环磷腺苷信号通路与血管重塑关系的研究进展
2017-01-10
为保持正常血流,血管壁会改变其结构以维持合适的内腔尺寸,这个过程被定义为血管重塑[1]。血管重塑可发生在多种病理状态如高血压、动脉粥样硬化、血管再狭窄等,抑制病理性血管重塑具有重要临床意义。研究显示,多种细胞活动参与了血管重塑的过程,包括细胞骨架重塑、细胞增殖、细胞迁移以及细胞外基质的合成、降解等[2-4]。其中,血管内皮损伤是这一系列病理过程的始动因素,而血管平滑肌细胞(vascular smooth muscle cell,VSMCs)的迁移和增殖引起的内膜增厚是血管重塑最重要的细胞学基础。环磷腺苷(cyclic adenosine monophosphate,cAMP)通路可通过调控下游效应分子来促进血管内皮修复、抑制血管内膜增生及血小板聚集等,从而抑制血管重塑,但具体机制尚未明确,本文就该领域的研究进展情况作一阐述。
1 cAMP及下游效应分子概述
cAMP作为第二信使,可调节多种细胞功能,包括细胞分化、增殖、凋亡、迁移,也参与调节细胞形态和骨架重塑[5]。很多细胞外的刺激因子如激素、神经递质、生长因子都可通过结合其同源的G蛋白偶联受体,激活腺苷酸环化酶(adenylate cyclase,AC),催化细胞内三磷腺苷(adenosine triphosphate,ATP)生成c AMP[6]。相反,磷酸二酯酶(phosphodiesterases,PDEs)又可催化降解cAMP,从而对cAMP水平进行负反馈调节,磷酸二酯酶家族共有11组成员,其中PDE4、PDE7、PDE8特异性作用于cAMP;PDE5、PDE6、PDE9特异性作用于环磷鸟苷(cyclic guanosine monophosphate,cGMP);PDE1、PDE2、PDE3、PDE10和PDE11对cAMP和cGMP都有促降解作用[7]。
cAMP主要作用靶点有cAMP依赖蛋白激酶A(protein kinase A,PKA)和cAMP直接激活的交换蛋白(exchange protein directly activated by cAMP,Epac)两个。PKA是一种依赖cAMP的蛋白激酶,是由两个催化亚基和两个调节亚基组成的四聚体。根据调节亚基的不同,PKA又分为:PKAⅠ和PKAⅡ。当每个调节亚基结合2个cAMP分子后,四聚体即游离为1个由调节亚基组成的二聚体和2个催化亚基,后者可磷酸化不同的靶蛋白[8]。PKA的亚细胞定位主要由A型激酶锚定蛋白(A-kinase anchor proteins,AKAPs)决定,AKAPs可将PKA锚定在合适的亚细胞区域,还可引导PKA接近作用底物。此外,AKAPs还可引导PKA和PDEs至共同区域[9]。Epac是cAMP另一种效应分子,有Epac1和Epac2两种形式,两者有不同的域结构。Epac1在全身组织都有分布,在卵巢、甲状腺、肾脏中高表达;Epac2主要分布在脑、肾上腺,cAMP必须通过Epac作用才能使Rap1(Ras超家族成员)脱离GDP,结合GTP,表现为活性状态,激活下游分子,从而调控细胞生长、分泌、黏附等[10]。
2 cAMP和血管内皮
血管内皮由连续单层内皮细胞组成,参与凝血、血栓形成、平滑肌细胞功能调节、炎症细胞的黏附和迁移,可产生具有血管保护作用的一氧化氮(nitric oxide,NO),这些功能必须依靠单细胞层结构的完整,而血管内皮连接的完整性主要由细胞间黏附连接和紧密连接维持。血管内皮完整性被破坏后,激活了凝血酶系统,导致血小板的黏附和聚集,形成血栓。FANTIDIS等[11]在猪冠状动脉损伤模型中发现,使用腺苷酸环化酶激活剂Forskolin后,模型动物细胞内cAMP水平上升,与不给药的对照组相比,内皮剥脱区域明显减小。另外,cAMP可抑制损伤因素诱导的内皮炎症,血管内皮炎症以内皮细胞表面黏附分子的增加及内皮通透性增加为主要特征[12]。多种炎症因子可增加内皮的通透性,如内皮生长因子、肿瘤坏死因子(tumour necrosis factor,TNF)-α、凝血酶、白细胞介素(interleukin,IL)-16、血管紧张素Ⅱ。细胞内cAMP水平的提高可促进抗炎因子如IL-10的表达,降低促炎症因子如IL-12的水平[13]。凝血酶可降低内皮细胞内cAMP水平且促进钙离子内流,导致内皮通透性增加,提高cAMP水平可抑制凝血酶诱导的钙离子内流,从而降低通透性[14]。cAMP还可通过激活PKA-Rac1(小G蛋白超家族成员)途径重排细胞骨架,加强内皮细胞间连接,当内皮细胞PKA或是Rac1活性被抑制之后,内皮通透性增加[15]。Park等[16]发现,体外培养的颅内动脉内皮细胞给予Forskolin或是特异性Eapc1激动剂8-Cpt-cAMP处理后,细胞黏附分子1(intercellular adhesion molecule 1,ICAM-1)表达上升,但是给予PKA特异性激动剂N6-Bnz-cAMP或是抑制剂H-89处理却没有影响ICAM-1的表达,提示cAMP是通过Epac途径而并非PKA途径来调控ICAM-1的水平[16]。LEHRKE等[17]研究也发现,PDE4抑制剂——罗氟司特是通过Epac途径而并非PKA途径来抑制TNF-α,诱导血管黏附分子1(vascular adhesion molecule 1,VCAM-1)的高表达。Eapc1-Rap1途径可抑制小G蛋白超家族成员——Ras同源基因家族成员A(ras homolog gene family,member A,RhoA)的活性,且调节关键的连接蛋白,包括血管钙粘连蛋白(VE-cadherin)、连环蛋白(β-catenin)、紧密连接蛋白加强脐静脉内皮细胞之间的紧密连接和黏附连接[18-19]。
此外,cAMP途径可调控炎症细胞的浸润,用腺苷酸环化酶激动剂Forskolin或PDE4抑制剂升高cAMP水平可抑制中性粒细胞、嗜酸性粒细胞和单核细胞的趋化运动[20-21];PKA酶抑制剂可阻止cAMP抑制白细胞迁移的作用,提示cAMP抑制白细胞迁移的作用可通过PKA途径实现[22-23]。此外,cAMP还可通过抑制血管内皮细胞中活性氧簇(reactive oxygen species,ROS)的生成及升高NO水平发挥内皮保护作用。不对称二甲基精氨酸(asymmetric dimethylarginine,ADMA)是一种内源性NO合酶抑制剂,可以被二甲基精氨酸二甲胺水解酶(dimethylarginine dimethylaminohydrolase,DDAH)降解,DDAH在内皮损伤中扮演重要角色,PDE3/PDE4联合抑制剂托拉芬群通过cAMP-PKA途径可提高DDAH启动子活性、蛋白表达以及酶活性,促进ADMA的失活来提高NO水平,同时促进内皮细胞生存和增殖,抑制ADMA诱导的内皮细胞凋亡[24]。
3 cAMP与血管平滑肌细胞
VSMCs可直接调节血管紧张度和血压,保持血管的完整性,VSMCs的异常增殖和收缩会导致多种血管疾病:正常状态下VSMCs是处于静态的,在病理状态下如动脉粥样硬化或血管再狭窄,VSMCs向内膜迁移且增殖[25-27]。MAASS等[28]在对6个孟德尔型高血压(hypertension and brachydactyly syndrome,HTNB)家族研究时发现,HTNB患者的VSMCs中PDE3基因产生变异,从而导致PDE3磷酸化增强,细胞内cAMP水平降低,导致VSMCs增殖能力增强。研究显示,肾素-血管紧张素-醛固酮系统的激活参与了多种血管重构的进程,血管紧张素Ⅱ已被证实可诱导VSMCs的迁移、增殖和凋亡[29]。自发性高血压大鼠内源性血管紧张素Ⅱ的升高可诱导Gi蛋白的表达,从而降低AC活性,促进VSMCs增殖;体外培养的VSMCs给予db-acAMP处理后可拮抗血管紧张素诱导Gi蛋白的高表达,抑制VSMCs增殖[30]。早期生长反应因子1(early growth response,Egr1)在VSMCs和血管内皮细胞中是细胞增殖必需的正向调节因子。KIMURA等[31]发现,使用Forskolin刺激细胞,使cAMP水平提高后通过PKA和Eapc的协同作用可使血管平滑肌细胞Egr1蛋白表达降低,但是内皮细胞中cAMP的上升却促进了Egr1蛋白的表达,因此,cAMP途径对VSMCs和血管内皮细胞增殖的调控作用并不相同[31]。
贝前列环素是一种血管保护因子,一般临床上应用于肺动脉高压及慢性动脉闭塞性疾病的治疗。在支架植入的动物模型研究中,使用贝前列环素给药后可抑制支架区域的原位血小板聚集和VSMCs增殖,抑制内膜增生,减轻支架植入后再狭窄[32]。将前列环素合酶基因转染至兔球囊损伤颈动脉区域,可降低损伤后动脉内膜增生;同样,用前列环素给药也可降低损伤后颈动脉内膜增生[33]。贝前列环素可提高细胞内cAMP水平且通过cAMP-Eapc-Rap1抑制RhoA活性来调节细胞骨架重塑,进而抑制VSMCs的迁移和内膜增生[34]。细胞内cAMP水平的升高还可抑制血管纤维化,cAMP通过激活环核苷酸阳离子门控通道使细胞内钙离子水平上升,进而促进溶酶体对Ⅰ型胶原的降解,降低VSMC胞内及分泌到胞外Ⅰ型胶原的含量,它不是通过PKA途径而是Eapc途径实现这一功能[35]。
4 cAMP信号通路和血小板抑制
在损伤因素作用下,如动脉粥样硬化斑块破裂、支架的直接异物刺激、球囊扩张及支架释放产生的机械张力,血管内皮完整性受到破坏,这些均可激活凝血酶系统,导致血小板的黏附和聚集,形成血栓。因此,控制血小板的异常激活对预防病理性血栓形成有重要作用。健康血管中,血管内皮来源的前列环素(prostacyclin,PGI2)和NO可抑制病理性血栓形成,内皮来源的NO可提高sGC活性,使cGMP水平升高,从而抑制血小板过度激活。与NO不同,PGI2主要通过提高AC酶活性,激活cAMPPKA途径来抑制血小板的激活[36]。在血管损伤位点,cAMP信号通路受到抑制[37],活化的血小板产生二磷腺苷(adenosine diphosphate,ADP),ADP通过结合Gαi-coupled P2Y12来抑制AC活性,阻止cAMP的生成[38]。凝血酶和血小板反应蛋白-1也可激活PDE3A,降解细胞内的cAMP,进一步促进血小板活化,从而产生级联放大效应[39-40]。多种生物因子如凝血酶、肾上腺素等均可激活血小板,血小板激活因子都需要通过G蛋白偶联受体(G proteincoupled receptor,GPCRs)和G蛋白异源三聚偶联途径来激活血小板[41-42]。为应对细胞外各种信号,血小板拥有不同种类的GPCRs,血小板包含Gαs和Gαi,在调节cAMP方面和其他细胞相同;血小板抑制剂如前列环素、前列腺素E1、垂体腺苷酸环化酶活化肽(pituitary adenylate cyclase activating peptide,PACAP),通过Gαs激活AC,上调胞内cAMP水平;血小板激动剂如凝血酶、肾上腺素是通过Gαi来抑制AC,降低cAMP水平;血小板表达的Gαz蛋白也可以抑制AC活性及cAMP的生成[43]。
5 总结和展望
抑制血管重构在心脑血管疾病预防及治疗(尤其是介入治疗)中发挥重要作用,越来越多的证据表明cAMP信号通路具有心脑血管的保护作用,cAMP途径通过促进内皮修复,抑制血管炎症、内膜增生和血栓形成来减缓血管重构。此外,cAMP途径的激活还可以减轻缺血性卒中再灌注损伤、心肌梗死后再灌注损伤、抑制心肌重构、促进神经元修复及生长、改善卒中后认知功能。
目前,可升高细胞内cAMP水平的药物如PDEs抑制剂在临床上已应用于哮喘、慢性阻塞性肺病、肺动脉高压的预防和治疗,而贝前列环素在肺动脉高压、慢性闭塞性周围血管疾病的临床应用也基于激活cAMP通路。已有广泛的动物实验都支持cAMP通路可作为动脉粥样硬化、支架置入术后或机械取栓后血管再狭窄预防和治疗的靶点,但由于cAMP参与了多种生命活动的调节,所以,基于cAMP信号通路的精准和局部治疗显得尤为重要。
[1] GIBBONS G H,DZAU V J.The emerging concept of vascular remodeling[J].N Engl J Med,1994,330(20):1431-1438.
[2] MCGRATH J C,DEIGHAN C,BRIONES A M,et al.New aspects of vascular remodelling:the involvement of all vascular cell types[J].Exp Physiol,2005,90(4):469-475.
[3] BRIONES A M,ARRIBAS S M,SALAICES M.Role of extracellular matrix in vascular remodeling of hypertension[J].Curr Opin Nephrol Hypertens,2010,19(2):187-194.
[4] INTENGAN H D,SCHIFFRIN E L.Vascular remodeling in hypertension:roles of apoptosis,inflammation,and fibrosis[J].Hypertension,2001,38(3):581-587.
[5] BEAVO J A,BRUNTON L L.Cyclic nucleotide research -- still expanding after half a century[J].Nat Rev Mol Cell Biol,2002,3(11):710-718.
[6] KOPPERUD R,KRAKSTAD C,SELHEIM F,et al.cAMP effector mechanisms.Novel twists for an 'old'signaling system[J].FEBS Lett,2003,546(1):121-126.
[7] CONTI M,BEAVO J.Biochemistry and physiology of cyclic nucleotide phosphodiesterases:essential components in cyclic nucleotide signaling[J].Annu Rev Biochem,2007,76(7):481-511.
[8] LORENOWICZ M J,FERNANDEZ-BORJA M,HORDIJK P L.cAMP signaling in leukocyte transendothelial migration[J].Arterioscler Thromb Vasc Biol,2007,27(5):1014-1022.
[9] RABABA'H A,SINGH S,SURYAVANSHI S V,et al.Compartmentalization role of A-kinase anchoring proteins (AKAPs) in mediating protein kinase A(PKA) signaling and cardiomyocyte hypertrophy[J].Int J Mol Sci,2014,16(1):218-229.
[10] JEYARAJ SC,UNGER NT,CHOTANI MA.Rap1 GTPases:an emerging role in the cardiovasculature[J].Life Sci,2011,88(15-16):645-652.
[11] FANTIDIS P,FERNANDEZ-ORTIZ A,ARAGONCILLO P,et al.Effect of cAMP on the function of endothelial cells and fibromuscular proliferation after the injury of the carotid and coronary arteries in a porcine model[J].Rev Esp Cardiol,2001,54(8):981-989.
[12] SHAW SK,PERKINS BN,LIM YC,et al.Reduced expression of junctional adhesion molecule and platelet/endothelial cell adhesion molecule-1 (CD31)at human vascular endothelial junctions by cytokines tumor necrosis factor-alpha plus interferon-gamma does not reduce leukocyte transmigration under flow[J].Am J Pathol,2001,159(6):2281-2291.
[13] ELENKOV IJ,WILDER RL,CHROUSOS GP,et al.The sympathetic nerve--an integrative interface between two super systems:the brain and the immune system[J].Pharmacol Rev,2000,52(4):595-638.
[14] MATSUMOTO Y,MARUKAWA K,OKUMURA H,et al.Comparative study of antiplatelet drugs in vitro:distinct effects of cAMP-elevating drugs and GPIIb/IIIa antagonists on thrombin-induced platelet responses[J].Thromb Res,1999,95(1):19-29.
[15] KOMAROVA Y,MALIK AB.Regulation of endothelial permeability via paracellular and transcellular transport pathways[J].Annu Rev Physiol,2010,72(10):463-493.
[16] PARK TY,BAIK EJ,LEE SH.Prostaglandin E(2)-induced intercellular adhesion molecule-1 expression is mediated by cAMP/Epac signalling modules in bEnd.3 brain endothelial cells[J].Br J Pharmacol,2013,169:604-618.
[17] LEHRKE M,KAHLES F,MAKOWSKA A,et al.PDE4 inhibition reduces neointima formation and inhibits VCAM-1 expression and histone methylation in an Epac-dependent manner[J].J Mol Cell Cardiol,2015,81(4):23-33.
[18] PARNELL E,YARWOOD SJ.Interactions between Epac1 and ezrin in the control of endothelial barrier function[J].Biochem Soc Trans,2014,42(2):274-278.
[19] SCHLEGEL N,WASCHKE J.cAMP with other signaling cues converges on Rac1 to stabilize the endothelial barrier- a signaling pathway compromised in inflammation[J].Cell Tissue Res,2014,355(3):587-596.
[20] ELFERINK JG,DE KOSTER BM.Inhibition of interleukin-8-activated human neutrophil chemotaxis by thapsigargin in a calcium- and cyclic AMP-dependent way[J].Biochem Pharmacol,2000,59(4):369-375.
[21] VANUFFELEN BE,DE KOSTER BM,ELFERINK JG.Interaction of cyclic GMP and cyclic AMP during neutrophil migration:involvement of phosphodiesterase type III[J].Biochem Pharmacol,1998,569(8):1061-1063.
[22] DONG H,OSMANOVA V,EPSTEIN PM,et al.Phosphodiesterase 8 (PDE8) regulates chemotaxis of activated lymphocytes[J].Biochem Biophys Res Commun,2006,345(2):713-719.
[23] LANG P,GESBERT F,DELESPINECARMAGNAT M,et al.Protein kinase A phosphorylation of RhoA mediates the morphological and functional effects of cyclic AMP in cytotoxic lymphocytes[J].EMBO J,1996,15(3):510-519.
[24] PULLAMSETTI SS,SAVAI R,SCHAEFER MB,et al.cAMP phosphodiesterase inhibitors increases nitric oxide production by modulating dimethylarginine dimethylaminohydrolases[J].Circulation,2011,123(11):1194-1204.
[25] DZAU VJ,BRAUN-DULLAEUS RC,SEDDING DG.Vascular proliferation and atherosclerosis:new perspectives and therapeutic strategies[J].Nat Med,2002,8(11):1249-1256.
[26] LACOLLEY P,REGNAULT V,NICOLETTI A,et al.The vascular smooth muscle cell in arterial pathology:a cell that can take on multiple roles[J].Cardiovasc Res,2012,95(2):194-204.
[27] MARX SO,TOTARY-JAIN H,MARKS AR.Vascular smooth muscle cell proliferation in restenosis[J].Circ Cardiovasc Interv,2011,4(1):104-111.
[28] MAASS PG,AYDIN A,LUFT FC,et al.PDE3A mutations cause autosomal dominant hypertension with brachydactyly[J].Nat Genet,2015,47(6):647-653.
[29] BIHL JC,ZHANG C,ZHAO Y,et al.Angiotensin-(1-7) counteracts the effects of Ang II on vascular smooth muscle cells,vascular remodeling and hemorrhagic stroke:Role of the NFsmall ka,CyrillicB inflammatory pathway[J].Vascul Pharmacol,2015,73(10):115-123.
[30] GUSAN S,ANAND-SRIVASTAVA MB.cAMP attenuates the enhanced expression of Gi proteins and hyperproliferation of vascular smooth muscle cells from SHR:role of ROS and ROS-mediated signaling[J].Am J Physiol Cell Physiol,2013,304:C1198-C1209.
[31] KIMURA T E,DUGGIRALA A,HINDMARCH C C,et al.Inhibition of Egr1 expression underlies the anti-mitogenic effects of cAMP in vascular smooth muscle cells[J].J Mol Cell Cardiol,2014,72(7):9-19.
[32] SEIJI K,TSUDA M,MATSUHASHI T,et al.Treatment of in-stent restenosis with beraprost sodium:an experimental study of short- and intermediate-term effects in dogs[J].Clin Exp Pharmacol Physiol,2009,36(12):1164-1169.
[33] HARADA M,TOKI Y,NUMAGUCHI Y,et al.Prostacyclin synthase gene transfer inhibits neointimal formation in rat balloon-injured arteries without bleeding complications[J].Cardiovasc Res,1999,43(2):481-491.
[34] MCKEAN J S,MURRAY F,GIBSON G,et al.The cAMP-producing agonist beraprost inhibits human vascular smooth muscle cell migration via exchange protein directly activated by cAMP[J].Cardiovasc Res,2015,107(9):546-555.
[35] CAI Y,MILLER C L,NAGEL D J,et al.Cyclic nucleotide phosphodiesterase 1 regulates lysosomedependent type I collagen protein degradation in vascular smooth muscle cells[J].Arterioscler Thromb Vasc Biol,2011,31(3):616-623.
[36] SMOLENSKI A.Novel roles of cAMP/cGMP-dependent signaling in platelets[J].J Thromb Haemost,2012,10(2):167-176.
[37] RASLAN Z,ABURIMA A,NASEEM K M.The spatiotemporal regulation of cAMP signaling in blood platelets-old friends and new players[J].Front Pharmacol,2015,6(11):266.
[38] GACHET C.P2Y(12) receptors in platelets and other hematopoietic and non-hematopoietic cells[J].Purinergic Signal,2012,8(3):609-619.
[39] ZHANG W,COLMAN R W.Thrombin regulates intracellular cyclic AMP concentration in human platelets through phosphorylation/activation of phosphodiesterase 3A[J].Blood,2007,110(10):1475-1482.
[40] ROBERTS W,MAGWENZI S,ABURIMA A,et al.Thrombospondin-1 induces platelet activation through CD36-dependent inhibition of the cAMP/protein kinase A signaling cascade[J].Blood,2010,116(20):4297-4306.
[41] WOULFE D S.Platelet G protein-coupled receptors in hemostasis and thrombosis[J].J Thromb Haemost,2005,3(10):2193-2200.
[42] OFFERMANNS S.Activation of platelet function through G protein-coupled receptors[J].Circ Res,2006,99(12):1293-1304.
[43] VAN GEET C,IZZI B,LABARQUE V,et al.Human platelet pathology related to defects in the G-protein signaling cascade[J].J Thromb Haemost,2009,7(Suppl 1):282-286.