孕穗期冷水胁迫对寒地水稻干物质生产的影响
2016-06-17王士强赵海红萧长亮赵黎明顾春梅那永光解保胜程式华
王士强 赵海红 萧长亮 赵黎明 顾春梅 那永光 解保胜 程式华
(1沈阳农业大学 农学院, 沈阳 110161;2中国水稻研究所 水稻生物学国家重点实验室, 杭州 310006;3黑龙江省农垦科学院 水稻研究所, 黑龙江 佳木斯 154007;4黑龙江省农业科学院佳木斯分院, 黑龙江 佳木斯 154007;*通讯联系人, E-mail: shcheng@mail.hz.zj.cn)
孕穗期冷水胁迫对寒地水稻干物质生产的影响
王士强1,2,3赵海红4萧长亮3赵黎明3顾春梅3那永光3解保胜3程式华1,2,*
(1沈阳农业大学 农学院, 沈阳 110161;2中国水稻研究所 水稻生物学国家重点实验室, 杭州 310006;3黑龙江省农垦科学院 水稻研究所, 黑龙江 佳木斯 154007;4黑龙江省农业科学院佳木斯分院, 黑龙江 佳木斯 154007;*通讯联系人, E-mail: shcheng@mail.hz.zj.cn)
王士强, 赵海红, 萧长亮,等. 孕穗期冷水胁迫对寒地水稻干物质生产的影响. 中国水稻科学, 2016, 30(3): 313-322.
摘要:以黑龙江省30份主栽水稻品种或品系为试材,在孕穗期设置17℃冷水灌溉处理(20 d),以常规栽培管理为对照,分析冷水胁迫对水稻干物质生产的影响。结果表明,冷水胁迫导致所有试材每穴实粒数、结实率、千粒重和产量下降,并根据相对结实率将试材耐冷性分为1、3、5、7和9级,以7和9级最多,1级最少,分别占总材料的30%和10%。在冷水处理下,全部材料抽穗期至成熟期干物质积累量及比例、群体生长率、净同化率、粒叶比、收获指数、叶面积指数、剑叶叶基角、剑叶和倒2叶与倒3叶披垂度均下降,但高效叶面积率增加。相关分析表明,冷水处理的相对结实率与收获指数(r=0.96**)、产量(r=0.91**)、粒叶比(r=0.84**)和干物质积累量(r=0.48**)的冷水反应指数(CRI)呈极显著正相关,与群体生长率(r=0.44*)、净同化率(r=0.44*)和干物质积累比例(r=0.43*)的CRI显著正相关。综上,孕穗期冷水胁迫对水稻干物质生产的影响在品种间存在很大差异,在冷水胁迫下耐冷性极强品种(系)干物质积累量及比例、群体生长率、净同化率、粒叶比和收获指数对冷水反应迟钝,这是耐冷性极强品种(系)保持较高产量的重要形态特征和生理原因。
关键词:寒地水稻; 产量; 相对结实率; 冷水胁迫; 干物质生产
温度是影响作物生长发育和产量的重要环境因素,在全球气候变暖的大趋势下,近年来气候变化异常,极端低温天气频繁出现,尤其寒地稻作区特殊的地理位置,冷害更加严重。水稻原产于热带亚热带地区,是喜温作物,对低温十分敏感,在水稻生长发育过程中,低温会导致生长迟缓、分蘖减少[1],在孕穗期若遇上低温冷害,枝梗及颖花分化不良,每穗粒数减少,结实率大幅下降,容易造成水稻减产,按平均计算,低温年的产量仅为正常年的50%~80%[2]。同时,温度变化直接影响光合产物[3]、呼吸作用及碳水化合物的运转[4],从而影响作物产量。因此,解析孕穗期冷水胁迫对水稻产量构成与干物质生产特性的影响, 对培育耐低温水稻品种以保障我国粮食高产稳产具有重要现实意义。目前对于水稻的耐冷性研究多集中于产量构成、冷害监测、生理机制、鉴定、代谢物图谱、基因等多方面[1, 5-9],且在低温逆境下关于水稻干物质生产特性的研究报道也主要集中在低温下叶面积、秧苗、叶片干质量和根干质量、籽粒干物质积累等[10-12]方面,而在北方寒地稻作区孕穗期低温胁迫下,以相对结实率进行耐冷性分级,并对各耐冷性级别干物质生产特性进行比较分析则鲜见报道。因此,本研究以当地主栽的30个粳稻品种和苗头品系为试验材料,在相同施肥和管理措施下,设置孕穗期平均17℃的冷水胁迫(20 d)处理,以常规栽培管理为对照,对产量及其构成因素、抽穗期干物质生产与冠层结构、水稻后期干物质生产与输出特征方面进行了系统的比较研究,以明确孕穗期冷水胁迫下寒地水稻相对结实率与干物质生产的关系,进而为寒地水稻高产、高效栽培提供理论和技术支撑。
1材料与方法
1.1试验材料
试验选用黑龙江省30个品种(系)作为供试材料,并于2013年和2014年在黑龙江省农垦科学院徐一戎水稻科技园区耐冷鉴定试验田进行。 试验地土壤为草甸白浆土,0~20 cm土层pH为6.2,含碱解氮105.28 mg/kg, 有效磷21.2 mg/kg,速效钾111.8 mg/kg,有机质38.35 g/kg(表1)。
1.2试验设计
试验采用随机区组设计,其中冷水处理采用恒温冷水灌溉法,7月1日品种(系)进入减数分裂期开始,于8:00-16:00用(17±1)℃冷水持续处理20 d,水深25 cm,同熟期材料均用隔水板分开,单排单灌,对照区不隔离。17℃左右的冷水为地下井水(出水口水温8.3℃左右)与晒水池中的水(2013年和2014年分别为22.4℃左右和23.0℃左右)混合形成,冷水处理期间每天6:00和17:30测量各冷水处理区水温(维持在16℃~18℃)。正常灌溉处理(CK):在冷水处理期间(2013年7月4日-8月14日和2014年7月1日—8月1日),室外昼、夜平均气温分别为17.50℃~27.69℃(2013年)和18.16℃~28.48℃(2014年)(图1),供试品种(系)未受到持续低温影响,可作为对照。
于4月12日播种,旱育中苗,每盘播芽谷100 g,5月20日插秧,移栽叶龄3.5 叶左右,插秧规格30 cm×12 cm,每穴4苗,每处理占地面积5.4 m2,3次重复,整个生育期均用正常水温灌溉。孕穗期耐冷性评价指标参照邹德堂等[13]的方法并加以改进,以相对结实率进行耐冷性分级:1级,结实率≥80%,耐冷性极强(HR);3级,80%>结实率≥60%,耐冷性强(R);5级:60%>结实率≥40%,耐冷性中等(M);7级:40%>结实率≥20%,耐冷性弱(S);9级:结实率<20%,耐冷性极弱(HS)。相对结实率(%)=处理区结实率/对照区结实率×100。施肥水平为mN∶mP2O5∶mK2O=2∶1∶1,尿素250 kg/hm2,N按m基∶m蘖∶m调∶m穗=4∶3∶1∶2比例施入,基肥在插秧前施入,分蘖肥在4.5~5.0叶施入,调节肥在倒5叶期施入,穗肥在倒2叶前期施入,磷酸二铵全部基施,氯化钾按m基∶m穗=1∶1比例施入。整个生育期水、病、虫、草正常管理。
1.3样品采集与测定
1.3.1叶面积和干物质积累
于抽穗期和蜡熟期进行取样分析,对每小区调查单位面积茎蘖数,算出每穴平均值,按照平均数每小区各取代表性植株3穴,3次重复,用于植株分析,方格法测定植株叶面积[14]。将以上所有样品于105℃下杀青30 min,80℃烘箱烘48 h至恒重,测定干物质质量。
表1供试水稻品种(系)耐冷性分级
Table 1. Grade of tolerance to chilling of rice cultivars used in this study.
耐冷性级别Gradeoftolerancetochilling品种(系)Variety(Line)相对结实率Relativeseed-settingrate/%20132014生育期Growthduration/d来源Origin极强HR龙粳25Longjing25 80.7880.38130黑龙江省农业科学院HLJAAS空育131Kongyu131 81.8482.02127黑龙江省农垦科学院HLJALRS东农428Dongnong428 85.2884.09133东北农业大学NAU强R龙粳26Longjing26 79.4179.92126黑龙江省农业科学院HLJAAS保糯1号Baonuo1 79.1978.28132^134黑龙江省农垦科学院HLJALRS龙稻8号Longdao8 78.0669.83135黑龙江省农业科学院HLJAAS垦稻10Kendao10 66.9166.50134^136黑龙江省农垦科学院HLJALRS东农427Dongnong427 79.4176.90135东北农业大学NAU中等M垦稻9号Kendao9 44.5744.03125黑龙江省农垦科学院HLJALRS垦稻19Kendao19 41.4741.06125黑龙江省农垦科学院HLJALRS垦稻20Kendao20 46.2641.25127黑龙江省农垦科学院HLJALRS龙粳29Longjing29 48.2847.48127黑龙江省农业科学院HLJAAS龙粳20Longjing20 53.1752.62125^130黑龙江省农业科学院HLJAAS龙粳31Longjing31 56.1755.20130黑龙江省农业科学院HLJAAS垦稻25Kendao25 46.5241.09132黑龙江省农垦科学院HLJALRS龙粳37Longjing37 54.7453.55125黑龙江省农业科学院HLJAAS龙粳21Longjing21 53.4849.89126^132黑龙江省农业科学院HLJAAS弱S龙粳36Longjing36 27.9826.83130黑龙江省农业科学院HLJAAS垦稻17Kendao17 28.1724.70127^129黑龙江省农垦科学院HLJALRS垦系017Kenxi017 28.2827.89133黑龙江省农垦科学院HLJALRS垦粳2号Kenjing2 33.6333.69133黑龙江八一农垦大学HLJBYAU垦稻12Kendao12 37.0933.85130^132黑龙江省农垦科学院HLJALRS垦稻23Kendao23 39.0037.51132黑龙江省农垦科学院HLJALRS垦粳5号Kenjing5 30.0625.61134黑龙江八一农垦大学HLJBYAU龙稻12Longdao12 36.0134.46134黑龙江省农业科学院HLJAAS龙粳27Longjing27 33.1131.98127黑龙江省农业科学院HLJAAS极弱HS垦稻26Kendao26 19.6518.04126黑龙江省农垦科学院HLJALRS垦糯1号Kennuo1 14.4614.18132^134黑龙江省农垦科学院HLJALRS龙稻10Longdao10 12.1111.44135黑龙江省农业科学院HLJAAS垦鉴稻6号Kenjiandao6 8.277.98127^129黑龙江省农垦科学院HLJALRS
HLJAAS, Heilongjiang Academy of Agricultural Sciences; HLJALRS, Heilongjing Academy of Land Reclamation Sciences; NAU, Northeast Agriclutural University; HLJBYAU, Heilongjiang Bayi Agriclutural University. HR, Highly resistant; R, Resistant; M, Moderately resistant; S, Sensitive; HS, Highly sensitive.
DAT2013, Day average temperature in 2013; DAT2014, Day average temperature in 2014; NAT2013, Night average temperature in 2013; NAT2014, Night average temperature in 2014.
图1黑龙江佳木斯7月1日至8月4日的气温变化(2013和2014年)
Fig.1. Changes in air temperature from July 1 to August 4 in Jiamusi, Heilongjiang Province (2013 and 2014).
1.3.2水稻的产量及其构成要素
每小区调查1m2收获穗数,选择有代表性的植株,根据平均值每小区取3穴,3次重复,调查每穴粒数、粒重、结实率、千粒重等指标,由产量构成因素计算理论产量。
1.3.3株型性状
于抽穗期取30株分别测定上3叶叶基角(叶片基部的延长线与茎秆延长线的夹角)及叶开角(叶枕至叶尖的连线与茎秆的夹角)。计算披垂度(叶开角-叶基角)。
1.4数据计算和统计分析
茎鞘物质输出率(%)=(抽穗期茎鞘干物质质量-成熟期茎鞘干物质质量)/抽穗期茎鞘干物质质量×100;茎鞘物质转化率(%)=(抽穗期茎鞘干物质质量-成熟期茎鞘干物质质量)/成熟期籽粒干物质质量×100;高效叶面积率(%)=(上3叶叶面积/全叶面积)×100;粒叶比(粒·cm-2)=总实粒数/抽穗期叶面积;群体生长率(g·m-2d-1)=(W2-Wl)/(t2-t1), 式中,W1和W2为前后两次测定的干物质质量,t1和t2为前后两次测定的时间(d);净同化率(g·m-2d-1)=[(ln LAI2-ln LAI1)/(LAI2-LAI1)]×[(W2-W1)/(t2-t1)] ,式中,LAI1和LAI2为前后两次测定的叶面积指数,t1和t2为前后两次测定的时间,W1和W2为前后两次测定的干物质质量;叶面积衰减率(d-1)=(LAI2-LAI1)/(t2-t1),式中LAI1和LAI2为前后两次测定的叶面积指数,t1和t2为前后两次测定的时间(d);冷水反应指数(CRI)=(冷水胁迫下性状值/自然条件下性状值)×100%。2年数据趋势基本一致,文中数据以2014年为例。
使用 Microsoft Excel 2003 整理数据和作图,采用 DPS 7.05数据处理系统,进行显著性测定和相关分析。
2结果与分析
2.1冷水胁迫下水稻产量、产量构成及分类
以相对结实率(表1)对30份水稻材料进行孕穗期耐冷性分级。材料间相对结实率差异较大,变幅为7.98%~84.09%,变异系数为49.78%,其中5和7级材料最多,均为9份,均占总材料的30%;1级材料包括龙粳25、空育131和东农428,仅占总材料的10%;3级材料为5份,占总材料的17%;垦鉴稻6号等4个材料为9级。
表2表明,冷水处理下,所有材料每穴实粒数、结实率、千粒重和每穴产量均下降,但1、3、5、7和9级材料的每穴实粒数、结实率、千粒重和每穴产量变化存在差异;每穴实粒数、结实率和每穴产量表现为HR>R>M>S>HS,而千粒重表现为R>HR>M>S>HS;其中1、3、5、7和9级处理的结实率和每穴产量与对照间差异均达极显著水平,每穴实粒数与对照间差异达极显著或显著水平。从CRI值可知,每穴实粒数、结实率、千粒重和每穴产量CRI值表现为HR>R>M>S>HS,且每穴实粒数、结实率和每穴产量CRI值均小于千粒重CRI值。说明孕穗期冷水胁迫下,材料耐冷性越弱,每穴实粒数、结实率、千粒重和每穴产量变化越大,每穴实粒数、结实率和每穴产量比千粒重对冷水胁迫越敏感。
2.2 冷水胁迫下不同基因型水稻抽穗期干物质生产与冠层结构的差异
表3表明,冷水处理材料的粒叶比、上3叶和全叶叶面积指数均下降,而高效叶面积率增加,但1、3、5、7和9级材料的粒叶比、高效叶面积率、上3叶和全叶叶面积指数变化不同;粒叶比表现为HR>R>M>S>HS,而1、3、5、7和9级材料高效叶面积率、上3叶和全叶叶面积指数规律不明显;其中,3、5、7和9级材料处理的粒叶比,3、5和7级材料处理的高效叶面积率,1、5和7级材料处理的全叶叶面积指数与对照差异达显著或极显著水平。从CRI值可以看出,粒叶比CRI 值表现为HR>R>M>S>HS;全叶叶面积指数CRI值均小于90%,高效叶面积率CRI值均大于110%,而上3叶叶面积指数CRI值为93.51%~99.56%。说明材料耐冷性越弱,粒叶比对孕穗期冷水胁迫越敏感;冷水胁迫下,全叶叶面积指数和高效叶面积率的变化大于上3叶叶面积指数。
从表4可知,冷水处理材料的剑叶叶基角与剑叶、倒2和倒3叶披垂度减小,而倒2、3叶叶基角变化不稳定,但1、3、5、7和9级材料的剑叶、倒2叶、倒3叶叶基角和披垂度变化不同;剑叶叶基角和倒3叶披垂度表现为HR>R>M>S>HS,倒2叶叶基角和剑叶披垂度表现为HR>S>R>M>HS,倒2叶披垂度表现为HR>M>R>S>HS。从CRI值可以看出,9级材料剑叶、倒2、倒3叶披垂度CRI值均小于1级和3级材料,7级材料剑叶叶基角与倒2和倒3叶披垂度CRI值均小于1级和3级材料。说明在冷水处理条件下,耐冷性弱和极弱的品种(系)剑叶和倒3叶叶基角略有减小,上3叶披垂度减幅大,叶片挺立。
表2冷水灌溉处理与正常水温灌溉处理水稻产量及其构成因素比较
Table 2. Comparison of grain yield and its components of rice under cold water irrigation and normal water temperature treatment.
耐冷性级别Gradeoftolerancetochilling处理Treatment每穴实粒数FGNH千粒重1000-GW/g结实率SSR/%每穴产量YPH/gHRLT849.28±62.27b23.91±1.63a76.62±0.79bB21.42±1.61bBCK1160.00±95.45a26.11±1.13a93.26±0.48aA32.30±1.74aACRI/%73.3291.5682.1666.18RLT684.97±66.49bB24.49±0.73b69.30±2.78bB17.55±1.77bBCK1273.63±61.41aA27.02±0.40a93.23±0.83aA35.08±1.46aACRI/%54.5790.6074.2950.48MLT499.96±27.28bB23.74±0.43bB43.65±1.75bB12.46±0.69bBCK1171.65±44.69aA27.42±0.56aA92.22±0.83aA32.46±1.28aACRI/%42.6786.6947.3538.41SLT283.23±32.77bB22.27±0.59bB28.05±1.59bB6.58±0.71bBCK1192.61±74.08aA27.15±0.45aA91.07±1.12aA32.77±1.60aACRI/%23.9281.9630.7320.27HSLT181.42±64.69bB21.59±0.66bB11.46±1.76bB3.89±1.40bBCK1325.42±78.55aA26.37±0.53aA89.37±1.50aA35.46±1.76aACRI/%12.9981.8712.9110.48
数据后跟不同大小写字母分别表示在1%和5%水平上差异显著(新复极差法,HR、R、M、S、HS的n=3、5、9、9和4)。LT-冷水处理; CK-对照,正常水温处理; FGNH-每穴实粒数; 1000-GW-千粒重; SSR-结实率;YPH-每穴产量; CRI-冷水反应指数。下同。
Values followed by different letters are significantly different at 5% (lowercase) and 1% (uppercase) levels, respectively (by Duncan’s test,n=3,5,9,9,4). LT, Cold water irrigation; CK, Normal water temperature; FGNH, Filled grain number per hill; 1000-GW, 1000-grain weight; SSR, Seed-setting rate; YPH, Yield per hill; CRI, Cold water response index. The same as below.
表3 冷水灌溉处理与正常水温灌溉处理水稻粒叶比、叶面积指数和叶面积率的比较
Table 3. Difference in grain-leaf ratio, leaf area index and ratio of leaf area under cold water irrigation and normal water temperature treatment.
耐冷性级别Gradeoftolerancetochilling处理Treatment上3叶叶面积指数LAITTL全叶叶面积指数LAIAL高效叶面积率RLATTL/%粒叶比GLR/(grain·cm-2)HRLT3.37±0.11a3.74±0.25b91.13±3.33a0.58±0.05aCK3.59±0.08a4.44±0.28a82.07±7.18a0.72±0.05aCRI/%93.9484.18112.1981.17RLT3.44±0.23a3.75±0.15a90.89±3.20a0.50±0.05bCK3.50±0.11a4.77±0.32a75.49±5.73b0.76±0.09aCRI/%99.3980.37122.1968.68MLT3.33±0.07a3.68±0.10b91.06±1.70aA0.38±0.03bBCK3.40±0.17a4.22±0.23a81.39±2.11bB0.80±0.05aACRI/%99.5688.63112.1649.12SLT3.37±0.06a3.75±0.07bB91.14±1.15aA0.21±0.03bBCK3.48±0.12a4.36±0.16aA79.90±1.20bB0.77±0.04aACRI/%97.5986.62114.2127.47HSLT3.41±0.17a3.83±0.18a89.48±0.90a0.12±0.04bBCK3.71±0.32a4.67±0.47a81.87±3.99a0.83±0.07aACRI/%93.5184.0111014.94
LAITTL, Leaf area index of top three leaves; LAIAL, Leaf area index of all leaves; RLATTL, Ratio of leaf area of top three leaves; GLR, Grain-leaf ratio. The same as below.
表4冷水灌溉处理与正常水温灌溉处理水稻上3叶受光姿态比较
Table 4. Comparison of basic angle, drooping angle of top three leaves in rice under cold water irrigation and normal water temperature treatment.
性状 Trait 处理TreatmentHRRMSHS剑叶叶基角D1LBA/°LT34.58±7.98a31.25±6.55a29.31±5.19a29.22±3.13a18.81±7.33aCK36.75±7.88a32.55±2.34a33.22±4.62a34.33±4.81a19.81±4.84aCRI/%94.1096.0188.2385.1294.95倒2叶叶基角D2LBA/°LT26.75±1.28a21.20±1.91a18.47±1.70a20.53±1.83b17.38±3.23aCK21.08±0.74b20.50±3.42a18.72±1.08a24.36±2.07a16.94±1.35aCRI/%126.90103.4198.6684.28102.60倒3叶叶基角D3LBA/°LT27.64±2.36a27.60±1.66a24.25±1.70a25.42±1.71a22.25±4.36aCK28.17±1.60a25.70±2.05a25.03±1.39a28.58±1.62a25.50±1.49aCRI/%98.12107.3996.8888.9487.25剑叶披垂度D1DA/°LT16.67±7.48a10.95±4.89a10.25±2.97a11.00±2.23a6.40±1.85aCK26.17±9.34a18.45±3.41a12.25±2.91a13.75±2.49a14.30±3.58aCRI/%63.7059.3583.6780.0044.76倒2叶披垂度D2DA/°LT13.33±1.34a9.20±2.00a10.61±1.64a9.14±1.28b6.50±2.46aCK17.92±5.68a14.80±3.23a16.97±3.73a18.67±3.48a12.44±3.14aCRI/%74.3962.1662.5248.9652.25倒3叶披垂度D3DA/°LT16.28±3.64a14.95±4.00a13.36±1.43a12.06±2.46a8.63±1.55bCK16.50±0.88a15.90±2.60a18.69±3.47a22.78±4.27a18.38±1.22aCRI/%98.6794.0371.4852.9446.95
D1LBA, Basic angle of flag leaf; D2LBA, Basic angle of second leaf from top; D3LBA, Basic angle of third leaf from top; D1DA, Drooping angle of flag leaf; D2DA, Drooping angle of second leaf from top; D3DA, Drooping angle of third leaf from top.
2.3冷水胁迫下,不同基因型水稻后期干物质生产与输出特征的差异
表5表明,冷水处理的材料生育后期(抽穗至成熟期)干物质积累量、干物质积累量比例、群体生长率、净同化率、叶面积衰减率和收获指数均下降,干物质积累量、干物质积累比例、净同化率和收获指数表现为HR>R>M>S>HS,群体生长率表现为HR>R>M>HS>S。其中5级和7级材料生育后期干物质积累量、干物质积累量比例、群体生长率、净同化率和收获指数与对照间差异极显著,9级材料干物质积累量占生物产量的比例、群体生长率和净同化率与对照间差异显著。从CRI值可以看出,除叶面积衰减率以外,其他干物质生产特性CRI值表现为HR>R>M>S>HS。可见,冷水处理下,耐冷性越弱的品种(系)抽穗至成熟期干物质积累量、干物质积累比例、群体生长率、净同化率和收获指数变化越大。抽穗前茎鞘所储藏的光合产物向穗部输出与转换特性直接影响着水稻产量形成。从图2可知,冷水处理的1、5、7和9级材料茎鞘物质输出率均下降,3级材料茎鞘物质输出率变化不大,其中7级和9级材料茎鞘物质输出率小于1,且5、7和9级材料均显著低于对照;冷水处理的1、3和5 级材料茎鞘物质转化率均增加,7和9 级材料茎鞘物质转化率小于1。因此,冷水处理下耐冷性弱和极弱的品种(系)成熟期茎鞘干物质量大于抽穗期,且茎鞘输出率和转化率更敏感。
2.4相关性分析
冷水处理下,与相对结实率组成的19对性状间有7对达极显著或显著相关(表6), 其中,相对结实率分别与收获指数(0.96**)、产量(0.91**)、粒叶比(0.84**)和抽穗到成熟期干物质积累量(0.48**)CRI值均呈极显著正相关;相对结实率分别与群体生长率(0.44*)、净同化率(0.44*)和干物质积累比例(0.43*)CRI值均呈显著正相关。说明在冷水胁迫下,收获指数、产量、粒叶比、抽穗到成熟期干物质积累量、干物质积累比例、群体生长率和净同化率CRI值对相对结实率影响较大,均是正向的。相对结实率分别与剑叶、倒2叶、倒3叶叶基角和披垂度正相关,与茎鞘物质输出率和转化率正相关,与叶面积衰减率呈负相关。冷水胁迫对耐冷性弱的品种(系)冠层结构和茎鞘物质转运的影响大于耐冷性强的品种(系)。
表5冷水灌溉处理与正常水温灌溉处理水稻抽穗后干物质生产的差异
Table 5. Difference in dry matter production in rice after heading under cold water irrigation and normal water temperature treatment.
性状与处理TraitandtreatmentHRRMSHS干物质积累量DAR/(g·m-2) LT409.97±41.27a307.44±61.55b279.98±20.05bB257.43±28.09bB255.24±67.34bB CK526.81±58.19a530.65±38.06a586.89±49.23aA573.56±49.77aA658.28±49.28aA CRI/%80.0959.0349.4347.6538.40干物质积累比例DMAR/% LT29.94±4.32a24.49±4.77b21.96±1.52bB19.57±2.13bB19.33±4.50b CK36.01±4.69a34.92±3.82a38.30±2.39aA36.19±2.55aA38.40±0.85a CRI/%84.9070.1258.1355.9150.36群体生长率CGR/(g·m-2d-1) LT7.92±0.42a6.54±0.99a5.76±0.44bB5.25±0.60bB5.26±1.42b CK9.72±0.85a11.17±1.35a10.58±0.81aA10.50±0.85aA12.49±1.21a CRI/%83.4163.3056.0152.9241.96净同化率NAR/(g·m-2d-1) LT2.95±0.17a2.40±0.34a2.19±0.17bB1.95±0.23bB1.94±0.56b CK3.35±0.19a3.44±0.30a3.57±0.25aA3.42±0.29aA3.77±0.34a CRI/%88.7171.9763.0659.3749.38叶面积衰减率DRLA/(d-1) LT0.037±0.01a0.042±0.00a0.038±0.00a0.038±0.00a0.039±0.00a CK0.050±0.01a0.056±0.01a0.041±0.01a0.042±0.00a0.044±0.01a CRI/%75.3478.4498.6893.9091.05收获指数HI LT0.48±3.17a0.44±2.75bB0.35±1.20bB0.25±1.25bB0.18±1.03bB CK0.55±1.39a0.55±1.18aA0.58±1.88aA0.55±1.32aA0.58±0.92aA CRI/%86.5479.7260.4646.1831.70
DAR, Dry matter accumulation; DMAR, Dry matter accumulation ratio after heading; CGR, Crop growth rate; NAR, Net assimilation rate; DRLA, Decreasing rate of leaf area; HI, Harvest index. The same as below.
ERMSS-茎鞘物质输出率; TRMSS-茎鞘物质转化率。下同。
ERMSS, Export rate of dry matter in stem-sheath; TRMSS, Translocation rate of dry matter in stem-sheath. The same as below.
图2 冷水灌溉处理与正常水温灌溉处理水稻的茎鞘物质输出率和茎鞘物质转化率
Fig. 2. Difference in export rate and translocation rate of dry matter in stem-sheath under cold water irrigation and normal water temperature treatment.
表6孕穗期冷水胁迫下相对结实率与产量、冠层结构和物质生产特性CRI的关系
Table 6. Correlation coefficients between relative seed setting rate(RSR) and cold water response indices of rice grain yield, canopy structure and dry matter production at booting stage under cold water irrigation.
指标IndexYPHD1LBAD2LBAD3LBAD1DAD2DAD3DALAITTLLAIALRLATTLRSR0.91**0.080.280.290.290.200.290.02-0.100.20指标IndexGLRERMSSTRMSSDARDMARCGRNARDRLAHIRSR0.84**0.030.250.48**0.43*0.44*0.44*-0.320.96**
*和**分别表示在0.05 和 0.01 水平上显著相关。RSR-相对结实率。
*and**mean significant correlation at 0.05 and 0.01 levels,respectively. RSR, Relative seed setting rate.
3讨论
众所周知,水稻的生长发育与气象条件密切相关,其中温度是最重要的影响因子之一[15,16]。 相关研究[17-22]表明,水稻孕穗期叶片光合作用和穗分化受气温影响较大,低温胁迫降低光合作用速率,而东北寒地稻区孕穗期冷水胁迫对群体光合生产能力和粒(重)叶比研究较少。叶面积、群体生长率、净同化率等都是表征群体光合生产能力的重要指标,在一定的范围内,作物的产量随叶面积指数的增大而提高。本研究设置孕穗期17℃冷水处理,抽穗期叶面积指数(CRI值小于90%)、粒叶比和光合速率降低,品种(系)间群体生长率和净同化率差异明显。相对结实率与群体生长率CRI值(r=0.44*)、净同化率CRI值(r=0.44*)和粒叶比CRI值(r=0.84*)均显著或极显著正相关,说明耐冷性弱的品种(系)抽穗至成熟期群体生长率、净同化率及抽穗期粒叶比对冷水胁迫更敏感,单位叶面积供给的物质量少,叶面积质量低,产量也低。
迄今为止,低温胁迫对小麦叶片结构和形态特征的研究报道较多,如叶片厚度、冠层结构、维管束、叶绿体和基粒片层,叶肉细胞的形态结构,叶脉的间距和横截面积[23-25];而对水稻叶片结构和形态特征研究报道较少,只有剑叶、倒2叶、倒3叶长和宽[26]方面的研究。笔者认为水稻孕穗期倒2、3叶的长和宽变化已经定型,冷水处理无本质影响,因此,试验仅对剑叶、倒2叶以及倒3叶的叶基角和披垂度进行了调查分析。其中,叶角是影响叶片空间态势的主要因子。本研究表明,冷水处理后剑叶叶基角与剑叶、倒2叶和倒3叶披垂度减小,这与赵国珍等[27]研究结果一致。我们还观察到,冷水处理后剑叶、倒2叶和倒3叶叶基角CRI值与相对结实率正相关,相关性大小为倒3叶叶基角>倒2叶叶基角>剑叶叶基角。究其原因,可能是因为在孕穗期冷水胁迫下,各叶位干物质分配受到影响而导致叶片叶基角发生变化。
水稻籽粒的产量一部分来自抽穗后的光合产物,另外一部分来自叶与茎鞘贮藏物质的再分配。前人研究[10-12]表明,秧苗期低温胁迫下,水稻秧苗随着生长时间的延长,不但没有干物质积累,其干质量反而下降;分蘖期低温处理也会降低单株的干物质累积量;孕穗期冷水灌溉持续时间越长籽粒干物质积累量降幅越大。然而,在东北寒地稻区关于孕穗期冷水胁迫对抽穗至成熟期干物质生产研究较少。我们发现,一方面,冷水处理后干物质生产特性存在明显差异,相对结实率与抽穗至成熟期干物质积累量CRI值(r=0.48**)及干物质积累比例CRI值(r=0.43*)分别呈极显著和显著正相关,说明耐冷性弱的品种(系)抽穗至成熟期干物质积累量及比例对冷水胁迫更敏感;另一方面,不同耐冷性品种(系)经冷水处理后,抽穗后的光合生产能力及茎鞘干物质的转化与输出对结实率的贡献不同,其中相对结实率与茎鞘物质输出率(r=0.03)和转化率(r=0.25)呈正相关,说明耐冷性弱的品种(系)抽穗至成熟期群体生长率、净同化率、抽穗期粒叶比、茎鞘物质输出率和转化率对冷水胁迫更敏感。
以上说明,在孕穗期冷水胁迫条件下,东北寒地水稻抽穗到成熟期干物质生产显著减少,同时改变了干物质在各器官的输出特征。籽粒产量受干物质生产的控制,干物质生产又取决于作物进行光合作用的潜在能力和颖花接受光合产物的能力。因此,关于东北寒地稻区孕穗期冷水胁迫对光合作用影响研究还有待于进一步深入。
参考文献:
[1]赵秀琴, 张婷, 王文生, 等. 水稻低温胁迫不同时间的代谢物谱图分析. 作物学报, 2013, 39(4): 720-726.
Zhao X Q, Zhang T, Wang W S, et al. Time-course metabolic profiling in rice under low temperature treatment.ActaAgronSin, 2013, 39(4): 720-726.(in Chinese with English abstract)
[2]程式华,李建.现代中国水稻.北京:金盾出版社,2007:94-96.
Cheng S H, Li J. Modern Chinese Rice. Beijing:Golden Shield Press, 2007, 94-96.(in Chinese)
[3]Zhang Y P, Xiang J, Chen H Z, et al. Physiological characterization of green turning of rice seedlings at different temperatures.AgricSci&Technol, 2015,16(7):1390-1394,1513. (in Chinese with English abstract)
[4]王艳春,王士强,赵海红.寒地水稻冷害减产原因与生理机制的研究进展.现代化农业,2009(9):7-8.
Wang Y C, Wang S Q, Zhao H H. Progress in research on the reason of yield reduce and the physiological mechanism of cold injury of rice in cold regions.ModAgric, 2009,(9):7-8. (in Chinese)
[5]张荣萍, 马均, 蔡光泽, 等.开花期低温胁迫对四川攀西稻区水稻开花结实的影响. 作物学报, 2012, 38(9):1734-1742.
Zhang R P, Ma Y, Cai G Z, et al. Effects of low temperature stress during flowering stage on flowering and seed setting of rice in Panxi Region, Sichuan Province.ActaAgronSin, 2012, 38(9):1734-1742. (in Chinese with English abstract)
[6]李健陵, 霍治国, 吴丽姬, 等. 孕穗期低温对水稻产量的影响及其生理机制. 中国水稻科学, 2014, 28(3): 277-288.
Li J L, Huo Z G, Wu L J, et al. Effects of low temperature on grain yield of rice and its physiological mechanism at the booting stage.ChinJRiceSci, 2014, 28(3): 277-288. (in Chinese with English abstract)
[7]李广旭, 陈华民, 吴茂森, 等.OsBTF3过量表达和RNAi转基因水稻抗盐和抗低温胁迫鉴定. 中国水稻科学, 2012, 26(1): 5-8.
Li G X, Chen H M, Wu R S. et al. Resistance to high salt and cold stress of transgenic rice seedings with over-expressed and RNAi-silencedOsBTF3.ChinJRiceSci, 2012, 26(1):5-8.(in Chinese with English abstract)
[8]周玲艳,姜大刚,李静,等.逆境处理下水稻叶角质层蜡质积累及其与蜡质合成相关基因OsGL1表达的关系.作物学报,2012,38(6):1115-1120.
Zhou L Y, Jiang D G, Li J, et al. Effect of stresses on leaf cuticular wax accumulation and its relationship to expression of OsGL1-Homologous genes in rice.ActaAgronSin, 2012, 38(6):1115-1120. (in Chinese with English abstract)
[9]谢勇武,杨树明,曾亚文,等.粳稻02428×02428c重组自交系孕穗期耐冷性QTL分析.中国水稻科学,2011,25(6):681-684.
Xie Y W, Yang S M, Zheng Y W, et al. QTL analysis of cold tolerance in japonica rice using reconbinant inbred lines from 02428×02428c at booting stage.ChinJRiceSci,2011, 25(6): 681-684. (in Chinese with English abstract)
[10]张金恩,李迎春,陆魁东,等.温度胁迫对早稻分蘖期生长和分蘖能力影响研究.第32届中国气象学会年会S15提升气象为农服务能力,保障农业提质增效.北京: 中国气象学会, 2015.
Zhang J N, Lin Y C, Lu K D, et al. Effect of temperature stress on growth and tillering ability of super hybrid early race at tillering stage. The 32nd Session of the Chinese Meteorological Society Annual Meeting S15 Improving the Capacity of Meteorological Service for the Agriculture, to Ensure Agricultural Quality Efficiency. Beijing: China Meteorological Society, 2015. (in Chinese with English abstract)
[11]周新桥,陈达刚,李丽君,等.秧苗期低温胁迫对华南主推双季水稻生长的影响.西南农业学报,2013,26(3):936-941.
Zhou X Q, Chen D G, Li L J, et al. Effects of chilling stress on growth of double cropping rice in south China at seeding stage.SouthwestChinaJAgricSci, 2013,26(3):936-941.(in Chinese with English abstract)
[12]贾琰,沈阳,邹德堂,等.孕穗期冷水灌溉对寒地粳稻籽粒灌浆及其氮素积累的影响.中国水稻科学,2015,29(3):259-272.
Jia Y, Shen Y, Zou D T, et al. Effect of cold-water irrigation at booting stage on grain filling an nitrogen accumulation of rice in cold-region.ChinJRiceSci, 2015, 29(3):259-272. (in Chinese with English abstract)
[13]邹德堂,刘化龙.寒地水稻耐冷性研究.北京:气象出版社,2013:22-23
Zou D T, Liu H L. Studies on rice cold tolerant and sensitive lines to low temperaturestress in cold area of northeastern China. Beijing: China Meteorological Press,2013: 22-23.(in Chinese)
[14]赵黎明,李明,郑殿峰,等.灌溉方式与种植密度对寒地水稻产量及光合物质生产特性的影响. 农业工程学报,2015,6(31):159-169.
Zhao L M, Li M, Zheng D F, et al. Effects of irrigation methods and rice planting densities on yield and photosynthetic characteristics of matter production in cold area.TranChinSociAgricEngin, 2015, 6(31):159-169. (in Chinese with English abstract)
[15]陈金,田云录,董文军,等.东北水稻生长发育和产量对夜间升温的响应.中国水稻科学,2013,27(1):84-90.
Chen J, Tian Y L, Dong W J, et al. Responses of rice growth and grain yeild to nighttime warming in northeast China.ChinJRiceSci, 2013, 27(1): 84-90. (in Chinese with English abstract)
[16]杨晓光,李茂松,霍治国.农业气象灾害及其减灾技术.北京:化学工业出版社,2010:43
Yang X G, Li M S, Huo Z G. Agrometeorological Disaster and Disaster Reduction Technology. Beijing: Chemical Industry Press, 2010: 43. (in Chinese)
[17]李健陵,霍治国,吴丽姬,等.孕穗期低温对水稻产量的影响及其生理机制.中国水稻科学,2014,28(3):277-288.
Li J L, Huo Z G, Wu L J, et al. Effects of low temperature on grain yield of rice and its physiological mechanism at the booting stage..ChinJRiceSci, 2014, 28(3): 277-288.(in Chinese with English abstract)
[18]孙擎,杨再强,高丽娜,等.低温对早稻幼穗分化期叶片生理特性的影响及其与产量的关系.中国生态农业学报,2014,22(11):1326-1333.
Sun Q, Yang Z Q, Gao L N, et al. Effect of low temperature stress on physiological characteristics of flag leaf and its relationship with grain yield during panicle primordium differentiation stage of early rice.ChinJEco-Agric, 2014, 22(11):1326-1333. (in Chinese with English abstract)
[19]刘涛,赵娟,孙婷,等.低温胁迫下水稻传统品种与现代品种不同的响应机制.分子植物育种,2015,13(2):269-275.
Liu T, Zhao J, Sun T, et al. The different response mechanisms of traditional and modern rice varieties under low temperature.MolPlantBreeding, 2015, 13(2):269-275. (in Chinese with English abstract)
[20]孙磊,陈国祥,吕川根,等.壳聚糖对低温处理下水稻剑叶光合特性的影响.南京师大学报:自然科学版,2010,33(4):75-79.
Sun L, Chen G X, Lü C G, et al. Effects of chitosan on photosyn thetic characteristics of flag leaf in rice under low temperature.JNanjingNorUniv:NatSciEd), 2010, 33(4):75-79. (in Chinese with English abstract)
[21]苗微,王国骄,马殿荣,等.辽宁省杂草稻幼苗对低温胁迫的生理响应.中国水稻科学,2011,25(6):639-644.
Miao W, Wang G J, Ma D R, et al. Physiological responses of weedy rice to cold stress at seedling stage in Liaoning Province, China.ChinJRiceSci, 2011, 25(6):639-644.(in Chinese with English abstract)
[22]张金恩,聂秋生,李迎春,等.颖花分化期低温处理对早稻叶片光合能力和产量的影响.中国农业气象,2014,35(4):410-416.
Zhang J E, Nie Q S, Li Y C, et al. Effects of low temperature stress on the photosynthetic capacity and yield components of early rice at the spikelet differentiation stage.ChinJAgrom, 2014, 35(4):410-416.(in Chinese with English abstract)
[23]苗芳, 张嵩午, 王长发, 等. 低温小麦种质叶片结构及某些生理特性. 应用生态学报,2006,17(3):408-412.
Miao F, Zhang S W, Wang C F, et al. Leaf structure and some physiologic characteristics of low temperature wheat germplasm.ChinJApplEcol, 2006,17(3):408-412.(in Chinese with English abstract)
[24]王树刚, 王振林, 王平, 等. 不同小麦品种对低温胁迫的反应及抗冻性评价. 生态学报, 2011, 31(4): 1064-1072.
Wang S G, Wang Z L, Wang P, et al. Evaluation of wheat freezing resistance based on the responses of the physiological indices to low temperature stress.ActaEcolSin. 2011, 31(4):1064-1072.(in Chinese with English abstract)
[25]徐海成, 尹燕枰, 蔡铁, 等. 冬小麦拔节期不同茎蘖对低温胁迫的反应及抗冻性评价. 应用生态学报,2013,24(8):2197-2204.
Xu H C, Yin Y P, Cai T, et al. Responses of winter wheat tillers at different positions to low temperature stress at stem elongation stage and their freezing resistance evaluation.ChinJApplEcol, 2013,24(8):2197-2204.(in Chinese with English abstract)
[26]刘凤艳.寒地早粳稻耐冷害农艺性状调查.农业灾害研究,2013,3(6):24-28.
Liu F Y. Investigation on cold tolerance agronomic traits of early japonica rice in cold region.JAgricCatastrophol, 2013, 3(6):24-28. (in Chinese with English abstract)
[27]赵国珍,Yang S J,Yea J D,等.冷水胁迫对云南粳稻育成品种农艺性状的影响.云南农业大学学报,2010,25(2):158-165.
Zhao G Z, Yang S J, Yea J D, et al. Effect of cold water irrigation on agronomic traits of improved japonica rice cultivars from Yunnan Province, China.JYunnanAgricUniv, 2010, 25(2):158-165. (in Chinese with English abstract)
Effects of Cold Stress During Booting Stage on Dry Matter Production of Rice in Cold Region
WANG Shi-qiang1,2,3, ZHAO Hai-hong4, XIAO Chang-liang3, ZHAO Li-ming3, GU Chun-mei3, NA Yong-guang3, XIE Bao-sheng3, CHENG Shi-hua1,2,*
(1College of Agronomy, Shenyang Agricultural University, Shenyang 110161, China;2State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China;3Rice Research Institute of Helongjiang Academy of Land Reclamation Sciences, Jiamusi 154007, China;4Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi 154007, China;
Abstract:To reveal the effects of chilling at the booting stage on rice dry matter production, 30 main rice cultivars (lines) in Heilongjiang Province were selected and subjected to chilling stress (17°C cold water irrigation) for 20 days. The results showed that the filled grain number per hill, seed setting rate, 1000-grain weight, and grain yield of all cultivars decreased under cold water irrigation at booting stage. The materials were classified as grades 1, 3, 5, 7 and 9 according to relative seed setting rate. Most of them belonged to grades 7 and 9, accounting for 30% of the total, while the fewest cultivars belonged to grade 1, occupying 10%. The cold water stress decreased dry matter accumulation from heading to maturity and its ratio, crop growth rate, net assimilation rate, filled grain number per square centimeter leaf area, harvest index, leaf area index, leaf basic angle of flag leaf, drooping angle of flag leaf, drooping angle of second leaf from top, drooping angle of third leaf from top. However, the cold water stress increased the ratio of leaf area of top three leaves. The correlation analysis results showed that the relative seed setting rate was significantly positively correlated with the cold water response indices(CRI) of harvest index after heading(r=0.96**), grain yield(r=0.91**),filled grain number per square centimeter leaf area(r=0.84**), and dry matter accumulation(r=0.48**); this rate was also positively correlated with the CRI of crop growth rate(r=0.44*), net assimilation rate(r=0.44*), and ratio of dry matter accumulation from heading to maturity(r=0.43*). In conclusion, the reduction of rice dry matter production under cold water stress during early grain filling largely varied with rice cultivar. The cold tolerant germplasm was insensitive to cold water stress in dry matter accumulation, ratio of dry matter accumulation from heading to maturity, crop growth rate, net assimilation, filled grain number per square centimeter leaf area, harvest index after heading, which might be attributed to its important morphological specificity and physiological mechanism in maintaining grain yield under cold water stress at the booting stage.
Key words:rice in cold area; yield; relative seed setting rate; cold water stress; dry matter production
DOI:10.16819/j.1001-7216.2016.5187
收稿日期:2015-12-18; 修改稿收到日期: 2016-04-04。
基金项目:公益性(农业)行业科研专项(201403002,201303102);国家科技支撑计划资助项目(2012BAD04B0102,2012BAD04B0105)。
*Corresponding author, E-mail: shcheng@mail.hz.zj.cn)
WANG Shiqiang, ZHAO Haihong, XIAO Changliang, et al. Effects of cold stress during booting stage on dry matter production of rice in cold region. Chin J Rice Sci, 2016, 30(3): 313-322.
中图分类号:Q948.112+.2:S511.01
文献标识码:A
文章编号:1001-7216(2016)03-0313-10
中国水稻科学(Chin J Rice Sci),2016,30(3):313-322
http://www.ricesci.cn