低氧环境对脐带间充质干细胞相关细胞因子表达的影响
2016-11-09张冲徐敏毛成刚锡洪敏聂娜娜高宏李自普
张冲,徐敏,毛成刚,锡洪敏,聂娜娜,高宏,李自普
低氧环境对脐带间充质干细胞相关细胞因子表达的影响
张冲,徐敏,毛成刚,锡洪敏,聂娜娜,高宏,李自普
目的 观察低氧环境对人脐带间充质干细胞(hUCMSCs)分泌血管内皮生长因子(VEGF)、肝细胞生长因子(HGF)、碱性成纤维细胞生长因子(bFGF)、基质衍生因子-1(SDF-1)、干细胞因子(SCF)、胰岛素样生长因子(IGF-1)和粒细胞集落刺激因子(G-CSF)表达的影响。
方法 将第 3 代 hUCMSCs 分别置于 20% O2(常氧组)和 5% O2(低氧组)环境中培养,于 8、24、32、48、56、72 h ELISA 法检测培养前及培养后上清液中 HGF、IGF-1、SDF-1、VEGF、bFGF、SCF、G-CSF 的浓度。
结果 低氧组培养上清液中 HGF、SDF-1、SCF、G-CSF 的浓度于培养后 72 h 明显高于常氧组(P < 0.05);VEGF 的浓度于培养后 56 h 明显高于常氧组(P < 0.05);bFGF 浓度于培养后 32 h 明显高于常氧组(P < 0.05);IGF-1 浓度在培养后较常氧组无明显变化(P > 0.05)。
结论 脐带间充质干细胞培养后可持续表达细胞因子VEGF、HGF、IGF、bFGF、SCF、SDF-1 和 G-CSF,且 5%低氧培养环境可促进 VEGF、HGF、bFGF、SCF、SDF-1 和G-CSF 的表达,但对 IGF-1 表达无影响。
间质干细胞; 细胞低氧; 干细胞因子
www.cmbp.net.cn 中国医药生物技术, 2016, 11(5):437-440
人脐带间充质干细胞(human umbilical cord mesenchymal stem cells,hUCMSCs)存在于脐带沃顿胶和血管周围组织,较其他间充质干细胞(mesenchymal stem cells,MSCs)具有更强的增殖分化能力、HLA-I 表达和神经诱导分化能力,且免疫功能低,无异体排斥反应。同时还具有来源广泛,取材方便,便于保存及运输,对供体无影响、无伦理争议等优点,因此具有更为广阔的应用前景。MSCs 可分泌血管内皮生长因子(vascular endothelial growth factor,VEGF)、基质衍生因子-1(stromal cell derived factor-1,SDF-1)等多种细胞因子,参与细胞迁移募集,促进血管生成,改善脏器功能。然而,目前大多体外细胞培养在常氧环境下进行,与体内生理或病理状态下的低氧状态相差甚远。本研究通过观察常氧和低氧环境下hUCMSCs 多种细胞因子分泌的变化,旨在探讨低氧环境对 hUCMSCs 细胞因子分泌能力的影响。
1 材料与方法
1.1 材料
人脐血间充质干细胞由青岛大学医学院附属医院干细胞中心提供,产妇及家属同意用于科学研究。实验用间充质干细胞均经过微生物检测及流式细胞仪检测,细胞表型符合间充质干细胞的表型特征:CD34(-),CD45(-),CD90(+),CD105(+),HLA-DR(-)。微生物检测:支原体检测阴性,乙型肝炎病毒阴性,丙型肝炎病毒阴性,梅毒螺旋体阴性,巨细胞病毒阴性,HIV 阴性,需氧菌培养阴性,真菌培养阴性。
1.2 方法
将第 3 代的 hUCMSCs 按照 1 × 104个/cm2接种 6 孔培养板,每孔加入培养基 2 ml(DMEM培养基 + 10% FBS),并将其分为 2 组,正常氧浓度组(20% O2、5% CO2、75% N2,简称常氧组);低氧浓度组(5% O2、5% CO2、90% N2,简称低氧组)。将常氧组各培养板放入 20% O2浓度的培养箱中,低氧组各培养板放入 5% O2浓度的三气培养箱中培养,分别于培养后第 8、24、32、48、56、72 小时取相应培养孔的上清液,离心。应用 ELISA法检测上清液中各细胞因子的浓度。
1.3 统计学处理
2 结果
两组 hUCMSCs 在不同培养时间 VEGF、SDF-1、肝细胞生长因子(hepatocyte growth factor,HGF)、碱性成纤维细胞生长因子(basic fibroblast growth factor,bFGF)、胰岛素样生长因子-1(insulin-like growth factor-1,IGF-1)、干细胞因子(stem cell factor,SCF)、粒细胞集落刺激因子(granulocyte colony-stimulating factor,G-CSF)的表达水平见表 l。与常氧组比较,低氧组中 HGF、G-CSF 浓度于 72 h 开始明显高于常氧组,VEGF浓度于 56 h 开始明显高于常氧组,bFGF 浓度于32 h 开始明显高于常氧组,且差异均有统计学意义(P < 0.05)。SDF-1 浓度于培养开始 8 h 较常氧组明显减低(P < 0.05),后随培养时间延长逐渐升高,并于 72 h 明显高于常氧组(P < 0.05)。SCF 浓度于 8、24、32 h 明显低于常氧组(P 均 < 0.01),后随时间延长逐渐升高,并于 72 h 明显高于常氧组(P < 0.05)。IGF-1 浓度则较常氧组无明显变化(P > 0.05)。
3 讨论
目前,基于间充质干细胞的替代治疗及组织工程等方面已经做了大量实验研究和临床试验。间充质干细胞的旁分泌作用越来越受到研究者的重视。Ye 等[1]报道间充质干细胞可以分泌多种细胞因子及调节肽等,至少包括 34 种蛋白质。大量研究证实这些因子参与细胞的存活凋亡、营养代谢、增殖分化、迁移归巢,有利于促进血管的生成、组织修复、改善心脏功能[2-6]。Tang 等[7]将 MSCs 注入大鼠心肌梗死边缘区,2 周后发现 VEGF、bFGF、SDF-1 表达明显升高,且提高了左室收缩功能,而Bax 表达明显下降。从而提示 MSCs 可以通过旁分泌作用抑制心肌细胞凋亡,促进血管生成,改善心功能。随着研究的深入,人们发现 MSCs 的旁分泌与受损部位的低氧环境密切相关。
机体正常和受损组织均处于低氧环境,MSCs移植后也处于低氧微环境中,因此研究低氧条件对MSCs 旁分泌作用的影响具有重要意义。国内外学者均已提出低氧可以作为诱导因素,刺激 MSCs的分泌,如 VEGF、HGF、SDF-1 等,但也有少数研究者得出不同结论。Wairiuko 等[8]提出体外低氧应激情况下,能激活 MSCs 的分泌活性,显著促进 VEGF 和 bFGF 的释放。Rosova 等[9]对 MSCs进行低氧预处理后发现培养基中 HGF 释放明显增加。Liu 等[10]于体外 3% O2浓度下培养BMSCs,发现 24、36、48 h 其分泌的 SDF-1 及其表面受体 CXCR4 均较常氧环境明显升高,但Jing 等[11]的研究结果则与其相反。Lönne 等[12]于2.5% 的 O2环境下培养脐带间充质干细胞 3 d,结果发现 VEGF、IGF、SCF 明显增加,但 bFGF 较对照组无明显变化。本实验将脐带间充质干细胞分别置于 20% O2、5% O2环境下进行培养,于 8、24、32、48、56、72 h 动态检测培养基上清液中各生长因子的浓度,发现脐带间充质干细胞可持续表达 HGF、SDF-1、SCF、G-CSF、VEGF、bFGF、IGF-1 多种细胞因子。低氧组 HGF、SDF-1、SCF、G-CSF、VEGF、bFGF 浓度随培养时间逐渐升高,并明显高于常氧组,提示低氧促进脐带间充质干细胞 VEGF、bFGF、HGF、SDF-1、SCF、G-CSF 的分泌。但 IGF 浓度则无明显变化,考虑此结果与既往文献报道有所差异,原因可能为:① IGF-1 对低氧环境的敏感性低,此次低氧预处理的氧浓度未能达到其有效刺激浓度。②培养时间较短,培养液中游离的 IGF-1 太少,仍需进一步研究。此外本实验还发现低氧环境下,细胞培养早期 VEGF、HGF、SDF-1、SCF、G-CSF 浓度较常氧环境低,后随时间推移逐渐升高,并分别于不同时间点高于常氧组,提示脐带间充质干细胞对低氧刺激需要一定的适应及反应时间。
表 1 低氧组和常氧组 hUCMSCs 细胞因子的表达()Table 1 The concentrations between hypoxia group and normoxia group ()
表 1 低氧组和常氧组 hUCMSCs 细胞因子的表达()Table 1 The concentrations between hypoxia group and normoxia group ()
注:与常氧组相比,aP < 0.05,bP < 0.01。Note: Compared with normoxia group,aP < 0.05,bP < 0.01.
时间(h) Time (h)8 24 32 48 56 72 VEGF(pg/ml)常氧组 Normoxia group 970.2 ± 114.2 953.8 ± 191.2 884.0 ± 135.2 884.2 ± 150.0 865.2 ± 67.2 836.4 ± 86.8低氧组 Hypoxia group 914.8 ± 142.0 919.4 ± 86.8 957.4 ± 59.9 972.8 ± 48.7 1007.4 ± 86.4a1079.5 ± 87.0bHGF(ng/L)常氧组 Normoxia group 1400.5 ± 125.6 1398.4 ± 95.4 1320.0 ± 140.6 1302.2 ± 180.6 1299.8 ± 107.5 1216.9 ± 62.0低氧组 Hypoxia group 1276.5 ± 162.0 1298.7 ± 126.8 1302.0 ± 76.6 1342.5 ± 88.0 1365.8 ± 95.2 1383.9 ± 87.0aSDF-1(ng/L)常氧组 Normoxia group 1301.5 ± 139.0 1162.4 ± 150.4 1246.6 ± 89.8 1230.8 ± 140.5 1227.5 ± 176.9 1142.8 ± 96.6低氧组 Hypoxia group 1078.0 ± 191.0a1001.4 ± 186.8 1111.0 ± 158.0 1091.4 ± 207.0 1147.2 ± 323.4 1309.0 ± 148.4abFGF(pg/ml)常氧组 Normoxia group 80.2 ± 15.0 76.2 ± 20.0 67.0 ± 14.3 65.2 ± 16.0 64.7 ± 16.0 64.7 ± 16.4低氧组 Hypoxia group 86.0 ± 15.6 83.5 ± 17.1 84.4 ± 4.6a87.7 ± 10.2a88.9 ± 10.6b90.0 ± 11.6bIGF-1(µg/L)常氧组 Normoxia group 51.0 ± 4.4 48.6 ± 7.7 49.3 ± 7.1 48.1 ± 8.2 47.2 ± 8.4 45.4 ± 6.8低氧组 Hypoxia group 50.6 ± 4.0 48.0 ± 6.3 49.8 ± 6.6 51.9 ± 6.2 48.6 ± 8.8 49.5 ± 10.1 SCF(ng/L)常氧组 Normoxia group 581.4 ± 55.6 525.6 ± 50.2 512.0 ± 42.7 504.8 ± 64.2 502.4 ± 57.3 459.8 ± 39.4低氧组 Hypoxia group 465.6 ± 44.7b420.6 ± 48.8b424.5 ± 12.0b425.6 ± 44.8a460.4 ± 38.0 505.4 ± 35.9aG-CSF(ng/L)常氧组 Normoxia group 363.5 ± 64.6 330.6 ± 106.2 381.1 ± 61.7 393.8 ± 149.0 341.2 ± 72.2 318.2 ± 71.5低氧组 Hypoxia group 288.6 ± 77.3 334.2 ± 102.5 346.2 ± 26.6 387.2 ± 127.7 402.4 ± 36.7 472.0 ± 50.0a
如上所述,低氧可以通过改变 MSCs 的细胞因子表达,影响其旁分泌作用,但具体机制仍不明确。Martin-Rendon 等[13]将 MSCs 在体外经低氧处理 24 h 后,发现约有 231 种 mRNA 受到缺氧的调节。进一步研究发现主要与低氧诱导因子-1α(HIF-1α)、NF-κB 等有关。郭辉等[14]分别在 21%和 3% O2环境中培养骨髓间充质干细胞 24 h,发现低氧组 HIF-1α 蛋白表达明显增高。HIF-1α 是细胞适应低氧环境的关键蛋白转录调节因子,也是影响 MSCs 旁分泌作用的主要原因。HIF-1α 调控的靶基因有 60 多个[15]。VEGF 及 SDF-1 是已经证实的 HIF-1α 的两大重要靶基因[16-19]。低氧增加间充质干细胞 HIF-1α 的活性,促使 HIF-1α 与VEGF、SDF-1 编码基因的低氧反应元件结合,增加 VEGF、SDF-1 的分泌。HIF-1α 还可以诱导IGF-1、HGF 等多种细胞因子的表达。NF-κB 是一种存在于真核细胞的转录因子。近期的研究数据表明 NF-κB 在诱导因素的作用下可以促进 VEGF、bFGF 等细胞因子的分泌。Crisostomo 等[20]将人间充质干细胞置于含 NF-κB 抑制剂的培养基,并于1% O2环境中培养,24 h 后检测培养液中 VEGF、bFGF、HGF 及 IGF 的浓度,发现低氧 +NF-κB 抑制剂组中各细胞因子的浓度较对照组明显减低。此外细胞因子之间的相互作用也影响 MSCs 的分泌。SDF-1 与 CXCR4+ 间充质干细胞结合,可促进 VEGF、bFGF、HGF、IGF-1 等的分泌[10,21]。bFGF、G-CSF 可以促进 HGF 的表达[22]。上述因子通过相互作用,可以形成级联放大效应,影响细胞的旁分泌作用。
综上所述,间充质干细胞可持续分泌一些细胞因子,适度低氧刺激有利于间充质干细胞细胞因子的分泌,但具体机制仍有待进一步研究。
[1] Ye NS, Chen J, Luo GA, et al. Proteomic profiling of rat bone marrow mesenchymal stem cells induced by 5-azacytidine. Stem Cells Dev,2006, 15(5):665-676.
[2] Torella D, Rota M, Nurzynska D, et al. Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression. Circ Res, 2004, 94(4):514-524.
[3] Urbanek K, Rota M, Cascapera S, et al. Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long-term survival. Circ Res, 2005, 97(7):663-673.
[4] Harada M, Qin Y, Takano H, et al. G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes. Nat Med, 2005, 11(3):305-311.
[5] Balsam LB, Wagers AJ, Christensen JL, et al. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature, 2004, 428(6983):668-673.
[6] Ma N, Stamm C, Kaminski A, et al. Human cord blood cells induce angiogenesis following myocardial infarction in NOD/scid-mice. Cardiovasc Res, 2005, 66(1):45-54.
[7] Tang YL, Zhao Q, Qin X, et al. Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction. Ann Thorac Surg,2005, 80(1):229-237.
[8] Wairiuko GM, Crisostomo PR, Wang M, et al. Stem cells improve right ventricular functional recovery after acute pressure overload and ischemia reperfusion injury. J Surg Res, 2007, 141(2):241-246.
[9] Rosova I, Dao M, Capoccia B, et al. Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells, 2008, 26(8):2173-2182.
[10] Liu H, Liu S, Li Y, et al. The role of SDF-1-CXCR4/CXCR7 axis in the therapeutic effects of hypoxia-preconditioned mesenchymal stem cells for renal ischemia/reperfusion injury. PLoS One, 2012, 7(4):e34608.
[11] Jing D, Wobus M, Poitz DM, et al. Oxygen tension plays a critical role in the hematopoietic microenvironment in vitro. Haematologica, 2012,97(3):331-339.
[12] Lönne M, Lavrentieva A, Walter JG, et al. Analysis of oxygen-dependent cytokine expression in human mesenchymal stemcells derived from umbilical cord. Cell Tissue Res, 2013, 353(1):117-122.
[13] Martin-Rendon E, Wilmot C, Carr C, et al. Hypoxic preconditioning promotes proliferation of mesenchymal stem cells in vitro and does not alter their effects in the infarcted rat heart in vivo//Annual autumn meeting of the British-society-for-cardiovascular-research. Southampton, England, 2005.
[14] Guo H, Zhang YJ, Chen YZ, et al. Expression of vascular endothelial growth factor in bone marrow mesenchymal stem cells under hypoxic conditions. J Clin Rehabil Tissue Eng Res, 2014, 23(18):3627-3632.(in Chinese)郭辉, 张于娟, 陈永珍, 等. 低氧环境下骨髓间充质干细胞中血管内皮生长因子的表达. 中国组织工程研究, 2014, 23(18):3627-3632.
[15] Acarregui MJ, Penisten ST, Goss KL, et al. Vascular endothelial growth factor gene expression in human fetal lung in vitro. Am J Respir Cell Mol Biol, 1999, 20(1):14-23.
[16] Busletta C, Novo E, Valfrè Di Bonzo L, et al. Dissection of the biphasic nature of hypoxia-induced motogenic action in bone marrow-derived human mesenchymal stem cells. Stem Cells, 2011,29(6):952-963.
[17] Zou D, Zhang Z, Ye D, et al. Repair of critical-sized rat calvarial defects using genetically engineered bone marrow-derived mesenchymal stem cells overexpressing hypoxia-inducible factor-1α. Stem Cells, 2011, 29(9):1380-1390.
[18] Yun SP, Lee MY, Ryu JM, et al. Role of HIF-1alpha and VEGF in human mesenchymal stem cell proliferation by 17beta-estradiol:involvement of PKC, PI3K/Akt, and MAPKs. Am J Physiol Cell Physiol, 2009, 296(2):C317-C326.
[19] Liu L, Yu Q, Lin J, et al. Hypoxia-inducible factor-1α is essential for hypoxia-induced mesenchymal stem cell mobilization into the peripheral blood. Stem Cells Dev, 2011, 20(11):1961-1971.
[20] Crisostomo PR, Wang Y, Markel TA, et al. Human mesenchymal stem cells stimulated by TNF-alpha, LPS, or hypoxia produce growth factors by an NF kappa B- but not JNK-dependent mechanism. Am J Physiol Cell Physiol, 2008, 294(3):C675-C682.
[21] Liu X, Duan B, Cheng Z, et al. SDF-1/CXCR4 axis modulates bone marrow mesenchymal stem cell apoptosis, migration and cytokine secretion. Protein Cell, 2011, 2(10):845-854.
[22] Fujii K, Ishimaru F, Kozuka T, et al. Elevation of serum hepatocyte growth factor during granulocyte colony-stimulating factor-induced peripheral blood stem cell mobilization. Br J Haematol, 2004, 124(2):190-194.
Objective To observe the effects of low oxygen on the expression of VEGF, HGF, bFGF, SDF-1, SCF, IGF, G-CSF in human umbilical cord mesenchymal stem cells (hUCMSCs).
Methods The third generation of hUCMSCs was divided into hypoxia group and normoxia group cultured in 5% oxygen and 20% oxygen, respectively. The concentration of HGF, IGF-1, SDF-1, VEGF, bFGF, SCF and G-CSF was detected by ELISA after culturing 8, 24, 32, 48, 56 and 72 h, respectively.
Results The concentration of HGF, SDF-1, SCF and G-CSF in hypoxia group was significantly higher than that of normoxia group after 72 h culture (P < 0.05); The concentration of VEGF and bFGF in hypoxia group was significantly higher than that of normoxia group after 56 h and 32 h culture, respectively (P < 0.05). However, the concentration of IGF-1 in hypoxia group had no significant change as compared to that of normoxia group (P > 0.05).
Conclusions The continuous expression of cytokines in hUCMSCs, such as HGF, IGF-1, SDF-1, VEGF, bFGF, SCF and G-CSF,could be found, and the expression level of the above cytokines except IGF-1 is increased by 5% oxygen.
Author Affiliation: Department of Cardiorenal Pediatrics (ZHANG Chong, XU Min, MAO Cheng-gang, NIE Na-na, LI Zi-pu),Neonatal Department (XI Hong-min), Stem Cell Center (GAO Hong), Affiliated Hospital of Qingdao University, Qingdao 266003,China
www.cmbp.net.cn Chin Med Biotechnol, 2016, 11(5):437-440
Effects of low oxygen on the expression of related cytokines in human umbilical cord mesenchymal stem cells
ZHANG Chong, XU Min, MAO Cheng-gang, XI Hong-min, NIE Na-na, GAO-Hong, LI Zi-pu
Mesenchymal stem cells; Cells hypoxia; Stem cell factor
LI Zi-pu, Email: 13370871121@163.com
10.3969/j.issn.1673-713X.2016.05.009
266003 青岛大学附属医院心肾免疫儿科(张冲、徐敏、毛成刚、聂娜娜、李自普),新生儿科(锡洪敏),干细胞中心(高宏)
李自普,Email:13370871121@163.com
2016-05-25