在高数教学中构建和谐师生关系,提高学生学习兴趣
2016-06-16马志辉
【摘要】高等数学作为逻辑性较强,应用范围较广泛的抽象学科,大多数的学生对于高等数学的学习缺乏兴趣,由此造成了师生关系的过度硬化,由此造成了恶性的循环。然而高数学习具有其枯燥性与复杂性,在具体的教学过程中出现了很多的问题。本文根据笔者多年的经验以及在高数教学中的师生关系上,从如何提高教师的自身专业能力与素质等方面来分析如何在高数教学中构建和谐师生关系,提高学生学习兴趣,不足之处还望大家批评纠正。
【关键词】高数教学 师生关系 学习兴趣
【中图分类号】G64 【文献标识码】A 【文章编号】2095-3089(2016)04-0133-02
一、提高自身的素质,培养学习的兴趣
对学生的关心与爱护是教师在日常的教学过程中必须遵守的职业素养,也是去构建日常教学中和谐师生关系的重要措施。因为只有向学生去展现出关系爱护才能够保证学生与教师形成良好的沟通。对于高等教师而言,要去承担很多的外院系课程,与学生相处的时间自然无法达到像班主任那样的长度,这就要求教师主动的去寻找机会与学生进行日常的交流,可以用课间时间与课前时间去对学生的课堂掌握内容进行交流,并根据现有的教学节奏来对教学进行调整。而另一方面也要从生活中去关心,去爱护他们,大多数的大学生虽然年龄达到了成人的标准但是却是刚刚离开父母生活,自然也会遇到很多难以解决的问题,如果教师可以去采取相应的措施,将有利于日常和谐师生关系的构建。由于高数的严谨性,如果教师在日常的教学中不能够保证严谨的教学态度,在日常的教学中,教师可以增加对于例题的解释过程的整理,加强学生严谨性的训练,同时要及时的根据学生在日常教学中出现的问题进行及时的疏导,加强在做题过程中的严谨。在日常的高等数学授课中,教师要以身作则,这是学生进行日常教学的基础,也是提高学生教学质量的重要环节,同时也在潜意识中提高学生与教师的关系。
教师的专业能力以及对知识的储备,有利于构建和谐的师生关系。根据调查显示,当教师有足够的教学知识储备时,就可以给学生以很大的学习动力,对于学生学习兴趣的激发有着重要的促进作用。新课程改革后对于教师也有了更大的要求,如果学生在日常的教学过程中可以将物理,金融等方面的知识融会贯通,并在日常的教学中进行合理的整合,引导学生可以将高等数学以及自己所学专业联系起来,通过自我认识高等数学对所学专业的重要性认识来提高学习的热情。学习的兴趣需要多方面的构建,我们不否认高数学习的枯燥与复杂,但是学生在学习过程中要保持学习的积极性,配合教师实现日常的教授过程,只有这样才能不断的弱化高数的困难程度。比如在学习极限的过程中,单学习极限容易使学生产生厌烦心理,但是如果可以根据极限的具体应用就可以加强学生的学习兴趣,毕竟能够实现教材的应用才可以更好的进行学习。
二、依托学生实际,提高学习兴趣
由于课程的改革,大多数高数中出现的基础性知识都在中学教材中出现了,比如极限、定积分与微积分等,教师在日常的授课过程中可以依托学生的对于知识的掌握程度设置相关的情境,以此来提高学生的学习兴趣。如果教师可以根据学生在中学期间对于数学的学习情况以及与高数之间的联系情况就可以增强学生的学习兴趣,提高日常教学的质量。高数教材是根据教学大纲以及数学专业和社会需求进行编写的结晶。然而它只为我们提供了一个引导性的作用,教师可以根据教学的现状和学生的学习水平进行相应的调整,使其更适合学生的发展。例如在极限的教学过程中,教材是按照先“无穷大与无穷小”后“极限的运算法则”进行编写的,但是在现实的教学过程中,学习好极限将有利于学生学习“无穷大与无穷小”的相关问题,如果对教材进行相应的教学调整,不仅可以有效的节约教学的时间,同时还可以实现高效的教学。而对于高中学习文科的班级就要在平时的教学中减少相关定理与理论的证明,增加对于知识的应用,提高其实际应用能力。相对于较为和谐的师生关系可以有效的提高学生学习的积极性,提高学生的学习兴趣。所以在日常的教学中,教师应该不断的鼓励学生进行思维的发散,鼓励学生积极的思考,善于不同的角度来进行对问题进行思考,以提高他们对于学习高数的信心。
三、小结
作为高校的重要基础课程,高数有利于培养学生理性思维与逻辑思维,但是由于其应用的间接性,造成了学生对于高数学习的错误性认识。而高数的最基本特点是系统性,很多知识点彼此之间有很多联系,缺听以后就会造成知识点的理解错误。在高数教学中构建和谐师生关系,提高学生学习兴趣不仅是教育部门所需要重视的问题,更加需要学生与老师的相互配合与协调。一方面,教师应该不断的提高自身的专业素质,培养学生学习高数的兴趣,而另一方面教师可以依托学生实际,不断的对教材以及教学内容进行相应的调整,以此来提高学生的学习兴趣。
参考文献:
[1]陈东彦,李冬梅,王树忠:数学建模,科学出版社.2007年版.
[2]曹喜望:管理科学中的数学模型,北京大学出版社.2006年版.
[3]方道元,韦明俊:数学建模:方法导引与案例分析,浙江大学出版社.2011年版.
[4]姜启源,谢金星:数学建模案例选集,高等教育出版社.2006 年版 .
作者简介:
马志辉(1981.2-),男,河南临颍人,研究生,讲师,研究领域:图论及其应用。