APP下载

中日水稻品种杂交后代的株型性状与产量和品质的关系

2016-06-17徐海宫彦龙夏原野杜志敏闫志强王华杰陈温福徐正进

中国水稻科学 2016年3期
关键词:株型品质水稻

徐海 宫彦龙 夏原野 杜志敏 闫志强 王华杰 陈温福 徐正进

(沈阳农业大学水稻研究所/农业部东北水稻生物学与遗传育种重点实验室/北方超级粳稻育种教育部重点实验室/辽宁省北方粳稻遗传育种重点实验室,沈阳 110866; *通讯联系人, E-mail:xuzhengjin@126.com)

中日水稻品种杂交后代的株型性状与产量和品质的关系

徐海宫彦龙夏原野杜志敏闫志强王华杰陈温福徐正进*

(沈阳农业大学水稻研究所/农业部东北水稻生物学与遗传育种重点实验室/北方超级粳稻育种教育部重点实验室/辽宁省北方粳稻遗传育种重点实验室,沈阳 110866;*通讯联系人, E-mail:xuzhengjin@126.com)

徐海, 宫彦龙, 夏原野, 等. 中日水稻品种杂交后代的株型性状与产量和品质的关系. 中国水稻科学, 2016, 30(3): 283-290.

摘要:以东北地区最具代表性的水稻品种辽粳5号(直立穗型)与日本著名的优质米品种秋田小町(弯曲穗型)杂交后采用单粒传法构建的F9重组自交系群体(以下简称RIL群体)为试材,研究中日水稻品种杂交后代株型性状的变化规律及其与稻米产量和品质的关系,结果表明,来自中日水稻杂交的RIL群体的株型性状、产量和米质性状均发生了分离和重组。株高、倒3、4节长和剑叶基角与产量呈显著正相关。植株越高、颈穗弯曲程度越大、倒3叶越窄长的株系,稻米的加工品质和外观品质越好。食味值与绝大多数株型性状的相关性未达显著水平,仅与倒3片叶的宽、二次枝梗数、着粒密度呈极显著负相关。产量与米质的相关分析表明,产量越高,整精米率就越高,但食味越差。中日水稻品种杂交后代的株型性状与产量和米质性状密切相关。尽管产量与食味很难统一,但RIL群体中仍然有极小部分产量高食味也好的株系,它们的主要株型特征是具有较长的穗长和较长的倒1节间长。

关键词:水稻; 株型; 产量; 品质

随着人民生活水平的提高,优质稻米的市场需求逐年扩大,培育既高产又优质的水稻新品种是育种者追求的目标。株型育种在水稻新品种选育中具有重要地位,理想株型与杂种优势利用相结合是水稻超高产育种的必由之路[1-4]。株型与稻米产量和品质具有密切关系。前人在株型与光能利用[5-6]、株型与产量和米质[7-10]、株型与生态环境的关系等[11-15]方面有系统、深入的研究。近年来,随着分子生物学的迅速发展,在株型、产量和米质等性状的基因定位与克隆[16-21]方面也取得了重要进展。在辽宁稻区的育种实践中,高产品种的株型特征是以辽粳5号、沈农265等为代表的直立穗型品种,主要特点是株型紧凑、穗型直立、叶片较宽且挺直、耐肥抗倒,产量潜力高但稻米品质相对较差;优质稻米品种的株型特征是以引进的日本品种秋田小町、丰锦等为代表的弯曲穗型品种,主要特点是株型披散、穗型弯垂、叶片狭长、不耐肥抗倒,产量水平偏低,但稻米品质极好。由此,众多的育种者都考虑并尝试过以东北稻区主栽的直立穗型粳稻品种与日本的弯曲穗型优质米品种杂交,从后代中选育高产优质相结合的粳稻新品种。但迄今,对这两种株型迥异的品种杂交后代的株型性状与产量和稻米品质间的关系尚缺乏系统的研究。笔者在前文曾以这两类株型的代表性品种辽粳5号与秋田小町杂交后代构建的重组自交系群体为试材,对中日水稻品种杂交后代株型性状的变化及其相互关系作了初步研究[22]。本研究在此基础上进一步调查了产量性状和米质性状,结合株型性状,分析后代中株型性状与稻米产量和品质性状的关系,希望为北方粳稻株型改良和高产优质相结合的粳稻新品种选育提供一定的理论依据。

1材料与方法

1.1材料处理

以辽粳5号与秋田小町杂交后代单粒传法构建的F9代RIL群体为试材,共192个株系,于2013年种植于沈阳农业大学水稻研究所试验田。4月18日播种,5月24日移栽。每个株系种植3行,每行10株,株距13.3 cm,行距30 cm。基肥施尿素10 kg/667m2,磷酸二铵10 kg/667m2,氯化钾5 kg/667m2,返青后追施尿素10 kg/667m2。其他田间管理措施同当地生产田一致。

1.2测定项目与方法

齐穗后15 d调查RIL群体各株系的株型性状。每个株系取5株长势中等的植株,每株剪取2个长势中等的单茎,按徐正进等[5]的方法测量颈穗弯曲度(剑叶叶枕到穗尖的连线与茎秆的夹角)和剑叶、倒2叶、倒3叶的叶基角、叶长、叶宽。成熟后每个株系取长势中等的5株,风干后考种,余下的25株全部收割脱粒后测产并留测米质。考种方法如下:首先调查5株样本的株高、节间长、穗重、生物产量、经济系数,再调查5株的所有穗的一次枝梗数,按一次枝梗数的众数取其中10穗分别考查穗长、一次和二次枝梗数、一次和二次枝梗实粒数、秕粒数,分别计算一次和二次枝梗结实率、总结实率、千粒重、着粒密度、穗型指数(二次枝梗粒数最多的一次枝梗所在穗轴节位与一次枝梗数之比)[7,15]等。

稻米品质的测定依照国家标准《GB/T17891-1999优质稻谷》进行。利用日本YAMAMOTO公司生产的FC2K型糙米机和VP-32型精米机碾磨测定加工品质, SHIZUOKA公司生产的ES-1000大米外观品质判别仪测定外观品质,静冈制机株式会社生产的QS-4000型高精度近红外线食味分析仪测定营养品质和食味品质。

数据采用Excel 2007软件进行统计,分析株型性状、产量性状、米质性状的变化规律及其相互关系。

2结果与分析

2.1中日水稻品种杂交后代产量与品质性状的变化

无论产量性状,还是米质性状,在中日水稻品种杂交后的RIL群体中均发生了明显的分离和重组,符合多基因控制的数量性状的遗传特点,并且出现了许多具有超亲性状的株系(表1、表2)。

2.2中日水稻品种杂交后代株型性状与产量性状间的关系

穗数与株高、倒3节长、倒4节长呈极显著正相关,即株高越高,倒3、4节间越长,穗数越多(表3)。穗数与剑叶基角和倒2叶基角呈极显著或显著正相关,与剑叶宽、倒2叶宽、倒3叶宽呈显著负相关,即叶基角越大,叶片越窄的株系,穗数越多。每穗粒数与株高、倒1节长、倒2节长呈极显著或显著负相关,与颈穗弯曲度、剑叶基角、倒3叶的叶长呈极显著负相关,与倒3片叶叶宽呈极显著正相关,即植株偏矮、穗和剑叶偏直立、叶片偏短宽的株系,穗粒数较多。结实率、千粒重、生物产量与株高、节间长、倒3片叶长呈显著至极显著的正相关,经济系数与株高、节间长、倒3片叶长呈显著或极显著负相关,即株高越高、叶片越偏长的株系有较高的结实率、较高的千粒重、较高的生物产量和较低的经济系数。产量与株高和倒3、4节间长、剑叶基角呈极显著至显著的正相关,即株高越高,剑叶基角越大,产量相对越高。

表1中日水稻品种杂交后代产量性状的变化

Table 1. Difference in yield traits for the RIL population of cross between Chinese rice variety and Japanese rice variety.

性状Trait最大值MAX最小值MIN平均值Mean标准差SD变异系数CV/%辽粳5号Liaojing5秋田小町AkitaKomachi穗数PN19.006.0010.512.0919.8712.409.00每穗粒数GPP200.0084.80133.2019.9014.94131.60113.40结实率SSR/%98.7762.0392.555.465.9080.4393.02千粒重TGW/g28.9021.5624.651.365.5123.4623.76经济系数HI0.630.350.530.048.040.570.52单株生物产量BM/g91.8533.7457.2611.2019.5566.2341.93理论产量Y/(kg·667m-2)789.96300.25512.8097.2318.96560.20370.67

PN, Panicle number; GPP, Grain number per panicle; SSR, Seed-setting rate; TGW, Thousand-grain weight; HI, Harvest index; BM, Biomass per plant; Y, Theoretical yield. The same as below.

表2中日水稻品种杂交后代品质性状的变化

Table 2. Difference in quality traits for the RIL population of cross between Chinese rice variety and Japanese rice variety.

性状Trait最大值MAX最小值MIN平均值Mean标准差SD变异系数CV/%辽粳5号Liaojing5秋田小町AkitaKomachi糙米率BR/%86.0758.4577.562.873.7076.4079.69精米率MR/%76.6251.2369.453.424.9368.2372.01整精米率HR/%71.0845.9162.224.597.3858.6867.40蛋白质含量PC/%9.106.208.040.465.697.908.00直链淀粉含量AC/%18.6015.3017.670.673.7718.2016.80白度值WD44.1032.6039.172.195.6037.9038.50垩白粒率CR/%49.300.908.587.8291.1210.302.20垩白度CD28.500.404.754.4794.105.401.30食味EQ90.3050.1467.057.1710.6960.7383.55

BR, Brown rice rate; MR, Milled rice rate; HR, Head milled rice rate; PC, Protein content; AC, Amylose content; WD, Whiteness degree; CR, Chalk rice rate; CD, Chalkiness degree; EQ, Eating quality.

表3中日水稻品种杂交后代株型性状与产量性状间的关系

Table 3. Relation between plant type and yield traits in the RIL population of cross between Chinese rice variety and Japanese rice variety.

性状Trait穗数PN穗粒数GPP结实率SSR千粒重TGW经济系数HI单株生物产量BM理论产量Y株高PH0.189**-0.196**0.214**0.354**-0.587**0.470**0.243**倒1节间长TNL1-0.020-0.237**0.283**0.307**-0.408**0.242**0.080倒2节间长TNL2-0.069-0.155*0.246**0.398**-0.460**0.251**0.068倒3节间长TNL30.314**-0.0990.0450.168*-0.363**0.403**0.270**倒4节间长TNL40.271**-0.067-0.032-0.006-0.182*0.237**0.170*颈穗弯曲度PC0.094-0.232**0.1390.171*-0.1210.1100.059剑叶基角FLA0.292**-0.161*0.142*0.0890.0110.183*0.187**倒2叶基角TLA20.158*-0.1170.1380.0870.167*0.0290.093倒3叶基角TLA30.033-0.0630.216**0.0950.072-0.0090.012剑叶长FLL0.021-0.196**0.1360.323**-0.438**0.257**0.084倒2叶长TLL20.008-0.197**0.1090.265**-0.505**0.232**0.028倒3叶长TLL30.071-0.182*0.158*0.208**-0.440**0.232**0.057剑叶宽TLW-0.173*0.348**-0.133-0.0940.182*-0.0470.035倒2叶宽TLW2-0.142*0.323**-0.096-0.1410.137-0.0310.029倒3叶宽TLW3-0.168*0.350**-0.125-0.1100.0880.0050.042

* 和**分别表示0.05 和0.01水平上显著相关.

* and**significant correlation at the 0.05 and 0.01 levels, respectively. PH, Plant height; TNL1, Top internode length; TNL2, Top second internode length; TNL3, Top third internode length; PC, Panicle curvature; FLA, Flag leaf angle; TLA2, Top second leaf angle; TLA3, Top third leaf angle; FLL, Flag leaf length; TLL2, Top second leaf length; TLL3, Top third leaf length; FLW, Flag leaf width; TLW2, Top second leaf width; TLW3, Top third leaf width. The same as below.

2.4中日水稻品种杂交后代穗部性状与稻米品质的关系

加工品质(糙米率、精米率、整精米率)和外观品质(白度值、垩白粒率、垩白度)与穗部性状关系密切,营养和食味品质(蛋白质含量、直链淀粉含量、食味)与穗部性状相关大多不显著(表4)。具体来说,穗子偏长的株系,加工品质和外观品质好,直链淀粉含量相对高;一次枝梗和二次枝梗数越多的株系,糙米率越低,外观品质越差;一次和二次枝梗结实率越高的株系,糙米率和精米率越高,外观品质越好;着粒密度越大,出米率越低,外观品质越差;穗型指数越大(二次枝梗粒数越偏向穗轴上部分布)的株系,外观品质越好;食味值仅与二次枝梗数和着粒密度呈极显著负相关,即二次枝梗数越多,着粒越密的株系,食味越差。

2.5中日水稻品种杂交后代株型性状与稻米品质性状间的关系

株高和节间长与加工品质呈显著或极显著正相关,与外观品质呈显著或极显著负相关,与营养食味品质大多相关未达显著水平,即株高偏高的株系,加工品质和外观品质较好。颈穗弯曲度与精米率呈极显著正相关,与垩白粒率和垩白度呈极显著负相关,与营养食味品质相关不显著,即穗弯曲程度越大,加工品质和外观品质越好(表5)。倒3片叶的长度与精米率、整精米率呈极显著正相关,与外观品质呈显著或极显著负相关,与直链淀粉含量呈极显著正相关,与蛋白质含量和食味值相关未达显著水平,即倒3叶越长的株系,加工品质和外观品质越好,直链淀粉含量越高,食味值不一定高。倒3片叶宽与食味值呈显著或极显著负相关,与垩白率和垩白度呈显著或极显著正相关,与加工品质相关大多不显著,即叶片越宽,外观品质越差,食味越差。

2.6中日水稻品种杂交后代产量性状与稻米品质的关系

穗数与整精米率呈显著正相关,与直链淀粉含量和白度值呈极显著或显著负相关,与食味值呈极显著负相关,即穗数越多的株系,整精米率越高,直链淀粉含量和白度值越低,食味越差(表6)。每穗粒数与糙米率、精米率、食味值呈显著或极显著负相关,与垩白粒率和垩白度呈极显著正相关,即每穗粒数越多的株系,外观品质越差,出米率越低,食味越差。结实率和千粒重与糙米率和精米率呈显著或极显著正相关,与垩白粒率、垩白度呈显著或极显著负相关,千粒重与食味值呈极显著正相关,结实率与食味值的相关未达显著水平,即结实率和千粒重较高的株系,出米率高,外观品质好,特别是千粒重大的株系,食味值高。白度值与结实率呈显著负相关,与千粒重呈极显著正相关。生物产量与整精米率呈极显著正相关,与外观品质呈显著或极显著负相关,与食味值呈极显著负相关,即生物产量越高的株系,整精米率越高,外观品质越好,但食味值越差。经济系数仅与外观品质呈极显著正相关。产量与整精米率呈极显著正相关,与白度值呈显著负相关,与食味值呈极显著负相关,即越是高产的株系,整精米率越高,白度越差,食味越差。

表4中日水稻品种杂交后代穗部性状与稻米品质的关系

Table 4. Relation between panicle traits and grain quality traits in the RIL population of cross between Chinese rice variety and Japanese rice variety.

性状Trait糙米率BR精米率MR整精米率HR蛋白质含量PC直链淀粉含量AC白度值WD垩白粒率CR垩白度CD食味EQ穗长PL0.179*0.228**0.263**-0.0460.174*-0.147*-0.420**-0.422**0.121一次枝梗数NPB-0.163*-0.0790.0780.0690.059-0.0820.198**0.208**-0.110二次枝梗数NSB-0.123-0.217**0.0070.120-0.017-0.0580.259**0.275**-0.193**一次枝梗结实率PBSSR0.148*0.145*0.084-0.045-0.005-0.026-0.014-0.029-0.016二次枝梗结实率SBSSR0.168*0.249**0.109-0.168*0.140-0.160*-0.400**-0.422**0.120着粒密度GD-0.213**-0.287**-0.1410.121-0.1210.0580.491**0.503**-0.219**穗型指数PTI-0.0300.0860.025-0.0390.157*-0.255**-0.372**-0.371**0.032

*和**分别表示0.05 和0.01水平上显著相关.

*and**significant correlation at the 0.05 and 0.01 levels, respectively. PL, Panicle length; NPB, Number of primary rachis branch; NSB, Number of secondary rachis branch; PBSSR, Seed setting rate of primary rachis branch, SBSSR, Seed setting rate of secondary rachis branch; GD, Grain density; PTI, Panicle type index. The same as below.

表5中日水稻品种杂交后代株型性状与稻米品质性状间的关系

Table 5. Relation between plant type and grain quality traits in the RIL population of cross between Chinese rice variety and Japanese rice variety.

性状Trait糙米率BR精米率MR整精米率HR蛋白质含量PC直链淀粉含量AC白度值WD垩白粒率CR垩白度CD食味EQ株高PH0.184*0.284**0.311**-0.0450.164-0.259**-0.448**-0.444**0.035倒1节间长TNL10.197**0.282**0.243**-0.1350.219**-0.150*-0.459**-0.464**0.135倒2节间长TNL20.0250.161*0.094-0.0470.133-0.133-0.364**-0.366**0.055倒3节间长TNL30.1410.216**0.249**-0.0020.046-0.208**-0.207**-0.199**-0.116倒4节间长TNL40.1020.0990.118-0.0200.039-0.138-0.038-0.030-0.071颈穗弯曲度PC0.0940.193**0.1400.0090.064-0.045-0.219**-0.230**0.115剑叶基角FLA0.1180.154*0.1170.042-0.147*-0.063-0.113-0.117-0.093倒2叶基角TLA20.153*0.160*0.0940.135-0.154*0.075-0.042-0.0450.009倒3叶基角TLA30.0300.065-0.001-0.0890.0850.029-0.051-0.0570.067剑叶长FLL0.1320.236**0.262**-0.0090.265**-0.126-0.402**-0.405**0.112倒2叶长TLL20.0670.189**0.206**-0.0400.237**-0.184*-0.437**-0.439**0.096倒3叶长TLL30.0810.160*0.180*-0.1150.260**-0.193**-0.390**-0.391**0.123剑叶宽TLW-0.126-0.087-0.1050.157*-0.024-0.0330.172*0.173*-0.208**倒2叶宽TLW2-0.113-0.123-0.1160.0400.072-0.0340.209**0.218**-0.191**倒3叶宽TLW3-0.146*-0.137-0.0930.0040.149*-0.0620.1400.148*-0.147*

表6中日水稻品种杂交后代产量性状与稻米品质的关系

Table 6. Relation between yield traits and grain quality traits in the RIL population of cross between Chinese rice variety and Japanese rice variety.

性状Trait糙米率BR精米率MR整精米率HR蛋白质含量PC直链淀粉含量AC白度值WD垩白粒率CR垩白度CD食味EQ穗数PN0.1080.0690.148*0.083-0.212**-0.148*0.0520.064-0.213**每穗粒数GPP-0.143*-0.196**0.0300.125-0.018-0.0610.292**0.306**-0.196**结实率SSR0.185**0.271**0.121-0.176*0.134-0.144*-0.371**-0.394**0.110千粒重TGW0.158*0.245**0.031-0.0620.171*0.187**-0.260**-0.284**0.208**经济系数HI0.086-0.035-0.0720.044-0.1550.384**0.457**0.449**0.003单株生物产量BM0.0710.1000.214**0.074-0.027-0.333**-0.189**-0.174*-0.257**理论产量Y0.1130.0880.192**0.093-0.097-0.180*-0.0050.007-0.265**

*和**分别表示0.05 和0.01水平上显著相关。

*and**mean significant correlation at the 0.05 and 0.01 levels, respectively.

图1中日水稻品种杂交后代产量和食味值的分布

Fig. 1. Frequency distribution of yield and eating quality(EQ) value in the RIL population of cross between Chinese rice variety and Japanese rice variety.

我们将食味值≥70划分为高食味值类型,食味值<70划分为低食味值类型;产量≥500 kg/667m2划分为高产类型,产量<500 kg/667m2划分为低产类型;以上述标准作为图1中横纵坐标轴的交叉点,绘制描述产量与食味值关系的散点图。如图1所示,绝大多数产量较高的株系,食味较差,仅有位于第I象限的极小部分株系产量高、食味值也高。这一小部分株系正是育种者寻找的高产与高食味值相结合的目标株系。

2.7高产高食味值类型株系的株型特征

既高产又有高食味值类型的株系在株型性状上是否具有明显的特征?为此,我们将RIL群体中的株系依图1中的标准划分为高产-高食味值类型、高产-低食味值类型、低产-高食味值类型、低产-低食味值类型,对每一个株型性状进行组间的差异显著性分析,比较这4类在株型性状上是否有显著差异。结果表明,高产高食味值类型的株系区别于其他3种类型的主要特征就是具有较长的穗长和较长的倒1节长,在其他株型性状上的差异未达显著水平(表7)。陈温福等[23]研究指出,在北方一季粳稻区获得11.5t/hm2以上籽粒产量的产量结构参数中适宜株高为100~110 cm。本研究中高产高食味类型株系的平均株高为117.15 cm,株高明显偏高,如氮肥施用过多或遇大雨强风天气这些高产高食味值类型的株系极易发生倒伏造成减产,因此在生产实践中对这一类型的株系必须适度稀植少肥。

表7不同产量与食味类型株系在株型性状上的差异

Table 7. Differences in plant type traits for different type lines with different yield and eating quality.

类别Types高产高食味型HYGE高产低食味型HYWE低产高食味型LYGE低产低食味型LYWE穗长PL/cm20.05a18.95b18.87b18.72b一次枝梗数NPB11.79a11.71ab11.25ab11.15b二次枝梗数NSB23.04ab24.21a21.46b22.79ab着粒密度GD/(粒·cm-1)6.78ab7.41a6.73b6.78ab穗型指数PTI0.38a0.39a0.39a0.41a株高PH/cm117.15a115.54ab111.18bc109.51c倒1节间长TNL1/cm36.19a33.56b33.46b32.99b倒2节间长TNL2/cm22.26a21.36ab21.12ab21.03b倒3节间长TNL3/cm22.21a22.47a20.65b20.67b倒4节间长TNL4/cm13.29ab14.12a11.76b12.21b颈穗弯曲度PC/°60.95a56.81a58.79a56.16a剑叶基角FLA/°21.90a24.12a20.27a21.57a倒2叶基角TLA2/°18.55a20.70a18.32a18.30a倒3叶基角TLA3/°22.48a23.98a24.81a22.64a剑叶长FLL/cm31.93a29.99ab29.48ab29.05b倒2叶长TLL2/cm42.56a40.31ab40.22ab39.60b倒3叶长TLL3/cm44.97a46.12ab42.68ab42.13b剑叶宽FLW/cm1.42a1.50a1.43a1.48a倒2叶宽FLW2/cm1.23a1.30a1.23a1.29a倒3叶宽FLW3/cm1.09a1.13a1.09a1.12a

HYGE, High yield with good eating quality; HYWE, High yield with bad eating quality; LYGE, Low yield with good eating quality; LYWE, Low yield with bad eating quality.

3 讨论

3.1中日水稻品种杂交后代株型性状与产量性状的关系

据不完全统计,60年来因直接和间接利用国外引入水稻种质而增产的稻谷超过773亿kg,一大批国外引进种质已成为不同时期我国高产、优质和多抗水稻育种的骨干亲本[24]。日本粳稻品质优良,是南北方粳稻在优质化育种上的首选亲本[25,26]。从日本引进的优质米品种秋田小町和我国东北地区曾经的主栽品种辽粳5号具有迥然不同的株型,而且二者在产量和米质性状上具有互补性。本研究结果表明,中日水稻品种杂交后代的株型与产量性状关系密切,株高、叶长、叶宽、穗长等与每穗粒数、结实率、千粒重等产量构成因素具有不同显著程度的相关性,但与最终产量的相关性大多未达显著水平,株型性状中仅有株高、倒3、4节长和剑叶基角与产量显著或极显著正相关。说明产量构成因素多且复杂,相辅相成又互相制约,单纯靠改良某一个株型性状很难提高产量。株型育种的方向也不能一成不变,应随育种实践的发展而相应调整。例如矮化育种阶段株高的降低使品种的耐肥抗倒性和适于密植性显著增强,水稻单产因此出现一次较大的飞跃,但在目前矮秆高产水稻品种的经济系数已达到0.5 ~ 0.6的情况下,进一步提高产量潜力,必须依赖于生物产量的提高或生物产量与经济系数的进一步优化组配,适当地增加株高[3]。

3.2中日水稻品种杂交后代株型性状与稻米品质的关系

品质的形成既是光合产物生产的过程,同时也是光合产物运转与分配的过程。株型性状与稻米品质同受水稻遗传基因表达与调控,这两大性状体系间必然存在联系[27]。Hao等[28]研究表明米质较优的北方杂交粳稻的株型特征为剑叶、倒2叶较宽,倒3叶较短且窄,株高偏矮,秆长较短,穗子较长,穗数较多且单穗重较轻。张子军等[29]研究认为寒地早粳稻的理想品质株型模式特征为茎秆粗壮,穗下节间较长,倒2叶长宽比适宜,叶面积不能过大,剑叶长而窄,叶基角小,倒3叶宽较大,单穗重较小,着粒密度适中,二次枝梗结实率高。就本研究的RIL群体而言,大多数株型性状与米质性状具有显著的相关性,植株偏高、颈穗弯曲程度大、倒3叶偏窄长的株系,稻米的加工品质和外观品质均较好。但食味值与绝大多数株型性状的相关性未达显著水平,仅与倒3叶叶宽呈极显著负相关,即叶片越宽,食味品质越差。叶片的宽度在田间极容易鉴别,为改良食味,在中日水稻品种杂交后代中应该尽量避免选择叶片较宽的株系。

3.3中日水稻品种杂交后代稻米产量与品质性状的关系

稻米品质主要受基因型(遗传)与栽培环境的影响,其中,遗传因素影响较大[30-32]。关于水稻品质与产量的关系研究较多,大多数学者认为,水稻品质与产量存在着负相关性,在高产和超高产水平上,要实现产量与品质同步提高难度较大[28,33]。本研究结果表明高产与某些优质性状并不矛盾,例如产量与加工品质中的整精米率呈极显著正相关,原因是产量较高的株系籽粒发育相对完善,充实度高,整精米率相应提高。产量与外观品质中的垩白粒率和垩白度相关不显著,仅与白度值呈显著负相关。但产量与食味品质却很难统一,产量与食味值极显著负相关,即产量越高,食味越差。再具体分析,在产量构成的四要素中无论穗数还是每穗粒数的提高,均显著降低食味,只有千粒重的提高有利于改善食味,而结实率与食味相关不显著。尽管产量与食味值很难统一,但中日水稻品种杂交RIL群体中仍然有极小部分高产高食味值的株系,高产高食味类型株系的主要株型特征就是具有较长的穗长和较长的倒1节长。只要育种者长期坚持定向选择,仍然可能选育出高产高食味值的品种。

3.4本研究的局限性与下一步研究方向

产量和米质均属多基因控制的数量性状,易受外部环境的影响,尤其受施氮量的影响较大。一定范围内,增加氮肥施用量,产量随之增加,稻米品质下降,反之,降低氮肥施用量,稻米品质改善,产量相应下降。辽粳5号和秋田小町两品种在对氮肥的需求上有显著不同,本研究是在统一的施氮水平下开展的研究,可能不利于充分发挥两种株型模式的优点,下一步我们将就不同氮肥水平下中日水稻品种杂交后代株型与产量和米质的关系进行深入研究。

参考文献:

[1]杨守仁,张龙步,王进民.水稻理想株形育种的理论和方法初论.中国农业科学,1984,(3):6-13.

Yang S R, Zhang L B, Wang J M. The theory and method of ideal plant morphology in rice breeding.SciAgricSin.1984,(3):6-13. (in Chinese with English abstract)

[2]袁隆平.杂交水稻超高产育种.杂交水稻,1997,12(6):1-3.

Yuan L P. Hybrid breeding for super high yield.HybridRice, 1997, 12(6): 1-3. (in Chinese with English abstract)

[3]陈温福,徐正进.水稻超高产育种理论与方法.北京:科学出版社,2007:259-264.

Chen W F, Xu Z J. Theory and method of rice breeding for super high yield. Beijing: Science Press. 2007, 259-264.(in Chinese with English abstract)

[4]邹江石,吕川根.水稻超高产育种的实践与思考.作物学报, 2005, 31(2): 254-258

Zou J S, Lv C G. Practice and thinking on rice breeding for high yield.ActaAgronSin, 2005, 31(2): 254-258.(in Chinese with English abstract)

[5]徐正进,陈温福,张龙步,等.水稻不同穗型群体冠层光分布的比较研究.中国农业科学. 1990,23(4):10-16.

Xu Z J, Chen W F, Zhang L B, et al. Comparative study on light distribution in rice canopies with different panicle type.SciAgriSin. 1990,23(4):10-16. (in Chinese with English abstract)

[6]徐正进,陈温福,周洪飞,等.直立穗型水稻群体生理生态特性及其利用前景.科学通报,1996,41 (12): 1122-1126.

Xu Z J , Chen W F, Zhou H F, et al. The physiological and ecological characteristics of the erect panicle type rice population and their utilization prospect.SciBull. 1996, 41(12): 1122-1126. (in Chinese with English abstract)

[7]徐正进,陈温福,张树林,等.辽宁水稻穗型指数品种间差异及其与产量和品质的关系.中国农业科学,2005,38(9): 1926-1930.

Xu Z J , Chen W F, Zhang S L, et al. Differences of panicle trait index among varieties and its relationship with yield and quality of rice in Liaoning.SciAgriSin,2005,38(9): 1926-1930. (in Chinese with English abstract)

[8]徐正进,邵国军,韩勇,等.东北三省水稻产量和品质及其与穗部性状关系的初步研究.作物学报, 2006,32 (12): 1878-1883.

Xu Z J, Shao G J, Han Y, et al. A preliminary study on yield and quality of rice and their relationship with panicle characters in northeast region of China.ActaAgronSin.2006, 32(12): 1878-1883. (in Chinese with English abstract)

[9]杜永,王艳,王学红,等.黄淮地区不同粳稻品种株型、产量与品质的比较分析.作物学报,2007,33(7): 1079-1085.

Du Y, Wang Y, Wang X H, et al. Comaprisons of plant type, grain yield, and quality of different japonica rice cultivars in Huanghe-Huaihe river area.ActaAgronSin,2007, 33(7): 1079-1085.(in Chinese with English abstract)

[10]马均,马文波,明东风, 等.重穗型水稻株型特性研究. 中国农业科学, 2006, 39(4): 679-685.

Ma J, Ma W B, Ming D F, et al. Studies on the characteristics of rice plant with heavy panicle.SciAgricSin, 2006, 39(4): 679-685.(in Chinese with English abstract)

[11]徐海,朱春杰,郭艳华,等.生态环境对籼粳稻杂交后代穗部性状的影响及其与亚种特性的关系.中国农业科学,2009,42(5): 1540-1549.

Xu H, Zhu C J, Guo Y H, et al. Effect of ecological environments on panicle traits and its relationship with subspecies characteristics in filial generations of cross between indica and japonica.SciAgricSin, 2009,42(5): 1540-1549. (in Chinese with English abstract)

[12]金峰,王鹤潼,徐海,等.不同生态区籼粳稻杂交F2代亚种属性与株型性状的特点.作物学报,2013, 39(7): 1240-1247.

Jin F, Wang H T, Xu H, et al. Characteristics of plant type traits and subspecies characteristics in F2generations of cross between indica and japonica rice under different ecological regions.ActaAgronSin.2013, 39(7): 1240-1247. (in Chinese with English abstract)

[13]金峰,徐海,江奕君, 等. 生态环境对籼粳交后代株型特性和产量构成的影响.中国水稻科学, 2013, 27(1): 49-55.

Jin F, Xu H, Jiang Y J, et al. Effect of ecological environments on plant type traits and yield traits in F2of cross between indica and japonica.ChinJRiceSci, 2013, 27(1): 49-55. (in Chinese with English abstract)

[14]Feng J, Wang H, Xu H, et al. Comparisons of plant-type characteristics and yield components infilial generations of Indica×Japonica crosses grown in different regions in China.FieldCropsRes, 2013, (154): 110-118.

[15]徐正进,陈温福,孙占惠,等.辽宁水稻籽粒在穗轴上分布特点及其与结实性的关系.中国农业科学,2004,37(7): 963-967

Xu Z J, Chen W F, Sun Z H,et al. Distribution of rice grain on panicle axis and its relationship with seed setting in liaoning.SciAgriSin,2004,37(7): 963-967.(in Chinese with English abstract)

[16]Li F, Liu W, Tang J, et al. Rice DENSE AND ERECT PANICLE 2 is essential for determining panicle outgrowth and elongation.CellRes, 2010, 20(7): 838-849.

[17]Wang W, Chu H, Zhang D, et al. Fine mapping and analysis of DWARF TILLER1 in controlling rice architecture.JGenetGenom, 2013, 40(9): 493-495.

[18]Yi X, Zhang Z, Zeng S, et al. Introgression of qPE9-1 allele, conferring the panicle erectness, leads to the decrease of grain yield per plant in japonica rice (OryzasativaL.).JGenetGenom, 2011, 38(5): 217-223.

[19]Wu X, Tang D, Li M, et al. Loose plant architecture1, an INDETERMINATE DOMAIN protein involved in shoot gravitropism, regulates plant architecture in rice.PlantPhysiol, 2013, 161(1): 317-329.

[20]Huang X, Qian Q, Liu Z, et al. Natural variation at the DEP1 locus enhances grain yield in rice.NatGenet, 2009, 41: 494-497.

[21]高继平,祁澎,林鸿宣.水稻产量数量性状的遗传调控机制研究进展.中国科学:生命科学, 2013, 43(12): 1007-1015.

Gao J P, Qi P, Lin H X. Advances in regulatory mechanisms of quantitative traits related to rice yield.SciSinVitae, 2013, 43(12): 1007-1015.(in Chinese with English abstract)

[22]徐海,宫彦龙,夏原野,等.中日水稻品种杂交后代株型性状的变化及其相互关系. 中国水稻科学, 2015, 29(4):363-372.

Xu H, Gong Y L, Xia Y Y, et al. Variations in plant type traits and their relationship of progeny derived from the cross between Chinese rice variety and Japanese rice variety.ChinJRiceSci. 2015,29(4):363-372.(in Chinese with English abstract)

[23]陈温福,徐正进,张龙步,等. 北方粳型稻超高产育种理论与实践. 中国农业科学. 2007,40(5):869-874.

Chen W F, Xu Z J, Zhang L B, et al. Theories and practices of breeding japonica rice for super high yield.SciAgricSin. 2007,40(5):869-874. (in Chinese with English abstract)

[24]魏兴华,汤圣祥,余汉勇,等. 中国水稻国外引种概况及效益分析.中国水稻科学, 2010, 24(1): 5-11.

Wei X H, Tang S X, Yu H Y, et al. Beneficial analysis on introduced rice germplasm from abroad in China.ChinJRiceSci. 2010, 24(1): 5-11.(in Chinese with English abstract)

[25]张小明,石春海,鲍根良,等.浙江与日本粳稻直链淀粉含量的比较. 浙江农业学报, 2001,13(5):276-280.

Zhang X M, Shi C H, Bao G L, et al. Amylose content comparison of some japonica rice varieties in Zhejiang Province and in Japan.ActaAgricZhejiangensis. 2001,13(5):276- 280.(in Chinese with English abstract)

[26]叶胜海,富田桂,小林麻子,等.浙江粳稻与日本粳稻品种间遗传差异的SSR分析.浙江农业学报, 2008,20(6):424-427.

Ye S H, Tomita K, Kobayashi A, et al. Polymorphism analysis of genetic diversity between Zhejiang japonica varieties and Japan japonica varieties by using SSR markers.ActaAgricZhejiangensis, 2008, 20(6):424-427.(in Chinese with English abstract)

[27]华泽田,袁兴福,隋国民.北方杂交粳稻遗传改良与生理基础.沈阳:辽宁科学技术出版社,2006:135-141.

Hua Z T, Yuan X F, Sui G M. Genetic improvement and physiological basis of northern japonica hybrid rice. Shenyang: Liaoning Science and Technology Press, 2006:135-141.(in Chinese with English abstract)

[28]Hao X B,Ma X F,He P S. Relationship between plant type and grain quality of Japonica hybrid rice.RiceSci,2010,17(1):43-50.

[29]张子军,冯永祥,荆彦辉,等.水稻株型与品质关系的研究. 江苏农业科学,2009,(1): 62-64.

Zhang Z J, Feng Y X, Jing Y H, et al. Study on the relationship between rice plant type and quality.JiangsuAgricSci,2009,1: 62-64.(in Chinese with English abstract)

[30]李晓方,肖昕,刘彦卓,等.籼稻稻米品质性状遗传特点新解析.分子植物育种,2009,7(6):1077-1083.

Li X F, Xiao X, Liu Y Z, et al. Novel analysis on genetic characters of quality traits in indica rice.MolPlantBreeding,2009,7(6):1077-1083.(in Chinese with English abstract)

[31]王忠,顾蕴洁,陈刚,等.稻米的品质和影响因素.分子植物育种,2003,1(2):231-241.

Wang Z, Gu Y J, Chen G, et al. Rice quality and its affecting factors.MolPlantBreeding, 2003,1(2):231-241(in Chinese with English abstract)

[32]朱昌兰,翟虎渠,万建民.稻米食味品质的遗传和分子生物学基础研究.江西农业大学学报:自然科学版,2002,24(4):454-459.

Zhu C L, Zhai H Q, Wang J M. Progresses in the studies of genetic and molecular bases of eating quality in rice.ActaAgricUnivJiangxiensis, 2002,24(4):454-459. (in Chinese with English abstract)

[33]蒋开锋,郑家奎,赵甘霖,等.四川省新育成的杂交水稻组合的品质分析.中国水稻科学,2004,18(1):80-82.

Jiang K F, Zheng J K, Zhao G L, et al. Analysis on grain quality of new hybrid rice combinations in sichuan province.ChinJRiceScience, 2004, 18(1): 80-82. (in Chinese with English abstract)

Relation of Plant Type Traits with Yield and Quality in the RIL Population Derived from Cross Between Chinese Rice Variety and Japanese Rice Variety

XU Hai, GONG Yan-long, XIA Yuan-ye, DU Zhi-min, YAN Zhi-qiang, WANG Hua-jie, CHEN Wen-fu,XU Zheng-jin*

(InstituteofRiceResearch,ShenyangAgriculturalUniversity/KeyLaboratoryofNortheastRiceBiologyandBreeding,MinistryofAgriculture/KeyLaboratoryofNorthernJaponicaSuperRiceBreeding,MinistryofEducation/KeyLaboratoryofNorthernJaponicaGeneticsandBreedingofLiaoningProvince,Shenyang110866,China;*Corresponding author,E-mail: xuzhengjin@126.com)

XU Hai, GONG Yanlong, XIA Yuanye, et al. Relation of plant type traits with yield and quality in the RIL population derived from cross between Chinese rice variety and japanese rice variety. Chin J Rice Sci, 2016, 30(3): 283-290.

Abstract:The F9 recombinant inbreed lines population (RIL population) derived from the cross between Liaojing 5, the most representative rice variety with erect panicle type in the northeast of China, and Akita Komachi, the famous rice varieties with curved panicle type and good quality in Japan, were constructed through single seed descent method to study the variation of plant type traits and their relation with rice yield and quality in the hybrid progenies of cross between typical Chinese rice variety and Japanese rice variety. The results showed that segregation and recombination occurred in plant-type, yield and quality traits in the RIL population. Plant height, the length of top third and fourth internodes and the leaf angle and yield were significantly positively correlated. The higher the plant height, the greater the degree of curve of the panicle, and the narrower the three top leaves, the better processing quality and appearance quality. The correlation between taste value and the vast majority of plant type traits was not significant, and only the width of top third leaf, the number of secondary rachis branches and grain density were negatively significantly correlated with taste value. Further analysis of the relation between grain yield and quality revealed that higher yield led to higher head milled rice rate, but worse taste. The plant type traits and yield and quality characters were closely related, despite the yield and taste value were difficult to unity, a tiny fraction of lines with high yield and good taste could be found in the RIL population. The lines with high yield and good taste mainly featured long panicle and top internode.

Key words:rice; plant-type; yield; quality

DOI:10.16819/j.1001-7216.2016.5174

收稿日期:2015-11-25; 修改稿收到日期: 2016-02-04。

基金项目:国家现代农业产业技术体系建设专项(CARS-01-01A);辽宁省科技厅北方粳稻育种与生产技术创新团队项目(201404235);辽宁省教育厅科学研究一般项目(L2013257)。

中图分类号:S511.0351

文献标识码:A

文章编号:1001-7216(2016)03-0283-08

中国水稻科学(Chin J Rice Sci),2016,30(3):283-290

http://www.ricesci.cn

猜你喜欢

株型品质水稻
什么是海水稻
Bna-novel-miR36421调节拟南芥株型和花器官发育的功能验证
水稻种植60天就能收获啦
一季水稻
水稻花
日光温室西葫芦株型及其对产量形成的影响研究
不同施氮方法对两种株型糯玉米穗部性状及产量的影响
多肉植物侧芽怎么处理
氯化钙处理对鲜切萝卜生理与品质的影响
“鄞红”、“巨峰”、“红富士”葡萄及其杂交后代品质分析