西南麦区小麦品种苗期抗旱性鉴定及其指标筛选
2016-05-27胡雯媚王思宇樊高琼刘运军王强生马宏亮
胡雯媚,王思宇,樊高琼,刘运军,郑 文,王强生,马宏亮
( 四川农业大学农学院/农业部西南作物生理生态与耕作重点实验室,四川成都 611130)
西南麦区小麦品种苗期抗旱性鉴定及其指标筛选
胡雯媚,王思宇,樊高琼,刘运军,郑 文,王强生,马宏亮
( 四川农业大学农学院/农业部西南作物生理生态与耕作重点实验室,四川成都 611130)
摘要:为了解西南麦区小麦品种苗期抗旱性和筛选适宜鉴定指标,利用盆栽和大田干旱棚2种栽培方式,对西南地区42个小麦品种进行自然干旱胁迫。盆栽试验测定苗期叶面积(X1)、苗高(X2)、根长(X3)、地上部干重(X4)、地下部干重(X5)、全株干重(X6)、根冠比(X7)、植株含水率(X8)、离体叶片失水速率(X9)、叶绿素含量(X10)等10个指标,大田控水试验于收获期测定株高(X11)、小穗数(X12)、穗长(X13)、单株成穗数(X14)、单穗重(X15)、单株产量(X16)等6个指标。以各指标的抗旱系数作为衡量抗旱性的依据,运用加权隶属函数、聚类分析、逐步回归等方法对小麦抗旱性进行综合评价及分类。结果表明,42个小麦品种可划分为水分敏感、弱抗旱、中度抗旱和强抗旱4种抗旱类型,分别包括3、23、13和 3个品种。以苗期和收获期16个指标的抗旱系数为基础,利用逐步回归方法建立了小麦苗期抗旱性评价回归模型:D1=-1.593+0.152X1+0.293X2+0.256X3+0.151X5+0.426X6+0.107X7+0.958X12+0.085X14+0.056X15+0.205X16,R2=0.998 8,平均拟合精度99.23%;利用苗期10个指标的抗旱系数进行逐步回归分析建立小麦苗期抗旱性评价回归模型:D2=-0.677+0.218X1+0.481X3-0.803X4+0.230X5+1.232X6,R2=0.674 0,平均拟合精度88.50%,表明用苗期性状结合产量性状评判小麦抗旱性更为可靠准确。
关键词:小麦;苗期;抗旱性;隶属函数;聚类分析;逐步回归
西南麦区是我国第三大麦区,小麦主要分布于丘陵旱地,干旱是其生产面临的主要问题。丘陵区基础设施差,灌溉条件缺乏,选育抗旱品种是应对干旱的最便利途径。但关于西南麦区小麦抗旱种质资源的研究鲜见报道,不仅影响小麦良种科学布局,也影响该区域小麦抗旱性的深入研究。
前人从形态、发育、生理、生化等方面对小麦抗旱性进行了研究,认为相对含水率[1]、离体叶片失水速率、根系性状、光合参数[2]、生育期、渗透调节物质、抗氧化酶活性[3-4]、脱落酸含量[5-6]等性状是作物苗期抗旱性鉴定及品种筛选的重要指标。但有关小麦苗期抗旱性的研究多局限于相关生理生化指标测定与分析,忽略了苗期干旱对产量的影响,难以全面客观地反映其抗旱性。本研究采用苗期盆栽和大田干旱棚试验相结合的方法,综合苗期及收获期形态、发育、生理生化指标,对西南地区育成的42个小麦品种抗旱性进行综合评价,同时利用逐步回归方法,建立小麦抗旱性评价回归模型,以期为该地区小麦抗旱育种及品种抗旱性鉴定的指标选择提供科学依据。
1材料与方法
1.1供试材料
试验采用盆栽和大田干旱棚两种栽培方式。供试材料为42个小麦品种,分别来自四川省、重庆市、云南省、贵州省相关育种单位(表1)。
1.2试验设计
盆栽试验于2014年11-12月在遮雨棚内进行,每个品种设自然干旱(植株在正常浇水条件下生长至1叶1心期,停止浇水至表型明显时进行自然干旱处理)和水分充足(生长期间正常浇水,相对含水量控制在田间持水量的60%~70%)两种水分处理。每个小麦品种挑选大小均匀、饱满整齐的种子16粒,均匀播种在花盆(直径为15 cm,高25 cm)土壤中,重复3次,共计252盆。以混合均匀的营养土和沙石(1∶3)为栽培介质,每盆6 kg,不额外施肥,播种后置于遮雨棚内(顶部用白色塑料做成的拱棚,高2.0 m,四面无遮挡),于干旱胁迫表型明显时期(约干旱后20 d)取样测定离体叶片失水速率、苗高、叶面积、植株含水率、根长、叶绿素含量、地上部分干重、地下部分干重、全株干重、根冠比等10个指标。经称重法测定,取样时干旱胁迫处理土壤相对含水量为35%~40%,对照土壤相对含水量为60%~70%。
大田干旱棚试验于2014年10月至2015年5月在四川农业大学温江试验基地进行,每个品种也设自然干旱(播种后至开花前进行遮雨处理)、水分充足(露天栽培,播种至开花前累计降雨36.5 mm,属于平水年份。并于拔节期浇水一次,浇水量按每平米10 L计算)。采用单粒播种,株距3 cm,行距20 cm,每品种播种2行,行长1 m,重复3次。试验地施N 120 kg·hm2、P2O560 kg·hm2和K2O 60 kg·hm2,磷和钾连同60%氮作为底肥施用,剩余40%氮作为拔节肥施用。
大田干旱棚试验于收获期每小区取15株小麦进行室内考种,测定株高、穗长、小穗数、单株成穗数、单穗重和单株产量。
表1 供试小麦品种编号及来源
1.3数据统计与分析
数据整理与分析采用Microsoft Excel 2010,采用DPS软件进行相关、聚类分及逐步回归等分析。抗旱系数及其隶属函数值和综合评价值(D)计算公式如下:
抗旱系数=干旱胁迫测定值/对照测定值
U(Xj)=(Xj-Xjmin)/(Xjmax-Xjmin),j=1,2,…,n
2结果与分析
2.1小麦品种各项指标的抗旱系数
由表2可以看出,在干旱胁迫下,小麦各指标大多较对照有不同程度的下降(抗旱系数小于1),不仅不同小麦品种同一指标的变化幅度不尽相同,而且同一品种不同指标的变化也存在差异,说明单一指标抗旱系数不能准确地反映小麦品种的抗旱性,因此需要通过多指标综合分析方法来评价。
表2 干旱胁迫条件下小麦不同指标的抗旱系数
X1:叶面积;X2:苗高;X3:根长;X4:地上部分干重;X5:地下部分干重;X6:全株干重;X7:根冠比;X8:植株含水率;X9:离体叶片失水速率;X10:叶绿素含量;X11:株高;X12:小穗数;X13:穗长;X14:单株成穗数;X15:单穗重;X16:单株产量。下同
X1:Leaf area;X2:Seedling height;X3:Root length;X4:Shoot dry weight;X5:Root dry weight;X6:The whole plant dry weight;X7:Root shoot ratio;X8:Plant water content;X9:Excised-leaf water loss rate;X10:Chlorophyll content;X11:Plant height;X12:Spikelet number;X13:Spike length;X14:Panicle number per plant;X15:Single spike weight;X16:Yield per plant.The same as following tables
2.2供试小麦品种抗旱性综合评价
以各品种各抗旱系数为依据,得出其隶属函数值,并利用加权隶属函数法计算出不同小麦品种的综合评价值(D值)(表3)。可见供试42份小麦品种的D值变化范围为0.254~0.813。根据D值的大小,品种抗旱能力排序为V1>V10>V8>V38>V23>V40>V11>V16>V15>V19>V18>V27>V5>V4>V26> V14>V41>V13>V20>V9>V34>V12>V30>V21>V3>V17>V2>V35>V17>V32>V35>V42>V25>V29>V33>V7>V6>V39>V31>V28>V24>V22。采用最长距离法对D值进行聚类分析,结果(图1)表明,42个小麦品种可聚为4类:蜀万8号、川农16、蜀麦482为强抗旱品种,占供试材料的7.14%;川麦44、绵杂麦168、绵农4号等13个小麦品种为中等抗旱品种,占供试材料的30.95%;内麦9号、川麦39、川麦51等23个小麦品种为弱抗旱型品种,占供试材料的54.56%;川育23、绵麦367、蜀麦969为水分敏感型品种,占供试材料的7.14%。
表3 干旱胁迫条件下小麦品种各指标抗旱系数的隶属函数值
图1 小麦品种抗旱性聚类分析
2.3小麦品种的抗旱性回归模型及鉴定指标
把抗旱性综合评价值(D值)作因变量,苗期和收获期共16项指标的抗旱系数作自变量进行逐步回归分析,得到回归方程D1=-1.593+0.152X1+0.293X2+0.256X3+0.151X5+0.426X6+0.107X7+0.958X12+0.085X14+0.056X15+0.205X16,R2=0.998 8,P=0.000 1;把抗旱性综合评价值(D值)作因变量,对苗期10个指标的抗旱系数进行逐步回归分析,得到小麦苗期抗旱性评价回归模型D2=-0.677+0.218X1+0.481X3-0.803X4+0.230X5+1.232X6,R2=0.674 0,P= 0.0001。由方程D1可知,苗期和收获期16个单项指标中,苗期株高、叶面积、根长、根干重、全株干重、根冠比及收获期小穗数、单株成穗数、单穗重、单株产量等10个指标对小麦抗旱性有显著影响; 由方程D2可知,苗期10个单项指标中叶面积、根长、苗干重、根干重、全株干重等5个指标对小麦抗旱性有显著影响。回归方程D1平均拟合精度达99.23%,回归方程D2平均拟合精度为88.50%(表4),说明方程中的指标对小麦抗旱性影响显著,两方程均可用于小麦品种抗旱性评价。
表4 小麦品种抗旱性回归方程的精度
(续表4Continued table 4)
品种VarietyD1原始值Primaryvalue拟合值Fittedvalue拟合误差Fittingerror拟合精度Accuracy/%D2原始值Primaryvalue拟合值Fittedvalue拟合误差Fittingerror拟合精度Accuracy/%V210.4900.4890.0010.9980.4900.4330.0570.883V220.2500.2460.0040.9860.2500.316-0.0660.736V230.6700.6690.0010.9990.6700.6200.0510.925V240.2600.2520.0080.9680.2600.348-0.0880.662V250.4500.456-0.0060.9860.4500.606-0.1560.653V260.5700.5650.0050.9910.5700.612-0.0420.927V270.5900.592-0.0020.9970.5900.600-0.0100.984V280.2900.294-0.0040.9870.2900.391-0.1010.652V290.4300.4240.0070.9850.4300.4220.0080.982V300.4900.493-0.0030.9950.4900.3890.1010.793V310.3700.374-0.0040.9910.3700.2920.0780.789V320.4600.462-0.0020.9950.4600.476-0.0160.966V330.4300.4250.0050.9880.4300.435-0.0050.990V340.5100.5050.0050.9900.5100.4280.0820.839V350.4600.464-0.0040.9910.4600.4600.0001.000V360.4600.467-0.0070.9850.4600.472-0.0120.975V370.4600.4590.0010.9980.4600.479-0.0190.960V380.6900.691-0.0010.9980.6900.6840.0070.991V390.4000.3990.0010.9980.4000.490-0.0900.774V400.6600.6550.0060.9920.6600.6440.0160.976V410.5400.544-0.0040.9930.5400.617-0.0770.858V420.4600.462-0.0020.9950.4600.3840.0760.834AVG0.9920.885
2.4小麦品种各指标抗旱系数与D值的相关性及抗旱性不同类别品种间的特征比较
相关性分析(表5)表明,除苗期叶片失水速率、相对含水率、叶绿素,收获期株高外,其他鉴定指标值均与D值呈极显著正相关。结合聚类分析结果,比较与D值显著相关的各鉴定指标在小麦不同抗旱型类别间的表现特征(表6)可知,随着小麦抗旱性的增强,各指标的抗旱系数呈增加趋势,其中单株产量的抗旱系数增幅最大;在苗期鉴定指标中,随小麦抗旱性的增强,根干重抗旱系数增幅最大,达72.8%。水分敏感型和弱抗旱型小麦品种各鉴定指标抗旱系数均小于1;强抗旱型小麦品种苗期各鉴定指标抗旱系数略小于1,而收获期各指标抗旱系数均大于1,说明强抗旱型小麦品种苗期受干旱胁迫影响较小。
表5 小麦品种各指标抗旱系数与D值的相关性
*:P<0.05;**:P<0.01,n=42
表6 小麦品种聚类结果中各抗旱类别各显著指标的抗旱系数均值
3讨 论
西南麦区冬、春季节性干旱严重,造成小麦幼苗生长迟缓,分蘖减少,小麦苗期素质降低,直接影响后期小麦生长及产量的形成。筛选抗旱性强的品种,是应对干旱胁迫最便利有效的途径,而筛选标准则直接关系到筛选结果的可靠性。有关小麦品种抗旱性筛选,前人主要在苗期进行,采用的鉴定指标有反复干旱存活率、叶片数、叶面积、地上部分干重、根干重、植株干重、根冠比、株高、单株分蘖数等[7-9]。本试验以西南麦区有代表性的42个小麦品种为材料,综合利用苗期和收获期16个指标的抗旱系数建立了小麦苗期抗旱性评价回归模型,同时利用苗期10个指标的抗旱系数进行逐步回归分析建立小麦苗期抗旱性评价回归模型,两个回归模型的平均拟合精度高分别为99.23%和88.50%,表明将产量性状纳入评判小麦品种苗期抗旱性更为可靠。
同时,对抗旱性不同类别品种间特征(表5,表6)进行比较,发现,单株产量抗旱系数随小麦抗旱性增强的增幅最大;同时,在苗期各鉴定指标中,随小麦抗旱性增强,根干重抗旱系数增幅最大,达72.8%,因而认为,强抗旱性品种产量受干旱影响小可能与其根系对干旱的适应性相关,在干旱条件下强抗旱型品种根系受干旱的影响较小,有利于在干旱条件下吸收土壤中的水分和养分,从而减少干旱的影响。
参考文献:
[1]单长卷,汤菊香,郝文芳.水分胁迫对洛麦9133幼苗叶片生理特性的影响[J].江苏农业学报,2006,22(3):229-232.
Shan C J,Tang J X,Hao W F.Effect of water stress on leaf physiological characteristics of Luomai 9133 seedling [J].JiangsuJournalofAgriculturalSciences,2006,22(3):229-232.
[2]田山君,杨世民,孔凡磊,等.西南地区玉米苗期抗旱品种筛选[J].草业学报,2014,23(1):50-57.
Tian S J,Yang S M,Kong F L,etal.Screening in Southwest China of drought-resistant varieties of maize at the seedling stage [J].ActaPrataculturaeSinica,2014,23(1):50-57.
[3]张智猛,戴良香,宋文武,等.干旱处理对花生品种叶片保护酶活性和渗透物质含量的影响[J].作物学报,2013,39(1):133-141.
Zhang Z M,Dai L X,Song W W,etal.Effect of drought stresses at different growth stages on peanut leaf protective enzyme activities and osmoregulation substances content [J].ActaAgronomicaSinica,2013,39(1):133-141.
[4]Hassan N M,El-Bastawisy Z M,El-Basawisy Z M,etal.Roles of dehydrin genes in wheat tolerance to drought stress [J].JournalofAdvancedResearch,2015,6(2):179-188.
[5]郭贵华,刘海艳,李刚华,等.ABA缓解水稻孕穗期干旱胁迫生理特性的分析[J].中国农业科学,2014,47(22):4380-4391.
Guo G H,Liu H Y,Li G H,etal.Analysis of physiological characteristics about ABA alleviating rice booting stage drought stress [J].ScientiaAgriculturaSinica,2014,47(22):4380-4391.
[6]张 炜,高 巍,曹 振,等.干旱胁迫下小麦(TriticumaestivumL.)幼苗中ABA和IAA的免疫定位及定量分析[J].中国农业科学,2014,47(15):2940-2948.
Zhang W,Gao W,Cao Z,etal.Immunolocalization and quantitation of ABA and IAA in the organs of wheat (TriticumaestivumL.) under drought stress [J].ScientiaAgriculturaSinica,2014,47(15):2940-2948.
[7]赖运平,李 俊,张泽全,等.小麦苗期抗旱相关形态指标的灰色关联度分析[J].麦类作物学报,2009,29(6):1055-1059.
Lai Y P,Li J,Zhang Z Q,etal.Grey correlation analysis of morphological traits related to drought tolerance of wheat at seedling stage [J].JournalofTriticeaeCrops,2009,29(6):1055-1059.
[8]卫云宗,刘新月,张久刚.小麦苗期抗旱类型研究[J].中国生态农业学报,2008,16(6):1409-1412.
Wei Y Z,Liu X Y,Zhang J G.Types of drought resistance of wheat at seedling stage [J].ChineseJournalofEco-Agriculture,2008,16(6):1409-1412.
[9]田梦雨,李丹丹,戴廷波,等.水分胁迫下不同基因型小麦苗期的形态生理差异[J].应用生态学报,2010,21(1):41-47.
Tian M Y,Li D D,Dai T B,etal.Morphological and physiological differences of wheat genotypes at seedling stage under water stress [J].ChineseJournalofAppliedEcology,2010,21(1):41-47.
Analysis on the Drought Resistance and Screening of Drought Resistance Appraisal Indexes of Wheat Cultivars in Seedling Stage in Southwest Area
HU Wenmei,WANG Siyu,FAN Gaoqiong,LIU Yunjun,ZHENG Wen,WANG Qiangsheng,MA Hongliang
(College of Agronomy,Sichuan Agricultural University/Key Laboratory of Crop Eco-physiology and Farming System in southwest China,Ministry of Agricultural,Chengdu,Sichuan 611130, China)
Abstract:The objectives of this study were to evaluate the drought resistance and screen indexes for 42 wheat cultivars seedlings in the southwest of China. Natural drought stress was performed by pot culture and field cultivation.Then 10 traits leaf area (X1), seedling height (X2), root length (X3), shoot dry weight (X4), root dry weight (X5), the whole plant dry matter accumulation (X6), root shoot ratio (X7), plant water content (X8), containing excised-leaf water loss rate (X9), chlorophyll content (X10) of wheat cultivars cultured in pot and 6 indicators obtaining plant height (X11), spikelet number (X12), spike length (X13), panicle number per plant (X14), single spike weight (X15), yield per plant (X16) of wheat cultivars cultivated in field in harvest time were measured. Comprehensive assessment on drought resistance and classification of these wheat cultivars were implemented by using weighted membership function, clustering analysis and stepwise regression based on every index of drought resistance coefficient. The results suggested that:42 wheat cultivars were divided into four drought-tolerant types by cluster analysis, 3 of the 42 varieties were drought-sensitive type, 23 varieties were weak drought-resistance type, 13 were medium drought-resistance type, and 3 were high drought-resistance type. A mathematical evaluation model for wheat drought tolerance was established that containing 16 drought resistance coefficients of seeding stage and harvest period by means of regression analysis, and D1=-1.593+0.152X1+0.293X2+0.256X3+0.151X5+0.426X6+0.107X7+0.958X12+0.085X14+0.056X15+0.205X16,R2=0.998 8. Average fittingaccuracy of all varieties were 99.23%.A mathematical evaluation model for wheat drought tolerance was established that containing 10 drought resistance coefficients of seeding stage by means of regression analysis, and D2=-0.677+0.218X1+0.481X3-0.803X4+0.230X5+1.232X6,R2=0.674 0. Average fittingaccuracy of all varieties were 88.50%. The drought resistance in wheat seedling stage significantly associated with the indexes in harvest period. It is more dependable to evaluate the drought resistance uniting the seeding and yield trait.
Key words:Wheat; Seedling stage; Drought resistance; Membership function; Cluster analysis; Regression analysis
中图分类号:S512.1;S311
文献标识码:A
文章编号:1009-1041(2016)02-0182-08
通讯作者:樊高琼(E-mail:fangao20056@126.com)
基金项目:四川省育种攻关项目(2011NZ0098-15-3);国家公益性行业(农业)科研专项(201503127)
收稿日期:2015-10-17修回日期:2015-11-11
网络出版时间:2016-01-26
网络出版地址:http://www.cnki.net/kcms/detail/61.1359.S.20160126.1945.016.html
第一作者E-mail:hwenmei1991@sina.com