有限偏差函数与调和函数
2016-12-21冯小高
冯小高
(西华师范大学数学与信息学院,四川南充637002)
有限偏差函数与调和函数
冯小高
(西华师范大学数学与信息学院,四川南充637002)
分别借助解析函数与调和函数两类函数的Dirichlet积分,利用相关文献给定边界值的拟共形映射极值伸缩商的估计方法,通过有限偏差函数和拟共形映射的关系估计了具有给定边界值的有限偏差函数的极值伸缩商.得到了解析函数的Dirichlet积分在有限偏差函数下具有拟不变性,同时给出有限偏差函数极值伸缩商的下界估计.
有限偏差函数;调和函数;Dirichlet积分;极值伸缩商;拟共形映射
1 引言
注1.2由定理1.1可知,解析函数的Dirichlet积分在有限偏差函数下具有拟不变性,而对应于定理B中调和函数的Dirichlet积分在拟共形映射下具有拟不变性.
2 定理1.1的证明
3 定理1.2的证明
[1]Beurling A,Ahlfors L.The boundary correspondence under quasicongformal mappings[J].Acta.Math.,1956,96:125-142.
[2]Astala K,Iwaniec,Martin G J.Elliptic Partial Diffenrential Equations and Quasiconformal Mappings in the Plane[M].Princeton:Princeton Mathematical Series,Princeton University Press,2009.
[3]Iwaniec T,Martin G J.Geometric Function Theory and Non-linear Analysis[M].Oxford:Oxford Mathematical Monographs,Oxford University Press.
[4]Astala K,Iwaniec T,Martin G J,et al.Extremal mappings of finite distortion[J].Proc.Lond.Math.Soc.,2005,91:655-702.
[5]Feng X G,Tang S A,Wu C,et al.A unified approach to weighted Grotzsch and Nitsche problems for mappings of finite distortion[J].Sci.China.Math.,2016,59,(4):673-686.
[6]Reich E.On the variational principle of Gerstenhaber and Rauch[J].Ann.Acad.Sci.Fenn.A I Math.,1985,10:469-475.
[7]Reich E.Harmonic mappings and quasiconformal mappings[J].J.d′Analyse Math.,1986,46:239-245.
[8]Shen Y L.Quasiconformal mappings and Harmonic mappings[J].Advance in Math.(China),1999,28(4):347-357.
[9]Strebel K.Zur frage der eindentigkeit extremaler quasikonformer abbildungen des einheitskreises II[J]. Comment.Math.Helv.,1964,39:77-89.
Mappings of finite distortion and harmonic functions
Feng Xiaogao
(College of Mathmatics and Information,China West Normal University,Nangchong637002,China)
On the basis of Dirichlet integral of holomorphic functions and harmonic functions,rspectively,We shall estimate the extremal maximal dilatation of mappings of finite ditortion with given boundary values by the methods of estimating the extremal maximal dilatation of quasiconformal mappings given boundary values and by using the relation between mappings of finite distortion and quasiconformal mappings.we obtain the quasi-invariance property of the Dirichlet integral under mappings of finite distortion and give the concrete estimates on the extremal dilatation from below.
mapping of finite distortion,harmonic function,holomorphic function,Dirichlet integral,extremal maximal dilatation,quasiconformal mapping
O174
A
1008-5513(2016)02-0119-08
10.3969/j.issn.1008-5513.2016.02.002
2015-10-07.
国家自然科学基金(10871211);西华师范大学青年教师资助项目(13D017);西华师范大学科研基金(08B032).
冯小高(1982-),博士,讲师,研究方向:复分析.
2010 MSC:30C70,30C62