糖类衍生物催化制液体烷烃燃料的基础研究
2016-05-30马隆龙刘琪英
马隆龙 刘琪英
摘 要:该研究针对第三个关键科学问题“解聚产物催化转化制备先进液体燃料的机理及产物选择性控制规律”开展基础性研究工作。在糖类衍生物水相催化制液体烷烃燃料的反应机理、产物控制规律研究和相关高效催化剂体系设计等方面进行了探索。针对糖类衍生物水相催化合成HMF,发展了高效的类微乳反应体系和NaHSO4-ZnSO4催化剂体系,可有效避免副产物生成和HMF的进一步降解,获得高达57%的HMF收率。发展MOFs内嵌杂多酸和Ru粒子的高效催化剂,通过金属与酸的功能匹配,实现了纤维素等一步转化为山梨醇,山梨醇收率达到58%。制备了Ni基金属-酸双功能催化剂应用于山梨醇/木糖醇转化为C5/C6烷烃,通过金属组分、载体等的调控作用和反应机理研究,实现C5/C6烷烃产物的定向催化合成,收率超过90%。针对糠醛与丙酮的缩合反应,设计合成了高效MgO/NaY固体碱催化剂,碱性质及MgO与NaY的协同催化作用可有效活化糠醛与丙酮分子,加快反应速率,获得高达98%的C8-C15缩合产物,设计合成了Pt/SiO2-ZrO2催化剂,通过调控催化剂的组成结构和产物加氢脱氧路径分析,获得收率达到70%的C8-C15烷烃产物,催化剂连续运行120 h不失活,具有较好的稳定性。针对酚类衍生物催化制备液体烷烃燃料,设计合成了离子液共聚物负载的Ru催化剂,通过离子液共聚物稳定Ru纳米粒子的金属-酸双功能的协同催化作用(金属中心的C-C键加氢饱和,酸中心的C-O断裂),实现了苯酚及其衍生加氢脱氧高效转化为液体烷烃。针对苯酚选择性加氢制环己酮,设计合成了高效的聚苯胺修饰碳纳米管负载Pd催化剂,通过聚苯胺修饰碳纳米管的电子调控对苯酚及其衍生物的选择性吸附和Pd活性组分的协同加氢作用,实现了苯酚及其衍生物定向转化为环己酮衍生物,环己酮收率高达99%。在上述研究基础上,我们率先在国内建立了年产150吨规模的生物汽油验证研究系统。
关键词:糖 水相催化 液体烷烃 基础研究
Abstract:Aiming to the third key scientific issue “transformation route and mechanism for advanced liquid fuel production from decomposed products by aqueous phase catalysis” of the project, we used sugar derivatives as the feedstock to synthesize liquid C5/C6 and C8-C15 alkanes with the emphasis on the reaction mechanism and goal products controlling methods, and relative catalysts designation. For biomass derived HMF platform, we developed the highly efficient analogue micro-emulsion reaction system and NaHSO4-ZnSO4 combined catalyst, which obtained the HMF yield of 57%. For one-step conversion of cellulose to sorbitol, we fabricated highly active MOFs encapsulated heteropolyacid and Ru nanoparticle as the catalyst and the 58% of sorbitol yield could be observed by mediating the acid-metal balance in the catalyst. We synthesized the efficient Ni based bi-functional catalysts for sorbtiol/xylitol conversion to C5/C6 alkanes. By choosing metal, support and their assembly together with the investigation on the hydrodeoxygenation (HDO) mechanism, more than 90% of C5/C6 alkanes yield could be obtained. For jet fuel with the carbon chain length of C8-C15 alkanes, we designed MgO/NaY for C-C bond coupling in furfural and acetone. The synergistic effect of MgO and NaY activated the α-H in acetone and carbonyl group in furfural, which accelerates the condensation rate and obtains the C8-C15 condensation products yield of more than 98%. To achieve production of C8-C15 alkanes, we used Pt/SiO2-ZrO2 for HDO of C8-C15 condensation products. Due to the weak acidity of the catalyst and high C-O bond cracking property of Pt, the catalyst possessed 70% of goal products yield and showed the excellent catalytic stability of more than 120 h. For phenol derivatives conversion to liquid alkane fuel, we fabricated Ru supported on ionic liquid contained copolymer as the catalyst. By using the cooperative effect between the Ru catalyzed C=C bond saturation and acid catalyzed C-O bond cracking. For selective hydrogenation of phenol to cyclopentanone, we synthesized Pd supported carbon nanotube modified with polyaniline. Due to the selective adsorption phenol on polyaniline and hydrogenation on Pd, more than 99% of cyclopentanone could be obtained. Based on the mentioned investigation, we built up a pilot scaled facility of 150t/a for bio-gasoline production for the first time in China, which demonstrated a platform for practical production of bio-fuel on a large scale.
Key Words:Sugar;Aqueous phase catalysis;Liquid alkane;Basic research
阅读全文链接(需实名注册):http://www.nstrs.cn/xiangxiBG.aspx?id=49165&flag=1