股票市场数据的统计实证分析
2016-07-15黄玉洁钱丽丽陶凤梅
黄玉洁,钱丽丽,陶凤梅
(1.鞍山师范学院 数学与信息科学学院,辽宁 鞍山 114007;2.聚龙股份有限公司,辽宁 鞍山 114051)
股票市场数据的统计实证分析
黄玉洁1,2,钱丽丽1,陶凤梅1
(1.鞍山师范学院 数学与信息科学学院,辽宁 鞍山 114007;2.聚龙股份有限公司,辽宁 鞍山 114051)
摘要多元统计分析方法是研究股票价格的一般方法,本文利用统计分析方法考察并确定上市公司与股票价格相关的基本因素,利用聚类分析与因子分析两种分析方法来进行实例研究,并判断出各公司股票质量特征,为投资者的投资提供科学严谨的建议.
关键词聚类分析;因子分析;股票市场
股票市场是对已经发行的股票进行转让、买卖和流通的场所.股份公司通过对股票的全面发行,可以迅速集中大量资金,实现生产的规模经营;而社会上分散的资金盈余者本着“利益共享、风险共担”的原则投资股份公司,谋求财富的增值.当今中国股票市场发展迅速,越来越多的人关注着股票市场的行情,将自己的资产投入到股票行业中以期得到丰厚的回报,为了促进股票合理化,产生了对股票市场价格变动的分析和预测,对上市公司股票业绩进行综合评估是十分必要的.多元统计分析是研究股票价格的新型方法,我们利用统计分析方法,考察并且确定上市公司股票价格之间的基本关键因素,利用聚类分析与因子分析两种分析方法来进行实例研究,判断出股票价格的基本变动趋势,为股票投资者的投资提供科学的建议.
国外学者Serpil[1]将主成分分析与判别分析相结合,对早期综合预警模型进行估计.April Kerby和James Lawrence[2]利用主成分分析与判别分析来作为选择质量好或不好股票的依据.Newton Da Costa等人[3]提出了一种根据风险回报准则的基于聚类分析方法对现货市场中的股票分组的技术.Anderon[4]利用判别分析来对资本市场作进一步的研究.
国内许多专家学者[5~10]根据证劵报告中的信息,选择每股收益、投资收益、净收益率等财务指标,对一些公司或企业的这些指标数据进行了多元统计分析,试图将这些公司和企业进行分类,为股票的选择和分析提供依据进行实例研究.本文应用聚类分析和因子分析方法对30家上市公司进行了实证研究,为投资者提供科学依据.
1股票市场数据的统计分析
1.1数据的选取
统计分析方法是处理数据、进行实证分析的有效方法,被广泛应用于各个领域[11~13].为了研究多元统计分析方法在股票市场中的应用,需要进行实证分析.本文任意选取了巨潮资讯网2014年度报告数据中的30家上市公司的每股收益、总资产、净利润、净资产、每股净资产、净资产收益率、营业收入共7项财务指标数据进行实例研究.
每股收益,通常被用来反映企业某一会计期间的经营成果,衡量普通股的获利水平以及投资风险,是投资者等其信息使用者据以评价企业盈利能力、预测企业成长潜力进而做出相关经济决策的重要财务指标之一.净利润为最终经营业绩,净利润越多,就代表企业的经营效益越好;净利润越少,则企业的经营效益就越差,它是企业经营效益的主要衡量指标.每股净资产是指股东权益与股本总额的比率.每股净资产越高,则股东拥有的资产现值就越多;每股净资产越少,则股东拥有的资产现值就越少.净资产收益率,是指净利润与平均股东权益的百分比,是公司税后利润除以净资产的百分比率.净资产收益率是衡量股东资金使用效率的重要财务指标.总资产指的是某一经济实体拥有或控制的、预期能够为自身带来经济利益的全部资产.净资产是属企业所有并且可以自由支配的资产,即所有者权益.企业的净资产,是指企业的资产总额减去负债以后的净额.营业收入指的是企业在日常活动中从事销售商品、提供劳务和让渡资产使用权等所形成的经济利益的总流入,分为主营业务收入和其它业务收入.由巨潮资讯网年度报告数据中选取30家上市公司的财务指标数据见表1(股票名称略去,以编号代替).
表1 财务指标数据表
总资产、净资产以及营业收入都在一定程度上反映了上市公司的盈利情况,这3者是股票是否有购买价值的基础,只有基础越好,股票才越具有购买价值.所以这3者是人们在购买股票时需要长期关注的.
1.2聚类分析
图1是运用SPSS软件对30家上市公司的数据进行系统聚类分析后得到的树枝状联结图,选取的聚类指标是30家上市公司2014年度的财务数据,包括:上市公司的每股收益、总资产、净利润、净资产、每股净资产、净资产收益率、营业收入共7项财务指标.根据图1,可以依据股票的财务状况将这30支股票分为3组.
第1组:25号股票;第2组:3号股票和4号股票;第3组:剩下的其它27支股票.
从分组情况看,第1组股票归为第一类.这支股票总资产、净利润、净资产、营业收入的财务指标都很高,且每股收益、每股净资产、净资产收益率的财务指标也都不低,说明这支股票的获利能力高,并且股票的数量庞大,使总资产和营业收入等均很高.总体来说25号股票作为第一类股票有很大的投资价值,投资者可根据个人的投资理念和即时的市场条件等各方面因素对此类绩优企业进行投资.
图1 树枝状联结图
将第2组股票归为第二类.这两支股票的7项财务指标均很高,特别是每股收益是最高的,说明股票的质量很好,数量也够庞大.企业的发展速度与前景也都比较可观,投资者根据自身情况并结合其它情况以辅助自己做出投资的决策对第二类企业进行投资.
剩下的27支股票归为第三类.这些股票的财务状况不如第一类和第二类好了,其中,有几支股票的每股收益甚至是负的,由此可见,这类企业显然是不适合投资者对它们进行投资的.当然在实际情况中,投资者可以结合企业的具体的其它财务指标对股票进行分析,辅助投资者进行投资决策.这样既实现了投资者的资本增值目的,又满足了整个社会的资源优化配置的要求.
1.3因子分析
因子分析的主要目的是数据降维,如果原始变量之间不存在相关性,那么因子分析的意义并不大.为了进行因子分析,首先判定各指标间的相关性.相关系数是研究变量之间线性相关程度的量.从相关系数结果表2来看,每股收益和净资产收益率的相关性最大,相关系数达到0.700,即每股收益越高,则净资产收益也就越高.总资产和净利润、净资产、营业收入的相关性都很大,相关系数均超过0.900.
表2 相关系数检验结果表
表3 KMO 和 Bartlett’s 检验
接下来,判断是否可以应用因子分析来进行数据降维,判断的方法为Bartlett球形检验和KMO方法.结果(表3)显示,KMO检验结果为0.706.球形度检验统计量为571.392,p值为0.000,检验结果是显著的,可以进行因子分析.
下面计算各变量共同度,每个变量之间的共同度越高,就说明提取的公因子越能反映原来的7个指标的变化,结果如表4,所有变量的共同度全都超过了0.700,就说明了公因子能够很好地反映原来的7个指标的变化.
表4 财务指标的共同度
应用SPSS软件的计算特征值以及方差贡献率得到表5数据,由表5可看出:只有前两个因子的特征值大于1,并且前两个因子的特征值之和占特征值总和的92.772%,也就是说只需要前两个因子就已经能够解释这7个财务指标信息的92.772%,所以本文仅采用前两个因子对股票进行综合评价.
表5 特征值和方差贡献率
表6 旋转因子载荷
进行因子旋转,得到效果比较好的因子.表6中的系数为旋转后的因子负荷系数估计值.表6中的2,3列分别是两个特征值的特征向量.载荷程度越大说明该指标在因子中的影响程度就越大,越小则说明该指标在因子中的影响程度就越小.把7个指标归为总体财务状况因子和股票质量因子这两类主要因子:因子1在总资产、净利润、净资产、营业收入这4个指标上有较高的正载荷,可以将这4个指标定义为总体财务状况因子;因子2在每股收益、每股净资产、净资产收益率这3个指标上具有较高的正载荷,可以将这3个指标定义为股票质量因子.
表7 30只股票的因子得分情况
将成分矩阵表中所显示的数据代入因子得分模型,可得到旋转后的因子得分函数如下:
Factor1=0.045 Z每股收益+0.980 总资产+0.998 净利润+0.996 净资产-0.037 每股净资产-0.008 净资产收益率+0.982 营业收入;
Factor2=0.876 Z每股收益+0.077 总资产+0.035 净利润-0.035 净资产+0.953 每股净资产+0.942 净资产收益率-0.073 营业收入.
计算不同股票的两个因子得分,如表7所示.在因子1中总体财务状况因子的排名中包揽前3名的分别是25号、3号、4号股票,说明这3支股票的综合财务状况较高.因子2中排名较前的是18号、3号、15号股票,说明这3支股票的质量较好,每股获利较高.注意到18号股票的因子1排在最后而因子2排在第一,这是因为该公司的总资产额在30家公司中相对较少,营业收入也相对低,导致因子1排名在后面,但其每股收益达百分之四十多,与其它公司比遥遥领先,因而因子2排名领先.
综合聚类分析的树枝状联结图1所得出的结果,我们可以看出:第一类的股票可以被称为蓝筹股,这类股票发展前景好,公司的盈利能力也是十分可观的.这表明投资者可以根据公司的财务状况进行投资,投资于公司财务状况较好公司的股票可以获得更好的投资效果.第二类股票可以称为绩优股,这类股票不论是在综合财务状况方面还是在股票盈利方面的表现都可圈可点,人们购买这类股票时需考虑即时的市场情况,分析公司即时的财务状况.第三类股票可以称为劣质股,这类股票总体财务状况则表现较差,投资于财务状况较差的股票面临着更高的风险,却不能获得更高的期望收益率,人们在购买这类股票时则需要慎重考虑.
2结论
本文运用了描述统计和多元统计分析方法对随机选取的30家上市公司的财务状况进行了综合分析,把30家上市公司的股票分为3大类,体现了各上市公司的财务状况,结果与各上市公司的实际财务状况相符合.
聚类分析综合了选取的7项财务指标反映各上市公司的盈利状况和发展水平.因子分析将文中所选取的上市公司的7项财务指标综合为总体财务状况因子和股票质量因子两个综合变量,为分类和评估上市公司的财务状况的优劣提供了有力的依据.除此之外,采用因子分析的方法建立的综合评价函数评价上市公司的业绩,避免单指标评价的片面性.也可通过各因子的得分,了解财务状况的具体发展情况和经营管理中的优势和劣势,从而使得对公司的经营业绩的评价更加全面客观.
实例证明,本文所采用的统计分析方法为股民选择和分析股票提供了强有力的理论和实例支持.
参考文献
[1] Serpil.Prediction of financial distress by multivariate statistical analysis:the case of firms.taken into the surveillance market in the Istanbul stock exchange[J].International journal of theoretical &applied finance,2006,9(1):133-150.
[2] April Kerby,James Lawrence.A Multivariate Statistical Analysis of Stock Trends[EB/OL].Http//:www.units.muohio.edu,2011-11-11.
[3] Newton Da Costa,Jr.Stock selection based on cluster analysis[J].Economics Bulletin,2005,13(10):1-9.
[4] Anderson,Leslie P.Capital Markets[J].Journal of Financial & Quantitative Analysis,1967,2(4):424-429.
[5] 柯冰,钱省三.聚类分析和因子分析在股票研究中的应用[J].上海理工大学学报,2002,24(4):371-374.
[6] 李德荣,何莉敏,李玉.聚类分析和因子分析在股票投资中的应用[J].内蒙古统计,2011(1):29-31.
[7] 李庆东.聚类分析在股票分析中的应用[J].辽宁石油化工大学学报,2005,25(3):94-96.
[8] 李利梅,柳向东.股票市场的因子分析[J].改革与战略,2003(8):52-56.
[9] 郝瑞,张悦.基于因子分析和聚类分析的股票分析方法[J].时代金融,2014,9:135-137,141.
[10] 李庆东,李颖.证劵投资分析方法新探索——聚类分析方法运用[J].现代情报,2005(11):50-53.
[11] 李淑娟,赵立纯,黄玉洁.病虫灾成灾面积的ARMA模型的分析及应用[J].鞍山师范学院学报,2014,16(6):1-5.
[12] 黄玉洁.辽宁省农村居民消费结构的动态分析[J].鞍山师范学院学报,2013,15(4):1-4.
[13] 黄玉洁,陶凤梅,王建民.关于鞍山地区气象状况的研究预测与分析[J].生物数学学报,2013(3):390-394.
(责任编辑:张冬冬)
The application of cluster and factor analysis in stock market
HUANG Yujie1,2,Qian Lili1,TAO Fengmei1
(1.School of Mathematics and Information Science,Anshan Normal University,Anshan Liaoning 114007,China;2.JulongCo.Ltd.,AnshanLiaoning114051,China)
AbstractMultivariate statistical analysis is a general method of the stock price.In this paper,the author uses the statistical analysis method to study and determine the basic factors among the stock prices of listed companies,carry out empirical research using cluster analysis and factor analysis,determine the stock quality of all company,and provide scientific recommendations for the investors.
Key wordscluster analysis;factor analysis;stock market
收稿日期2016-01-05
作者简介黄玉洁(1971-),女,河北保定人,鞍山师范学院数学与信息科学学院副教授,博士.
中图分类号O212.4;F830.91
文献标识码A文章篇号1008-2441(2016)02-0019-05