,et al. Matrix Metalloproteinase-14 Deficiency in Bone Marrow-Derived Cells Promotes Collagen Accumulation in Mouse Atherosclerotic Plaques[J]. Circulation,2008,117(7):931-9.
[34] Tabas I,Bornfeldt KE. Macrophage Phenotype and Function in Different Stages of Atherosclerosis[J]. Circ Res,2016,118(4):653.
[35] Lillis AP,Muratoglu SC,Au DT,et al. LDL Receptor-Related Protein-1 (LRP1) Regulates Cholesterol Accumulation in Macrophages[J]. Plos One,2015,10(6):e0128903.
[36] Moore KJ,Kunjathoor VV,Koehn SL,et al. Loss of receptor-mediated lipid uptake via scavenger receptor A or CD36 pathways does not ameliorate atherosclerosis in hyperlipidemic mice[J]. J Clin Invest,2005,115(8):2192-201.
[37] Luo Y,Duan H,Qian Y,et al. Macrophagic CD146 promotes foam cell formation and retention during atherosclerosis:[J]. Cell Research,2017,27(3):352-72.
[38] Yvancharvet L,Nan W,Tall AR. Role of HDL, ABCA1, and ABCG1 Transporters in Cholesterol Efflux and Immune Responses[J].Arterioscler Thromb Vasc Biol,2010,30(2):139.
[39] Westerterp M,Gourion-Arsiquaud S,Murphy AJ,et al. Regulation of hematopoietic stem and progenitor cell mobilization by cholesterol efflux pathways[J]. Cell Stem Cell,2012,11(2):195.
[40] Yvancharvet L,Pagler T,Gautier EL,et al. ATP-Binding Cassette Transporters and HDL Suppress Hematopoietic Stem Cell Proliferation[J]. Science,2010,328(5986):1689-93.
[41] Green DR,Oguin TH,Martinez J. The clearance of dying cells: table for two[J]. Cell Death & Differentiation,2016,23(6):915-26.
[42] Vré EAV,Aitoufella H,Tedgui A,et al. Apoptotic Cell Death and Efferocytosis in Atherosclerosis[J]. Arterioscler Thromb Vasc Biol,2012,32(4):887-93.
[43] Aitoufella H,Kinugawa K,Zoll J,et al. Lactadherin deficiency leads to apoptotic cell accumulation and accelerated atherosclerosis in mice[J]. Circulation,2007,115(16):2168-77.
[44] Cai B,Thorp EB,Doran AC,et al. MerTK receptor cleavage promotes plaque necrosis and defective resolution in atherosclerosis[J]. J Clin Invest,2017,127(2):564.
[45] Foks AC,Engelbertsen D,Kuperwaser F,et al. Blockade of Tim-1 and Tim-4 Enhances Atherosclerosis in Low-Density Lipoprotein Receptor-Deficient Mice[J]. Arterioscler Thromb Vasc Biol,2016,36(3):456-65.
[46] Bhatia VK,Yun S,Leung V,et al. Complement C1q reduces early atherosclerosis in low-density lipoprotein receptor-deficient mice[J].Am J Pathol,2007,170(1):416-26.
[47] Kojima Y,Volkmer JP,Mckenna K,et al. CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis[J]. Nature,2016,536(7614):86.
[48] Chung EY,Kim SJ,Ma XJ. Regulation of cytokine production during phagocytosis of apoptotic cells[J]. Cell Research,2006,16(2):154.
[49] Agonzalez N,Bensinger SJ,Hong C,et al. Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR[J]. Immunity,2009,31(2):245.
[50] Liao X,Sluimer JC,Wang Y,et al. Macrophage autophagy plays a protective role in advanced atherosclerosis[J]. Cell Metab,2012,15(4):545-53.