松嫩盐碱退化草地羊草叶氮、磷化学计量与土壤因子关系研究
2016-11-10梁正伟张衷华唐中华聂思铭赵冬梅
赵 龙 王 化 梁正伟 张衷华,* 唐中华 聂思铭 赵冬梅
(1.东北林业大学森林植物生态学教育部重点实验室,哈尔滨 150040; 2.中国科学院东北地理与农业生态研究所,长春 130102; 3.黑龙江省科学院自然与生态研究所,哈尔滨 150040)
松嫩盐碱退化草地羊草叶氮、磷化学计量与土壤因子关系研究
赵 龙1王 化3梁正伟2张衷华1,2*唐中华1聂思铭1赵冬梅1
(1.东北林业大学森林植物生态学教育部重点实验室,哈尔滨 150040;2.中国科学院东北地理与农业生态研究所,长春 130102;3.黑龙江省科学院自然与生态研究所,哈尔滨 150040)
顶级群落建群种的N、P化学计量特征对退化草地群落稳定性和生产力维持具有重要意义。本文以松嫩草地顶级群落建群种羊草(Leymuschinensis)为研究对象,分析盐碱退化对羊草N、P化学计量特征的影响。结果表明:松嫩盐碱退化草地羊草相比较于中国北方草地羊草和草地植物具有较低的叶P含量(1.32 g·kg-1)、中等的叶N含量(18.90 g·kg-1)和略高的N/P(15.83)。叶N含量和N/P与土壤全氮、土壤碱解氮显著正相关;叶P含量与土壤全氮、土壤碱解氮显著负相关,其它因子与叶N、P和N/P相关性不明显。叶P含量与土壤氮的显著相关性和与土壤P含量的背离显示松嫩盐碱退化草地羊草可能存在一定的P限制。
盐碱退化草地;羊草;化学计量;氮磷;土壤因子
氮(N)、磷(P)是植物的基本营养元素,但在大多数自然陆地生态系统中,N、P也是限制植物生长的重要决定性因子[1]。N、P施肥显著提高单位面积生产力水平,过量N输入也已经引发生态危机,例如水体富养化[2],植物多样性降低[3~4],温室气体排放等[5~6],低氮种植与管理成为我国科学研究的重要任务。松嫩草甸草原(E121°30′~127°00′,N43°30′~48°40′)是中国东北三大草原和全国十大重点牧区之一,成土母质、水文条件和过度放牧等原因导致松嫩草甸草原土壤盐碱化日趋严重[7],盐碱退化的主要影响之一是土壤有效营养的下降[8],高pH值和高盐加剧氨态氮挥发[9~10]和硝态氮流失[11],同时高盐碱环境降低有机物矿化速度、抑制菌根真菌活性,植物可利用P减少[12~13]。在我国整体N输入过量的环境下,松嫩盐碱化草地N、P现状评估对草地生产力维持和农牧业生产尤为重要。目前,不同研究者已经从生态系统、群落和种群水平对松嫩盐碱退化草地N、P限制进行研究[14~16],结果并不一致。考虑到羊草(Leymuschinensis)是松嫩草甸草原的优势种和顶级群落建群种,也是松嫩草甸草原最具经济价值的天然牧草,退化草地的恢复和生产力维持也应以羊草群落的恢复和生产力提升为依据。所以在盐碱条件下,羊草N、P限制水平与土壤因子的关系研究将为当前松嫩盐碱化草甸草原保护和生态恢复的人工N、P行为提供指导。
本文以羊草为研究对象,具体分析羊草N、P计量特征与土壤因子的关系,以期揭示松嫩盐碱化草地羊草N、P现状及其与土壤因子的关系。
1 研究地区与研究方法
1.1 研究区概况
松嫩平原(E121°30′~127°00′,N43°30′~48°40′)位于大、小兴安岭与长白山脉及松辽水岭之间,主要有松花江和嫩江冲积而成,面积约17.0×106ha,属于中温带半湿润半干旱季风气候区,松嫩平原西部草甸草原是我国典型的苏打盐碱分布区,本研究根据1961~2010年东北地区多年平均降水量的空间分布规律[17],在松嫩草地3个不同降水量区域设置调查样地,具体为年均降水500~550 mm草地东部的黑龙江省肇东市向阳乡(E125°22′~126°22′,N45°10′~46°20′)、年均降水450~500 mm草地中西部的黑龙江省大庆市让胡路区水源路(E124°19′~125°12′,N46°46′~46°55′)和年均降水400~450 mm草地西南部的吉林省大安市大岗子镇姜家甸子草场(E123°09′~124°22′,N44°57′~45°46′)。
1.2 调查方法
本研究于2014年8月在野外采集样品,大致按照栅格采样方法进行采样,每个栅格内选择羊草单优势群落,即上层全部为羊草,无其他物种,设置0.5 m×0.5 m的样方,栅格间距5 m,结合研究区实际情况确定50~70个采样样方,其中肇东样地57个,大庆样地50个,大安样地62个,每个样方均采集土壤样品和植物样品1份,最后形成169份土壤样品和169份植物样品(最终符合测定要求植物样品143份),具体为用GPS对每个采样点定位,在样方对角线上用土壤环刀采集5~10 cm深度土层土壤样品3个,均匀混合后作为该点的土壤样品。地上部分测定平均高度后收割、装袋。以上样品带回实验室进行分析[18]。
1.3 指标测定
地上部分在120℃烘箱中杀青2 h,调节温度到80℃,烘干至恒重,分离羊草叶片研磨成粉末,供叶N、P含量测定。土壤置于阴凉通风处,风干60 d,称量质量,计算土壤容重,土壤容重表示为单位体积土壤质量,然后对剩余土壤进行研磨,过100目土壤筛,供土壤N、P含量和盐碱指标测定。土壤pH值和电导率按照水土比5∶1(mL∶g)配制成双蒸水溶液,采用pH计(PB-10,Sartorius,德国)和电导率仪(DDS-307,雷磁,中国)测定。土壤和叶片全氮采用半微量凯式定氮法测定,土壤碱解氮用碱解扩散法测定,土壤和叶片全磷采用NaOH熔融钼锑比色法测定,土壤速效磷采用碳酸氢钠提取,钼锑抗比色法测定[19]。
1.4 数据分析
用SPSS 15.0统计分析软件进行测定因子Pearson相关分析,并进行双尾检验。
2 结果与分析
2.1研究区域羊草叶N、P含量,土壤盐碱和土壤N、P含量水平
对3个研究区域羊草叶片N、P、N/P、土壤盐分和土壤N、P营养特征进行测定(表1),研究区域叶N、叶P和叶N/P平均含量分别为19.90、1.32和15.83 g·kg-1。土壤pH值变化从6.93~10.17,平均值为9.30;土壤电导率变化从34.80~1 814.00 μs·cm-1,平均值为263.99 μs·cm-1,根据土壤pH和电导率数值范围确定大部分样点分布于土壤盐碱化区域。土壤全氮、土壤碱解氮、土壤全磷、土壤速效磷平均值分别为1.93、116.50、0.34和8.12 mg·kg-1,变异系数分布在27.38%~45.81%,属于中等程度变异。植物叶N、P含量变异系数分别为24.68和27.70,变异性明显低于土壤。
表1研究区域羊草叶N、P含量,土壤盐碱特征和土壤N、P含量
Table1CharacteristicsofNandPcontents,N∶PratioofL.chinensis,soilsalinityandsoilnutritioninresearcharea
植物或土壤特征Characteristicsofplantorsoil极小值Min极大值Max均值Mean标准差SD变异系数CV(%)叶氮含量LeafN(g·kg-1)12.04 34.0219.90 4.911724.68叶磷含量LeafP(g·kg-1)0.752.901.320.365627.70叶N:PLeafN:P5.5229.7915.835.001631.61土壤容重Bulkdensity(g·cm-3)0.671.801.300.213616.44土壤pH值pHvalue6.9310.179.300.57596.19土壤电导率Electricalconductivity(μs·cm-1)34.801814.00263.99270.0814102.31土壤全氮TotalN(g·kg-1)0.424.051.930.882445.81土壤碱解氮Alkaline⁃N(mg·kg-1)43.39287.38116.5048.419241.56土壤全磷TotalP(g·kg-1)0.120.650.340.122736.21土壤速效磷Available⁃P(mg·kg-1)3.3512.738.122.222727.38土壤全氮/土壤全磷TotalN/TotalP1.1822.406.664.618269.33土壤碱解氮/土壤速效磷Alkaline⁃N/Available⁃P5.5453.2715.287.713950.50
2.2研究区域羊草叶N、P含量和N/P与土壤因子相关性
对3个研究区域羊草叶N、P含量、N/P与土壤盐碱特性和土壤N、P含量进行双变量Pearson相关分析,结果表明,叶N、P含量与土壤全氮、土壤碱解氮显著相关(表2);叶N/P与土壤全氮、土壤碱解氮极显著相关,与土壤碱解氮和土壤速效磷比率显著相关。羊草叶N、P含量、N/P与土壤其它因子不存在显著相关关系。
表2羊草叶N、P含量和N/P与土壤因子相关性分析
Table2Relationshipsbetweensoilfactorsandleafnitrogen,leafphosphorusonL.chinensisinSongnenPlain
土壤因子Soilfactors叶氮含量LeafN(g·kg-1)叶磷含量LeafP(g·kg-1)叶N/PLeafN/P土壤容重Bulkdensity(g·cm-3)R=0.117,P=0.158,n=147R=0.079,P=0.344,n=147R=0.045,P=0.591,n=147土壤pH值pHvalueR=-0.116,P=0.162,n=147R=0.068,P=0.410,n=147R=-0.150,P=0.069,n=147土壤电导率Electricalconductivity(μs·cm-1)R=-0.062,P=0.454,n=147R=-0.057,P=0.493,n=147R=-0.040,P=0.634,n=147土壤全氮TotalN(g·kg-1)R=0.165,P=0.046∗,n=147R=-0.167,P=0.043∗,n=147R=0.237,P=0.004∗∗,n=147土壤碱解氮Alkaline⁃N(mg·kg-1)R=0.188,P=0.022∗,n=147R=-0.201,P=0.015∗,n=147R=0.315,P=0.000∗∗,n=147土壤全磷TotalP(g·kg-1)R=0.083,P=0.317,n=147R=-0.1112,P=0.177,n=147R=0.137,P=0.097,n=147土壤速效磷Available⁃P(mg·kg-1)R=0.023,P=0.782,n=147R=-0.156,P=0.059,n=147R=0.105,P=0.207,n=147土壤全氮/土壤全磷TotalN/TotalPratioR=0.102,P=0.221,n=147R=-0.072,P=0.386,n=147R=0.113,P=0.174,n=147土壤碱解氮/土壤速效磷Alkaline⁃N/Available⁃PratioR=0.148,P=0.074,n=147R=-0.088,P=0.291,n=147R=0.210,P=0.011,n=147
注:*表示显著相关;**表示极显著相关
Note:*and**indicate significant correlation at the 0.05 and 0.01 level.
3 讨论
3.1 松嫩盐碱化草地羊草叶N、P整体水平
羊草是欧亚大陆草原区东部草甸草原及干旱草原的重要建群种之一,在我国东北、西北和华北草原区广泛分布[20]。本研究采样地位于松嫩草甸草原区,三个样地按照自东南向西北的降水梯度设置,试图整体反应松嫩草甸草原羊草N、P状态,研究表明松嫩草甸草原羊草平均叶N、叶P和N/P分别为19.90、1.32和15.83 g·kg-1,变异系数分别为24.68%、27.70%和31.61%。其中叶N水平和变异系数与我国北方羊草研究结果相似;叶P水平略低于我国北方羊草研究的结果,并且存在较高的变异系数;叶N/P比率略高于我国北方羊草研究的结果,且存在较高的变异系数(表3)。这与王月娇等对吉林西部羊草N、P含量及其变异系数基本一致[21],表明虽然土壤盐碱化可能导致土壤氮流失,但当前松嫩草甸羊草叶N水平并未受到显著影响;叶P水平较低,变异系数较大,可能来自于土壤盐碱化的影响。
表3 不同研究羊草叶片N、P化学计量特征
注:括号内为变异系数。
Note:Coefficient of variation within the brackets.
表4 羊草氮磷计量与其它植物的比较
3.2 松嫩草地羊草叶氮、磷计量与其他植物比较
松嫩草地羊草叶片N、P含量在松嫩草地草本类群中处于较低水平(表4),在松嫩草地C3植物中也处于较低水平,但叶N/P明显高于群落的整体水平;相比较于中国草地的平均水平,松嫩草地羊草叶片N、P水平明显偏低,但N/P基本相当;松嫩草地羊草叶P含量明显低于全球平均水平、N/P高于全球平均水平。总体上松嫩平原羊草具有较低的P水平和较高的N/P。植物体内的N/P被认为可用来判断限制植物生长的限制元素类型[28],但对于不同的种,在群落水平上这种临界值存在差异[29],N/P小于14为N限制,N/P大于16为P限制被认为适合于大多数的生态系统[28,30];在贫瘠的草原,N/P<10被认为N限制,而>14被认为P限制[31],松嫩草地羊草平均N/P为15.83,按照Koerselman[28]和Aerts[30]研究结论可能不存在氮磷限制,但本研究认为松嫩草地盐碱退化严重(平均pH=9.30,电导率264 μs·cm-1),结合其较低的叶P(1.32 mg·g-1)和土壤磷水平(全磷含量0.339 g·kg-1),更适合贫瘠草原N、P限制的标准,判断为存在明显的P限制。
3.3松嫩盐碱化草地羊草氮磷化学计量的影响因素
虽然生物体内元素具有内稳定性,但是高等植物由于存在细胞壁和行贮藏功能的液泡等,以及分离的C固定和N、P吸收途径,使高等植物体内元素内稳定性更复杂[36]。植物N、P化学计量往往受到生物因素(如遗传特性、生长阶段、种群分类等)和非生物因素的综合影响(如温度、水分、土壤养分等)[1]。Güsewell认为土壤的N、P水平显著影响植物的N、P水平和N/P[37],土壤N、P含量增加可增加组织内N、P浓度,增加或降低N/P[38],本研究土壤全氮、土壤碱解氮与羊草叶N和N/P显著相关,符合以上结论。但松嫩盐碱化草原也存在自身的特点,土壤全氮、土壤碱解氮与叶P呈显著负相关,而土壤全P和土壤速效P与叶P相关性不强,甚至有负相关的趋势。一般植物在自然生态系统中,叶片中N与P含量都是显著正相关[39],所以叶N的增加要求叶P相应增加,而叶P增加导致土壤P含量继续降低,导致土壤P含量和叶P含量背离,这说明松嫩草甸P可能是限制羊草生长的主要因素,这与丁凡等[15]和Li等[16]关于松嫩草甸羊草N、P限制研究结论一致,与群落研究结论不同[14]。
1.刘超,王洋,王楠,等.陆地生态系统植被氮磷化学计量研究进展[J].植物生态学报,2012,36(11):1205-1216.
Liu C,Wang Y,Wang N,et al.Advances research in plant nitrogen,phosphorus and their stoichiometry in terrestrial ecosystems:a review[J].Chinese Journal of Plant Ecology,2012,36(11):1205-1216.
2.Gao Y,Kennish M J,Flynn A M.Atmospheric nitrogen deposition to the New Jersey coastal waters and its implications[J].Ecological Applications,2007,17(S5):S31-S41.
3.Bobbink R,Hicks K,Galloway J,et al.Global assessment of nitrogen deposition effects on terrestrial plant diversity:a synthesis[J].Ecological Applications,2010,20(1):30-59.
4.Stevens C J,Dupre C,Dorland E,et al.Nitrogen deposition threatens species richness of grasslands across Europe[J].Environmental Pollution,2010,158(9):2940-2945.
5.Lund M,Christensen T R,Mastepanov M,et al.Effects of N and P fertilization on the greenhouse gas exchange in two northern peatlands with contrasting N deposition rates[J].Biogeosciences,2009,6(10):2135-2144.
6.Jiang C M,Yu G R,Fang H J,et al.Short-term effect of increasing nitrogen deposition on CO2,CH4and N2O fluxes in an alpine meadow on the Qinghai-Tibetan Plateau,China[J].Atmospheric Environment,2010,44(24):2920-2926.
7.周道玮,李强,宋彦涛,等.松嫩平原羊草草地盐碱化过程[J].应用生态学报,2011,22(6):1423-1430.
Zhou D W,Li Q,Song Y T,et al.Salinization-alkalization ofLeymuschinensisgrassland in Songnen Plain of Northeast China[J].Chinese Journal of Applied Ecology,2011,22(6):1423-1430.
8.Lodhi A,Arshad M,Azam F,et al.Changes in mineral and mineralizable N of soil incubated at varying salinity,moisture and temperature regimes[J].Pakistan Journal of Botany,2009,41(2):967-980.
9.Rao D L N,Batra L.Ammonia volatilization from applied nitrogen in alkali soils[J].Plant and Soil,1983,70(2):219-228.
10.Li H,Hong M,Zhang D L,et al.Experimental study of ammonia volatilization from applied nitrogen in soda saline-alkali soil[J].Journal of Food,Agriculture & Environment,2013,11(3-4):1467-1472.
11.Hawkins B J,Robbins S.pH affects ammonium,nitrate and proton fluxes in the apical region of conifer and soybean roots[J].Physiologia Plantarum,2010,138(2):238-247.
12.Patil A V,Chavan P D.Influence of salt stress on phosphorus metabolism in the roots and leaves of one month oldProsopisjuliflora(Sw.) DC seedlings[J].Pharmacognosy Journal,2011,3(25):48-51.
13.Yang G W,Liu N,Lu W J,et al.The interaction between arbuscular mycorrhizal fungi and soil phosphorus availability influences plant community productivity and ecosystem stability[J].Journal of Ecology,2014,102(4):1072-1082.
14.宋彦涛,周道玮,李强,等.松嫩草地80种草本植物叶片氮磷化学计量特征[J].植物生态学报,2012,36(3):222-230.
Song Y T,Zhou D W,Li Q,et al.Leaf nitrogen and phosphorus stoichiometry in 80 herbaceous plant species of Songnen grassland in Northeast China[J].Chinese Journal of Plant Ecology,2012,36(3):222-230.
15.丁凡,廉培勇,曾德慧.松嫩平原草甸三种植物叶片N、P化学计量特征及其与土壤N、P浓度的关系[J].生态学杂志,2011,30(1):77-81.
Ding F,Lian P Y,Zeng D H.Characteristics of plant leaf nitrogen and phosphorus stoichiometry in relation to soil nitrogen and phosphorus concentrations in Songnen Plain meadow[J].Chinese Journal of Ecology,2011,30(1):77-81.
16.Li Y F,Li Q Y,Guo D Y,et al.Ecological stoichiometry homeostasis ofLeymuschinensisin degraded grassland in western Jilin province,NE China[J].Ecological Engineering,2016,90:387-391.
17.勒春香,王秀茹,王希,等.黑龙江省近50年降水变化趋势及空间分布特征[J].中国水土保持科学,2015,13(1):76-83.
Jin C X,Wang X R,Wang X,et al.Variation trend and spatial distribution characteristics of precipitation in recent 50 years in Heilongjiang Province[J].Science of Soil and Water Conservation,2015,13(1):76-83.
18.李文,曹文侠,徐长林,等.不同休牧模式对高寒草甸草原土壤特征及地下生物量的影响[J].草地学报,2015,23(2):271-276.
Li W,Cao W X,Xu C L,et al.Ecological responses of belowground biomass and soil characteristics to different grazing rest modes in alpine meadow-steppe[J].Acta Agrestia Sinica,2015,23(2):271-276.
19.魏晨辉,沈光,裴忠雪,等.不同植物种植对松嫩平原盐碱地土壤理化性质与细根生长的影响[J].植物研究,2015,35(5):759-764.
Wei C H,Shen G,Pei Z X,et al.Effects of different plants cultivation on soil physical-chemical properties and fine root growth in saline-alkaline soil in Songnen Plain,Northeastern China[J].Bulletin of Botanical Research,2015,35(5):759-764.
20.He N P,Yu Q,WU L,et al.Carbon and nitrogen store and storage potential as affected by land-use in aLeymuschinensisgrassland of northern China[J].Soil Biology and Biochemistry,2008,40(12):2952-2959.
21.王月娇,李月芬,梁硕,等.吉林西部羊草磷含量与土壤磷含量的关系研究[J/OL].吉林农业大学学报,2016(3):http://www.cnki.net/kcms/detail/22.1100.S.20160413.0904.002.html.
Wang Y J,Li Y F,Liang S,et al.Relationship between soil and plant phosphorus concentration ofLeymuschinensisin Western of Jilin[J/OL].Journal of Jilin Agricultural University,2016(3):http://www.cnki.net/kcms/detail/22.1100.S.20160413.0904.002.html.
22.Lü X T,Freschet G T,Kazakou E,et al.Contrasting responses in leaf nutrient-use strategies of two dominant grass species along a 30-yr temperate steppe grazing exclusion chronosequence[J].Plant and Soil,2015,387(1-2):69-79.
23.Bai Y F,Wu J G,Clark C M,et al.Grazing alters ecosystem functioning and C:N:P stoichiometry of grasslands along a regional precipitation gradient[J].Journal of Applied Ecology,2012,49(6):1204-1215.
24.Zhang H Y,Wu H H,Yu Q,et al.Sampling date,leaf age and root size:implications for the study of plant C:N:P stoichiometry[J].PLoS One,2013,8(4):e60360.
25.Lü X T,Reed S,Yu Q,et al.Convergent responses of nitrogen and phosphorus resorption to nitrogen inputs in a semiarid grassland[J].Global Change Biology,2013,19(9):2775-2784.
26.Huang J Y,Yu H L,Li L H,et al.Water supply changes N and P conservation in a perennial grassLeymuschinensis[J].Journal of Integrative Plant Biology,2009,51(11):1050-1056.
27.刘文亭,卫智军,吕世杰,等.中国草原生态化学计量学研究进展[J].草地学报,2015,23(5):914-926.
Liu W T,Wei Z J,Lü S J,et al.Research advances in stoichiometry of grassland in China[J].Acta Agrestia Sinica,2015,23(5):914-926.
28.Koerselman W,Meuleman A F M.The vegetation N:P ratio:a new tool to detect the nature of nutrient limitation[J].Journal of Applied Ecology,1996,33(6):1441-1450.
29.张丽霞,白永飞,韩兴国.内蒙古典型草原生态系统中N素添加对羊草和黄囊苔草N:P化学计量学特征的影响[J].植物学报,2004,46(3):259-270.
Zhang L X,Bai Y F,Han X G.Differential responses of N:P stoichiometry ofLeymuschinensisandCarexkorshinskyito N additions in a steppe ecosystem in Nei Mongol[J].Acta Botanica Sinica,2004,46(3):259-270.
30.Aerts R,Chapin F S III.The mineral nutrition of wild plants revisited:a re-evaluation of processes and patterns[J].Advances in Ecological Research,1999,30:1-67.
31.Braakhekke W G,Hooftman D A P.The resource balance hypothesis of plant species diversity in grassland[J].Journal of Vegetation Science,1999,10(2):187-200.
32.Han W X,Fang J Y,Guo D L,et al.Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J].New Phytologist,2005,168(2):377-385.
33.任书杰,于贵瑞,陶波,等.中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究[J].环境科学,2007,28(12):2665-2673.
Ren S J,Yu G R,Tao B,et al.Leaf nitrogen and phosphorus stoichiometry across 654 terrestrial plant species in NSTEC[J].Environmental Science,2007,28(12):2665-2673.
34.Reich P B,Oleksyn J.Global patterns of plant leaf N and P in relation to temperature and latitude[J].Proceedings of the National Academy of Sciences of the United States of America,2004,101(30):11001-11006.
35.Elser J J,Fagan W F,Denno R F,et al.Nutritional constraints in terrestrial and freshwater food webs[J].Nature,2000,408(6812):578-580.
36.曾冬萍,蒋利玲,曾从盛,等.生态化学计量学特征及其应用研究进展[J].生态学报,2013,33(18):5484-5492.
Zeng D P,Jiang L L,Zeng C S,et al.Reviews on the ecological stoichiometry characteristics and its applications[J].Acta Ecologica Sinica,2013,33(18):5484-5492.
37.Güsewell S.High nitrogen:phosphorus ratios reduce nutrient retention and second-year growth of wetland sedges[J].New Phytologist,2005,166(2):537-550.
38.Perring M P,Hedin L O,Levin S A,et al.Increased plant growth from nitrogen addition should conserve phosphorus in terrestrial ecosystems[J].Proceedings of the National Academy of Sciences of the United States of America,2008,105(6):1971-1976.
39.Güsewel S.N:P ratios in terrestrial plants:variation and functional significance[J].New Phytologist,2004,164(2):243-266.
This study was fully supported by the National Natural Science Foundation of China(No.41271522);The Fundamental Research Funds for the Central Universities(No.2572015CA05)
introduction:ZHAO Long(1991—),male,mainly engaged in the research of physiological ecology about sale stress.
date:2016-03-08
LeafNandPStoichiometryofLeymuschinensisinRelationtoSoilPropertiesinSaline-alkaliDegradedGrassland
ZHAO Long1WANG Hua3LIANG Zheng-Wei2ZHANG Zhong-Hua1,2*TANG Zhong-Hua1NIE Si-Ming1ZHAO Dong-Mei1
(1.Key Laboratory of Forest Plant Ecology,Northeast Forestry University,Harbin 150040;2.Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences,Changchun 130102;3.Institute of Natural Resources and Ecology,Heilongjiang Academy of Sciences,Harbin 150040)
N and P stoichiometry of constructive species of a climax community has an important influence on the stability and productivity of community. We choseLeymuschinensis, the constructive species of Songnen grassland community to study the effects of grassland degradation on N and P stoichiometry ofL.chinensisunder saline-alkali stress. There were lower leaf P content(1.32 g·kg-1), medium leaf N content(18.90 g·kg-1) and slightly higher N/P(15.83) in degradedL.chinensisgrassland compared with theL.chinensisgrassland in the north of China. Leaf N and N/P were significantly positively correlated with soil total nitrogen and soil alkaline hydrolysis nitrogen. Leaf P was significantly negatively correlated with soil total nitrogen and soil alkaline hydrolysis nitrogen, but other factors were not significantly correlated with N, P and N/P. Both the significant correlations between leaf P content and soil N content and departure from leaf P content and soil P content common displayed that there might be a limitation of P in Songnen Plain at the saline alkali degradation ofL.chinensisgrassland.
saline-alkali degraded grassland;Leymuschinensis;stoichiometry;N and P;soil factors
国家自然科学基金(41271522);中央高校基本科研业务费专项资金资助(2572015CA05)
赵龙(1991—),男,硕士研究生,主要从事植物抗逆生理生态学研究。
* 通信作者:E-mail:en_cn@126.com
2016-03-08
* Corresponding author:E-mail:en_cn@126.com
Q142.3
A
10.7525/j.issn.1673-5102.2016.05.019