生物扰动对沉积物中重金属迁移转化影响的研究进展
2016-03-17何怡门彬杨晓芳徐慧王东升
何怡,门彬,杨晓芳,徐慧,王东升,*
1. 中国科学院生态环境研究中心,环境水质学国家重点实验室,北京100085 2. 中国科学院大学,北京 100049
生物扰动对沉积物中重金属迁移转化影响的研究进展
何怡1,2,门彬1,#,杨晓芳1,徐慧1,王东升1,*
1. 中国科学院生态环境研究中心,环境水质学国家重点实验室,北京100085 2. 中国科学院大学,北京 100049
沉积物是重金属在环境中迁移转化的重要媒介。生物扰动能改变沉积物的物理化学组成,从而影响沉积物中重金属的赋存形态和迁移转化特征。文章介绍了生物扰动的定义和种类,生物扰动的影响因素以及扰动过程中影响污染物释放的主要因素,并综述了近年来生物扰动对沉积物中重金属镉、铜、锌、铅和其他重金属的环境行为影响。
重金属;沉积物;迁移转化;生物扰动
水体污染物的来源主要包括外源输入和内源释放。随着环境管理的不断完善,外源输入逐渐得到有效控制,内源释放的影响就显得尤为突出。许多水体的治理经验表明,在治理工作后期,工作难点基本都转到如何有效控制沉积物的内源释放问题上来[1]。以往普遍认为未受污染的颗粒物沉降到受污染的沉积物表面形成保护层是受污染河床及其相邻水层自然修复的主要过程[2]。近期的研究表明,沉积物作为水体重金属的“源”和“汇”,在温度、盐度、pH值、离子强度、氧化还原电位等环境条件的改变下,富集在其中的重金属会再次释放到水体中,造成二次污染[3]。一些研究已经表明,底栖生物的行为会改变沉积物的孔隙度、压实程度、pH值、氧化还原电位,从而影响污染物在沉积物、孔隙水和上覆水之间的物质交换,造成污染物的二次释放[2,4-10]。生物扰动将污染沉积物颗粒带到沉积物与水相的界面处,再悬浮的颗粒为生活在沉积物表层的底栖生物提供了一个污染性的居住环境[1-2,11-16]。同时,沉积物也为底栖生物提供了食物源,成为食物链的一个重要环节[17]。
沉积物在重金属迁移转化过程中扮演了重要角色,而生物扰动能对沉积物中重金属的迁移转化产生重要影响,近年来,生物扰动对沉积物中重金属的环境行为的影响研究得到广泛关注。本文综述了生物扰动对沉积物中重金属迁移转化影响的一些研究进展,为深入研究生物扰动对重金属的迁移转化的影响特征提供基础资料。
1 生物扰动的定义、分类与对环境的影响作用(Definition and classification of bioturbation, and its effect)
1.1 生物扰动的定义
“生物扰动”出现的基础是达尔文发现蚯蚓对土壤颗粒的搬运过程[18],而在水生系统中最早发现的相关描述是海蚯蚓对海沙的物理扰动[19]。“生物扰动”一词最早出现在一篇足迹化石学论文的标题中,用以描述潮间带海洋沉积物中动物群的踪迹[20]。在水生科学中,生物扰动主要用来描述动物重建颗粒物与生物结构对现代沉积物在生物学、生态学与生物地球化学方面性质的影响[21-22]。随着研究的深入,水环境中的生物扰动定义为生活在浅层沉积物表面或内部的生物的一系列活动,包括埋孔、摄食、灌溉和排泄导致的结果[12]。近年来,研究者将水生环境中的生物扰动定义为,所有由生物直接或间接影响沉积物结构而发生的迁移过程[23]。
1.2 生物扰动的分类
生物扰动主要包括颗粒重建和洞穴通水2类[23]。颗粒重建指生物的运动导致的颗粒物移动和混合[24-25],洞穴通水指由于生物的埋孔、掘穴导致的水的流通[26-27]。
根据生物对颗粒物重建的模式可以将生物分为生物扩散者、向上传送者、向下传送者与交换者[28-32]。其中生物扩散者包括生活在沉积物表层的招潮蟹(Uca spp.)与沙蟹(Scopimera spp.)[33],较大型的底栖生物有鱼类[34],生活在沉积物几厘米深度的心形海胆(spatangoid, Echinocardium spp.)[35],以及一些蛇尾虫(Amphiura filiformis)、多毛梯额虫(Scalibregma inflatum)、双壳类的Abra nitida[36],另外还包括大量多毛纲生物(eg. Nereis diversicolor, Marenzelleria viridis)[32,37]。向上传送者一般是沉积物中头部在沉积物中摄食的物种,例如海蚯蚓(Arenicola marina)[38]、竹虫(Clymenella torquata)[39]、海蛄虾[40]、沙虾(Callianassa kraussi)[41]等。向下传送者与向上传送者相反,它们主要是沉积物表层摄食颗粒物,然后排泄至深层沉积物中,如环节动物的Cirriformia grandis[42]与缩头虫(Praxillella sp.)[43]等。交换者是在沉积物中打洞并持续性掘穴的底栖动物,如沙蟹(Ocypode spp.)、招潮蟹(Uca spp.)[33]等。
生物因呼吸或摄食,会通过掘穴形成半封闭式或开放式的通道,上覆水进入通道冲刷沉积物,使得非原位的溶解物质快速迁移,对沉积物产生生物灌溉的作用[44-45]。大量多毛类动物与昆虫幼虫通过蠕动来移动水流[46-48],双壳类、心形海胆与另外一些多毛类动物依赖于睫状肌的作用[47-49],甲壳类动物则利用腹肢的有力跳动来制造水流[50-51]。
1.3 生物扰动对沉积物自然修复过程的影响
过去普遍认为未受污染的颗粒物沉降在沉积物的表层可为受污染沉积物河床的自然修复带来四大好处,一是覆盖在受污染沉积物的表层减缓溶解态污染物向外扩散;二是通过降低水流的扰动,减少颗粒物的再悬浮,使水流带走的只是未受污染的颗粒物;三是深度掩埋受污染的沉积物;四是为浅层栖息生物提供一个干净的栖息地,可以减少人类通过食物链摄取污染物[2]。但是底栖生物的扰动改变了这一自然修复过程,如寡毛纲(环节)动物可以将污染物带到沉积物的表层[4]。其他生物物种(如鱼类)对颗粒物的移动能力相对低效,但也可以将污染物带到沉积物的表层。这些物种的联合扰动作用可以改变10 cm或更深的沉积物的物理化学性质,同时孔隙水中的污染物也会受到生物扰动的影响。因此,底栖生物扰动对河床上受污染颗粒物的搬运是污染物重回水层的一个重要过程;同时,生物扰动过程将受污染的颗粒物带到沉积物表层,使这些颗粒物可以发生再悬浮,并为这些表层的底栖生物提供了受污染的栖息环境[1-2,12,14-16]。基于此,生物扰动作为水相-沉积物界面耦合过程的一个重要机制越来越受到人们重视。
1.4 生物扰动及过程中污染物二次释放的影响因素
1.4.1 温度
在温差较大的地区,温度与扰动强度呈正相关,但是这种关系并不紧密,温度每升高15 °C,生物扰动的强度增加2到3倍[52-53]。但是在水温变化较小时,温度对生物扰动作用影响并不强烈[54]。
1.4.2 底栖生物的种类与密度
底栖生物的种类决定了其生活习性,无脊椎动物与鱼类可能通过多种方式混合沉积物颗粒。例如,颤蚓是一种重要的“传送带”供食器,因其具有密集的居群能通过选择性摄取淤泥与黏土快速重组底层堆积物[55]。另外一些研究者[56-57]发现,“管路扩散者”(e.g., Hediste diversicolor)较“生物扩散者”(e.g., bivalves)对海洋沉积物中的生物化学过程影响更大。“管路扩散者”类的动物制造了非常密集的会发生层间扩散的管路系统,并在洞穴的底部进行生物转运。这种动物群掘穴的行为通常对化学通量和微生物活动具有明显的影响。随着H. diversicolor掘穴至更深的沉积物,其将对大量体积的沉积物起到灌溉的作用,从而影响孔隙水的化学性质、氨基盐的释放以及活性细菌。Jiang等[58]比较了2种节足动物,羽摇蚊与中国长足摇蚊的生物扰动效率,作者发现2种生物在摄食与掘穴方面差别很大,某些羽摇蚊种族在营养输送上作用更重要。
原位研究底栖生物的密度对生物扰动的影响时发现,由于环境因素过于复杂,未能得到生物扰动强度与生物密度单一显著相关性[59-60]。但在实验室模拟中,扰动生物为单一生物时,生物的密度越大,生物扰动强度越大,例如高密度的沙蚕对沉积物的扰动强度明显高于低密度[37]。Reible等[61]将Forbes和Forbes[62]的模型改进后代入数据,发现生物扰动导致的释放通量与生物量的平方根成正比。
1.4.3 沉积物有机质含量
食物供给间接影响了底栖生物的扰动强度[59]。以沉积物有机碎屑为食的底栖生物,摄食速率与有机碳占沉积物比例的相关性为负相关[63]。由此,在有机质含量较低的沉积物中,底栖生物为了生存会摄食大量的沉积物,产生强烈的扰动作用[36]。
1.4.4 生物扰动过程中污染物二次释放的影响因素
生物扰动对污染物归趋的影响依赖于污染物的物理化学性质、沉积物的生物地球化学性质、污染物的位置(如分布在沉积物的表面、深层或在沉积物各层中均匀分布)以及生物扰动的模式和强度等[4,6],例如,生物冲洗对溶解度高的化合物的影响较大,而颗粒物的运动对疏水性的化合物影响较大[6]。在好氧沉积物中,Fe/Mn氧化物或氢氧化物以及有机物是金属离子的重要结合位点[64-67],在缺氧沉积物中,则是金属硫化物占主导地位[68-70]。因此,由于沉积物性质的不同,生物扰动改变其物理化学性质如pH值、溶解氧浓度等的程度不同,由此对污染物迁移转化造成的影响各异[71]。疏水性的有机污染物如PCBs,吸附在沉积物颗粒上有较高浓度,因此颗粒物在生物扰动过程中再悬浮时,会向上覆水输入更多的疏水性污染物,显示出强烈的生物扰动结果[2]。一般来说,污染物在沉积物中的埋藏深度越深,生物扰动导致的污染物迁移越弱,所显示出来的生物扰动强度越弱[4]。各种影响因素使得生物扰动结果十分复杂,区别各种因素的影响作用有待更进一步的研究。
2 生物扰动对重金属迁移转化的影响(Effect of bioturbation on migration and transformation of heavy metals)
生物扰动能改变沉积物中重金属的形态或垂直分布,甚至导致其从沉积物中释放至上覆水。生物类型不同,对重金属在沉积物-水界面的环境行为影响各异(表1)。
2.1 镉(Cd)
生物扰动能通过不同方式改变Cd在沉积物中的形态。浅沟蛤与薄唇鮻摄食河口沉积物中的碎屑后,通过消化作用,排出的粪球中含有的碳酸盐结合态Cd浓度较摄食沉积物中高,从而改变了沉积物中Cd的赋存形态[72]。另外,颤蚓的生物扰动主要通过呼吸作用及其代谢产物的有氧分解使沉积物氧化还原电位下降速度和幅度增大,从而影响沉积物中碳酸盐结合态Cd的变化,而有机质或硫化物结合态Cd以及残渣态Cd则是在生物扰动的作用下,以再悬浮沉积物颗粒的形式向上覆水中迁移[73]。
生物扰动还会改变Cd在沉积物与孔隙水中的分布。颤蚓的扰动将沉积物-水界面的颗粒物重建,为Cd提供新的的吸附位点,会增加Cd富集层的厚度[74]。幽灵虾掘穴的生物通道壁上Cd的含量会明显高于表层沉积物的浓度[75],这是因为幽灵虾在通道壁上分泌的物质富含有机化合物并且通道壁上的颗粒平均粒径较周围沉积物小[76-77],而沉积物的污染与其含有的有机质、粘土含量呈正相关[78],有机质与粘土会吸附聚集大量Cd[71],因而通道壁上有较高含量的Cd。蟹类的掘穴、觅食等可以降低表层沉积物中酸挥发性硫化物(AVS)的浓度,从而使与其结合的Cd释放出来,增加孔隙水中Cd的浓度,而未受扰动的深层孔隙水中Cd的浓度则低于表层沉积物[79]。生物扰动提高沉积物的氧含量,增加了Cd的溶解度[80],从而增加了孔隙水中Cd的浓度[81]。
表1 生物扰动对沉积物中重金属的影响Table 1 Influnce of bioturbation on the heavy metals in sediment
生物扰动促进沉积物向上覆水中释放Cd。颤蚓[82]与湖蝇[83]能使污染沉积物颗粒再悬浮,从而显著促进其中Cd向水相中释放,且Cd大部分为颗粒态。其他研究者也得到了同样的结果,他们发现颤蚓的生物扰动能显著增加上覆水中颗粒态Cd的浓度[73,84]。羽摇蚊幼虫在沉积物表层开始打洞时会明显促进Cd的迁移,之后的浓度降低也十分明显,但始终高于无生物扰动的处理组[13],这些均与生物打洞时,沉积物的曝气及再悬浮颗粒物有关[85-86]。在投加藻类喂食的情况下,Marenzelleria积极的摄食行为、掘穴通水以及此多毛纲动物的移动,增加了水的运动,因此沉积物与沉积物-水界面中Cd的物理迁移增加[87]。鱼的扰动能增加上覆水中Cd的含量,但是并不能提高大型蚤对Cd的摄取,鲤鱼的尺寸与水中总悬浮颗粒物正相关,水中总悬浮颗粒物增加会加大其与Cd的结合能力,从而降低Cd的生物有效性[88]。
2.2 铜(Cu)
生物扰动能改变沉积物中Cu的形态、分布以及促进Cu向上覆水中扩散。生物扰动能增加孔隙水中铁锰氧化态Cu的浓度,并通过改变沉积物的氧化还原电位间接促进Cu自孔隙水向上覆水扩散,改变Cu在沉积物中的垂直分布[73]。羽摇蚊幼虫在沉积物表层开始打洞时会明显促进Cu的迁移,但之后的浓度降低也十分明显,接近无生物扰动的处理组[13],浓度的降低应该是上覆水中铁锰氧化物吸附了游离Cu,氧化共沉淀于沉积物中造成的[89-90]。也有研究表明,生物的扰动对Cu的迁移性影响较小[91]。
2.3 锌(Zn)
浅沟蛤与薄唇鮻摄食沉积物中碎屑后,经消化作用,排出的粪球中可交换态Zn的含量较摄食沉积物颗粒高,改变了Zn的形态分布[72]。幽灵虾的掘穴作用会导致Zn的迁移,掘穴通道壁上存在的Zn浓度明显高于表层沉积物里的Zn,生物淋洗作用导致更多的溶解态金属离子与沉积物颗粒接触,从而形成了掘穴的通道壁,或因幽灵虾选择性使用沉积物颗粒建造通道壁,被使用的沉积物颗粒对金属离子有相对强烈的亲和力[75]。生物扰动同样能促进沉积物中Zn的释放。生物扰动通过淋洗作用,含氧上覆水进入沉积物中使得沉积物氧化分解,加快了沉积物中Zn的释放速率[92],促进Zn向上覆水中释放[73]。湖蝇能显著促进沉积物中Zn的释放,溶解态Zn主要通过扩散作用释放至上覆水,另外则是AVS结合态Zn的氧化分解[79,93],释放至上覆水中的Zn的总浓度与上覆水浊度具有良好的相关性[83]。生物扰动作用加剧时(片脚类Victoriopisa australiensis为强生物扰动状态,双壳类Tellina deltoidalis为弱生物扰动状态),沉积物中Zn的通量也会增加[94]。也有研究表明,底栖生物的扰动会氧化Fe(II),使得铁氧化物沉淀,吸附了孔隙水中的Zn,从而降低了Zn的通量[95]。2个有悖的结论,表明生物扰动对沉积物中Zn的通量的影响十分复杂。
2.4 铅(Pb)
实验室模拟研究表明,颤蚓的生物扰动使沉积物颗粒位置与Pb的吸附位在沉积物-水界面不断更新[96],从而促进水中Pb向沉积物深层扩散,改变其垂直分布[84],同时,颤蚓的生物扰动能通过改变沉积物的氧化还原电位促进Pb自孔隙水向上覆水中释放,但只在沉积物厚度小于5 cm比较显著[73]。颤蚓的扰动作用对上覆水中溶解态Pb的浓度影响较小,主要是通过沉积物颗粒的再悬浮贡献颗粒态Pb浓度[97]。双壳类Tellina deltoidalis的生物扰动作用对沉积物中Pb的释放作用也不明显[98]。因此,生物扰动对沉积物中溶解态Pb的迁移影响作用有限。而Pb在沉积物中的富集开始被误解为沉积作用,实际上生物扰动作用才是主要控制因素[99]。
2.5 其他重金属
生物扰动增加了沉积物的氧含量,促进沉积物中甲基汞向水相释放[100-102]。Cardoso等[103]通过短期(72 h)的生物扰动实验发现,生物扰动对汞从沉积物到水中的迁移不能产生影响作用,沉积物中的汞主要以硫化物的形式沉淀下来,与铁锰氧化物或有机质结合。笔者[104]的研究发现,泥鳅、羽摇蚊幼虫与颤蚓的生物扰动作用在前期促进溶解态铊(Tl)的释放,后期为抑制作用,这与上覆水pH值、Fe/Mn氧化物和浮游生物有关,且扰动强度为泥鳅 > 羽摇蚊幼虫 > 颤蚓。羽摇蚊幼虫明显促进沉积物中钼(Mo)与(U)的释放,对锰(Mn)与镍(Ni)在初期掘穴时有明显促进释放作用,虽然后期促进作用减弱,但释放浓度始终高于无生物扰动的处理组,而对铁(Fe)、钴(Co)、铈(Ce),在前期显著的促进作用后,上覆水中浓度明显降低到与无生物扰动对照组相接近的水平[13],上覆水中重金属浓度降低可能是Fe/Mn氧化物的吸附共沉淀导致的[89-90]。因生物扰动作用,掘穴类蜉蝣生物Hexagenia较浅水底的片脚生物Hyalella存在下,上覆水中游离Ni浓度高[105],从表象上看,Hexagenia的扰动减少了AVS的量,从而提高了Ni的可利用性和毒性[106]。对比颤蚓与羽摇蚊幼虫对铀(U)污染沉积物中U释放的影响发现,颤蚓对沉积物的重组使得释放至上覆水中的U浓度较高,而羽摇蚊幼虫对沉积物的改造作用较小,对U释放影响不明显[107],这受限于实验中高浓度的U对羽摇蚊幼虫存活、生长、发育等的潜在有害效应,导致其生物扩散作用减弱[108]。颤蚓消耗氧气,使得沉积物缺氧,孔隙水中溶解态Mn的浓度和通量降低,这很可能是厌氧微生物与颤蚓竞争不稳定有机碳,使得代谢减少导致的[109]。利用荧光延时沉积物剖面成像和平板薄膜扩散梯度技术原位研究生物扰动与沉积物中Fe(II)、Mn(II)的可利用性的关系,发现虽然可以同时原位收集生物扰动作用的高分辨率的图片及Fe/Mn的数据,但是由于颗粒物和孔隙水的混合过程具有时间与空间上的差异,二者并不一致,影响因素比较复杂[110]。示踪剂分析表明,鲤鱼扰动颗粒物的有效深度大约为3 cm,生物扰动作用下溶解态Mn浓度较对照组低[111]。生物扰动可以促进、减少或者不影响重金属污染物从沉积物向水体中的释放。
3 底栖生物对重金属的富集(Bioaccumulation of heavy metals by benthic organisms)
沉积物中的重金属浓度较高时,对其中的底栖生物会有一定的毒性[112]。一些无脊椎动物可以通过胃肠道的上皮细胞对重金属的解毒能力,使得体内重金属累积浓度升高,直到细胞与其包容物一起凋亡[113-117]。一篇关于金属摄取的综述文章总结到,在实验室研究金属摄取中发现,无脊椎动物对金属的摄取比脊椎动物的浓度因子高[118],其他研究者还发现在同一栖息地,捕食者对重金属的富集量低于通过其他摄食习性的动物[119-120]。例如,暴露28 d的富集实验中,颤蚓、羽摇蚊幼虫与泥鳅对Tl的富集能力大小为颤蚓>羽摇蚊幼虫>泥鳅[104]。另外,由于重金属的性质不同,生物对不同重金属的富集能力也有所差异。羽摇蚊幼虫对Cu、Zn、Pb的富集能力大小为Cu > Zn > Pb[121]。河蚬对Cd的富集能力高于Zn[83],这可能是由于Cd2+的离子半径为0.92 A,与Ca2+的离子半径接近(Ca2+, 0.94 A),因此可能通过钙离子的通道或其他潜在途径进入细胞[122]。暴露方式不同,生物的富集能力也会有所不同。投加藻类喂食条件下较无投加条件下,明显增加了河蚬对Cd的富集量[82]。重金属可以通过鳃被动扩散进入鱼体,也可以被浮游植物和其他微生物富集后,通过食物链进入鱼体[123]。
4 讨论(Discussion)
生物扰动在作用过程中受到温度、生物种类与密度、沉积物有机质含量等因素的影响。生物扰动对污染物归趋的影响依赖于污染物的物理化学性质、沉积物的生物地球化学性质、污染物的位置(如分布在沉积物的表面、深层或在沉积物各层中均匀分布)以及生物扰动的模式和强度等。国内外对水层-底栖界面耦合过程的研究已开展多年,并积累了相当基础。生物扰动可以促进、减少或者不影响重金属污染物从沉积物向水体中的释放。生物通过运动、摄食、排泄等导致沉积物颗粒再悬浮、向沉积物内部输入新鲜上覆水与氧气、改变沉积物物理化学性质等,从而影响富集于沉积物中重金属的形态、分布以及向上覆水中释放。
以往生物扰动对沉积物中重金属释放规律影响的研究中,由于原位研究影响因素过于复杂,更多的是从模拟实验中的现象入手,并且这些现象之间有着很大的差异。这些重大差异的背后是对生物扰动过程中的微观反应机制认识不足,制约了对生物扰动过程中污染物归趋变化的认识。因此,要弄清楚生物扰动过程对重金属的影响,有效控制沉积物的内源释放,势必需要对生物扰动过程中沉积物-水界面的微观过程有更深入的了解。随着现代分析技术的进步,人们已开始从分子水平上认识重金属在环境界面上的迁移转化过程机制。重金属形态分析也由化学形态分析、化学提取方法及各种分级方法发展到动力学形态分析技术研究。这些方法已经广泛应用到水体重金属形态研究和生物有效性评价上,为深入了解生物扰动过程重金属在沉积物-水界面的微观过程提供了新思路和技术基础。
[1] 孙刚, 盛连喜, 千贺裕太郎. 生物扰动在水层-底栖界面耦合中的作用[J]. 生态环境, 2006, 15(5): 1106-1110
Sun G, Sheng L X, Senga Y. Advance in bioturbation effect in benthic-pelagic interface [J]. Ecology and Environment, 2006, 15(5): 1106-1110 (in Chinese)
[2] Thibodeaux L J, Bierman V J. The bioturbation-driven chemical release process [J]. Environmental Science & Technology, 2003, 37(13): 252A-258A
[3] van Ryssen R, Leermakers M, Baeyens W. The mobilisation potential of trace metals in aquatic sediments as a tool for sediment quality classification [J]. Environmental Science & Policy, 1999, 2(1): 75-86
[4] Josefsson S, Leonardsson K, Gunnarsson J S, et al. Bioturbation-driven release of buried PCBs and PBDEs from different depths in contaminated sediments [J]. Environmental Science & Technology, 2010, 44(19): 7456-7464
[5] Granberg M E, Gunnarsson J S, Hedman J E, et al. Bioturbation-driven release of organic contaminants from baltic sea sediments mediated by the invading polychaete Marenzelleria neglecta [J]. Environmental Science & Technology, 2008, 42(4): 1058-1065
[6] Banta G T, Andersen O. Bioturbation and the fate of sediment pollutants-Experimental case studies of selected infauna species [J]. Vie Milieu, 2003, 53(4): 233-248
[7] Lagauzere S, Pischedda L, Cuny P, et al. Influence of Chironomus riparius (Diptera, Chironomidae) and Tubifex tubifex (Annelida, Oligochaeta) on oxygen uptake by sediments. Consequences of uranium contamination [J]. Environmental Pollution, 2009, 157(4): 1234-1242
[8] Hunting E R, Mulder C, Kraak M H S, et al. Effects of copper on invertebrate-sediment interactions [J]. Environmental Pollution, 2013, 180: 131-135
[9] Nogaro G, Burgin A J, Schoepfer V A, et al. Aluminum sulfate (alum) application interactions with coupled metal and nutrient cycling in a hypereutrophic lake ecosystem [J]. Environmental Pollution, 2013, 176: 267-274
[10] 庞俊晓, 游静. 生物扰动对沉积物中污染物环境行为与生物可利用性的影响[J]. 生态毒理学报, 2013, 8(6): 805-816
Pang J X, You J. Influence of bioturbation on fate and bioavailability of sediment-associated contaminants [J]. Asian Journal of Ecotoxicology, 2013, 8(6): 805-816 (in Chinese)
[11] Mermillod-Blondin F, Nogaro G, Vallier F, et al. Laboratory study highlights the key influences of stormwater sediment thickness and bioturbation by tubificid worms on dynamics of nutrients and pollutants in stormwater retention systems [J]. Chemosphere, 2008, 72(2): 213-223
[12] Rhoads D C. Organism-sediment relations on the muddy sea floor [J]. Oceanography and Marine Biology Annual Review, 1974, 12: 263-300
[13] Schaller J. Bioturbation/bioirrigation by Chironomus plumosus as main factor controlling elemental remobilization from aquatic sediments? [J]. Chemosphere, 2014, 107: 336-343
[14] Simpson S L, Apte S C, Batley G E. Effect of short term resuspension events on trace metal speciation in polluted anoxic sediments [J]. Environmental Science & Technology, 1998, 32(5): 620-625
[15] Tengberg A, Almroth E, Hall P. Resuspension and its effects on organic carbon recycling and nutrient exchange in coastal sediments: In situ measurements using new experimental technology [J]. Journal of Experimental Marine Biology and Ecology, 2003, 285: 119-142
[16] Widdows J, Brinsley M D, Bowley N, et al. A benthic annular flume for in situ measurement of suspension feeding/biodeposition rates and erosion potential of intertidal cohesive sediments [J]. Estuarine Coastal and Shelf Science, 1998, 46(1): 27-38
[17] Bettinetti R, Ponti B, Marziali L, et al. Biomonitoring of lake sediments using benthic macroinvertebrates [J]. Trac-Trends in Analytical Chemistry, 2012, 36: 92-102
[18] Darwin C. The Formation of Vegetable Mould through the Action of Worms with Observation on Their Habits [M]. London: John Murray, 1881
[19] Davison C. On the amount of sand brought up by lobworms to the surface [J]. Geological Magazine, 1891, 8: 489-493
[20] Schäfer W. Biogene sedimentation im gefolge von bioturbation [J]. Senckenbergiana, 1952, 33: 1-12
[21] Rhoads D C. Biogenic reworking of intertidal and subtidal sediments in Barnstable Harbor and Buzzards Bay, Massachusetts [J]. Journal of Geology, 1967, 75: 461-476
[22] Winston J E, Anderson F E. Bioturbation of sediments in a northern temperate estuary [J]. Marine Geology, 1971, 10(1): 39-49
[23] Kristensen E, Penha-Lopes G, Delefosse M, et al. What is bioturbation? The need for a precise definition for fauna in aquatic sciences [J]. Marine Ecology Progress Series, 2012, 446: 285-302
[24] Kristensen E, Haese R R, Kostka J E. Biogenic Particle Reworking and Bacterial-Invertebrate Interactions in Marine Sediments [M]// Solan M, Wigham B D. Interactions between Macro-and Microorganisms in Marine Sediments. John Wiley & Sons, Inc., 2005, 60: 105-124
[25] Maire O, Lecroart P, Meysman F, et al. Quantification of sediment reworking rates in bioturbation research: A review [J]. Aquatic Biology, 2008, 2(3): 219-238
[26] Kristensen E, Kostka J E. Macrofaunal Burrows and Irrigation in Marine Sediment: Microbiological and Biogeochemical Interactions [M]// Solan M, Wigham B D. Interactions between Macro-and Microorganisms in Marine Sediments. John Wiley & Sons, Inc., 2005, 60: 125-157
[27] Meysman F J R, Galaktionov O S, Gribsholt B, et al. Bio-irrigation in permeable sediments: An assessment of model complexity [J]. Journal of Marine Research, 2006, 64(4): 589-627
[28] Boudreau B P. Mathematics of tracer mixing in sediments. 1. Spatially-dependent, diffusive mixing [J]. American Journal of Science, 1986, 286(3): 161-198
[29] Boudreau B P. Mathematics of tracer mixing in sediments. 2. Nonlocal mixing and biological conveyor-belt phenomena [J]. American Journal of Science, 1986, 286(3): 199-238
[30] Gardner L R, Sharma P, Moore W S. A regeneration model for the effect of bioturbation by fiddler-crabs on Pb-210 profiles in salt-marsh sediments [J]. Journal of Environmental Radioactivity, 1987, 5(1): 25-36
[31] Francois F, Poggiale J C, Durbec J P, et al. A new approach for the modelling of sediment reworking induced by a macrobenthic community [J]. Acta Biotheoretica, 1997, 45(3-4): 295-319
[32] Francois F, Gerino M, Stora G, et al. Functional approach to sediment reworking by gallery-forming macrobenthic organisms: Modeling and application with the polychaete Nereis diversicolor [J]. Marine Ecology Progress Series, 2002, 229: 127-136
[33] Penha-Lopes G, Bartolini F, Limbu S, et al. Are fiddler crabs potentially useful ecosystem engineers in mangrove wastewater wetlands? [J]. Marine Pollution Bulletin, 2009, 58(11): 1694-1703
[34] D'Andrea A F, Lopez G R, Aller R C. Rapid physical and biological particle mixing on an intertidal sandflat [J]. Journal of Marine Research, 2004, 62(1): 67-92
[35] Lohrer A M, Thrush S F, Hunt L, et al. Rapid reworking of subtidal sediments by burrowing spatangoid urchins [J]. Journal of Experimental Marine Biology and Ecology, 2005, 321(2): 155-169
[36] Gilbert F, Hulth S, Grossi V, et al. Sediment reworking by marine benthic species from the Gullmar Fjord (Western Sweden): Importance of faunal biovolume [J]. Journal of Experimental Marine Biology and Ecology, 2007, 348(1-2): 133-144
[37] Duport E, Stora G, Tremblay P, et al. Effects of population density on the sediment mixing induced by the gallery-diffusor Hediste (Nereis) diversicolor O.F. Müller, 1776 [J]. Journal of Experimental Marine Biology and Ecology, 2006, 336(1): 33-41
[38] Valdemarsen T, Wendelboe K, Egelund J T, et al. Burial of seeds and seedlings by the lugworm Arenicola marina hampers eelgrass (Zostera marina) recovery [J]. Journal of Experimental Marine Biology and Ecology, 2011, 410: 45-52
[39] Dobbs F C, Whitlatch R B. Aspects of deposit-feeding by the polychaete Clymenella torquata [J]. Ophelia, 1982, 21(2): 159-166
[40] Pillay D, Branch G M. Bioengineering Effects of Burrowing Thalassinidean Shrimps on Marine Soft-Bottom Ecosystems [M]// Gibson R N, Atkinson R J A, Gordon J D M. eds. Oceanography and Marine Biology: An Annual Review, Vol 49. Vol 49-Oceanography and Marine Biology. CRC Press, 2011: 137-191
[41] Branch G M, Pringle A. The impact of the sand prawn Callianassa kraussi stebbing on sediment turnover and on bacteria, meiofauna, and benthic microflora [J]. Journal of Experimental Marine Biology and Ecology, 1987, 107(3): 219-235
[42] Shull D H, Yasuda M. Size-selective downward particle transport by cirratulid polychaetes [J]. Journal of Marine Research, 2001, 59(3): 453-473
[43] Levin L, Blair N, DeMaster D, et al. Rapid subduction of organic matter by maldanid polychaetes on the North Carolina slope [J]. Journal of Marine Research, 1997, 55(3): 595-611
[44] Kristensen E. Impact of polychaetes (Nereis spp. and Arenicola marina) on carbon biogeochemistry in coastal marine sediments [J]. Geochemical Transactions, 2001, 2(1): 92
[45] Shull D H, Benoit J M, Wojcik C, et al. Infaunal burrow ventilation and pore-water transport in muddy sediments [J]. Estuarine Coastal and Shelf Science, 2009, 83(3): 277-286
[46] Barrow M J, Wells R M G. Ventilation and oxygen extraction in an arenicolid polychaete [J]. Comparative Biochemistry and Physiology A-Physiology, 1982, 73(3): 491-495
[47] Riisgard H U, Larsen P S. Water pumping and analysis of flow in burrowing zoobenthos: An overview [J]. Aquatic Ecology, 2005, 39(2): 237-258
[48] Morad M R, Khalili A, Roskosch A, et al. Quantification of pumping rate of Chironomus plumosus larvae in natural burrows [J]. Aquatic Ecology, 2010, 44(1): 143-153
[49] Specht D T, Lee H. Direct measurement technique for determining ventilation rate in the deposit feeding clam Macoma nasuta (Bivalvia, Tellinaceae) [J]. Marine Biology, 1989, 101(2): 211-218
[50] Stamhuis E J, Videler J J, de Wilde P. Optimal foraging in the thalassinidean shrimp Callianassa subterranea: Improving food quality by grain size selection [J]. Journal of Experimental Marine Biology and Ecology, 1998, 228(2): 197-208
[51] Forster S, Graf G. Impact of irrigation on oxygen flux into the sediment: Intermittent pumping by Callianassa subterranea and ‘piston-pumping’ by Lanice conchilega [J]. Marine Biology, 1995, 123(2): 335-346
[52] Martin W R, Sayles F L. Seasonal cycles of particle and solute transport processes in nearshore sediments - Rn-222/Ra-226 and Th-234/U-238 disequilibrium at a site in Buzzards Bay, MA [J]. Geochimica et Cosmochimica Acta, 1987, 51(4): 927-943
[53] Gerino M, Aller R C, Lee C, et al. Comparison of different tracers and methods used to quantify bioturbation during a spring bloom: 234-thorium, luminophores and chlorophyll a [J]. Estuarine Coastal and Shelf Science, 1998, 46(4): 531-547
[54] Wheatcroft R A. Time-series measurements of macrobenthos abundance and sediment bioturbation intensity on a flood-dominated shelf [J]. Progress in Oceanography, 2006, 71(1): 88-122
[55] Dafoe L T, Rygh A L, Yang B, et al. A new technique for assessing tubificid burrowing activities, and recognition of biogenic grading formed by these oligochaetes [J]. Palaios, 2011, 26(1-2): 66-80
[56] Cardoso P G, Lillebo A I, Lopes C B, et al. Influence of bioturbation by Hediste diversicolor on mercury fluxes from estuarine sediments: A mesocosms laboratory experiment [J]. Marine Pollution Bulletin, 2008, 56(2): 325-334
[57] Michaud E, Desrosiers G, Mermillod-Blondin F, et al. The functional group approach to bioturbation: II. The effects of the Macoma balthica community on fluxes of nutrients and dissolved organic carbon across the sediment-water interface [J]. Journal of Experimental Marine Biology and Ecology, 2006, 337(2): 178-189
[58] Jiang P H, Ji L, Xiao W J, et al. Bioturbation of two chironomid species on nutrient exchange at sediment-water interface in a Chinese shallow eutrophic lake [J]. Fresenius Environmental Bulletin, 2010, 19(5A): 902-910
[59] Turnewitsch R, Witte U, Graf G. Bioturbation in the abyssal Arabian Sea: Influence of fauna and food supply [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2000, 47(14): 2877-2911
[60] Hughes D J, Gage J D. Benthic metazoan biomass, community structure and bioturbation at three contrasting deep-water sites on the northwest European continental margin [J]. Progress in Oceanography, 2004, 63(1-2): 29-55
[61] Reible D D, Popov V, Valsaraj K T, et al. Contaminant fluxes from sediment due to tubificid oligochaete bioturbation [J]. Water Research, 1996, 30(3): 704-714
[62] Forbes V E, Forbes T L. Integrated Ecotoxicology: Linking Fate and EFFECT within a Biological Hierarchy [M]// Ecotoxicology in Theory and Practice. New York: Chapman & Hall, 1994: 149-183
[63] Cammen L M. Ingestion rate: Empirical model for aquatic deposit feeders and detritivores [J]. Oecologia, 1980, 44(3): 303-310
[64] Saulnier I, Mucci A. Trace metal remobilization following the resuspension of estuarine sediments: Saguenay Fjord, Canada [J]. Applied Geochemistry, 2000, 15(2): 191-210
[65] Li X D, Shen Z G, Wai O W H, et al. Chemical partitioning of heavy metal contaminants in sediments of the Pearl River Estuary [J]. Chemical Speciation and Bioavailability, 2000, 12(1): 17-25
[66] Zoumis T, Schmidt A, Grigorova L, et al. Contaminants in sediments: Remobilisation and demobilisation [J]. Science of the Total Environment, 2001, 266(1-3): 195-202
[67] Fan W H, Wang W X, Chen J S, et al. Cu, Ni, and Pb speciation in surface sediments from a contaminated bay of northern China [J]. Marine Pollution Bulletin, 2002, 44(8): 820-826
[68] Ditoro D M, Mahony J D, Hansen D J, et al. Toxicity of cadmium in sediments - The role of acid volatile sulfide [J]. Environmental Toxicology and Chemistry, 1990, 9(12): 1487-1502
[69] Zhuang Y Y, Allen H E, Fu G M. Effect of aeration of sediment on cadmium binding [J]. Environmental Toxicology and Chemistry, 1994, 13(5): 717-724
[70] Caetano M, Madureira M J, Vale C. Metal remobilisation during resuspension of anoxic contaminated sediment: Short-term laboratory study [J]. Water Air and Soil Pollution, 2003, 143(1-4): 23-40
[71] Eggleton J, Thomas K V. A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events [J]. Environment International, 2004, 30(7): 973-980
[72] Pedro S, Duarte B, Reis G, et al. Metal partitioning and availability in estuarine surface sediments: Changes promoted by feeding activity of Scrobicularia plana and Liza ramada [J]. Estuarine, Coastal and Shelf Science, 2015, 167(Part A): 240-247
[73] 乔倩倩. 颤蚓扰动存在下影响沉积物中重金属形态和释放的因素研究[D]. 长春: 吉林大学, 2011: 19-41
Qiao Q Q. Study on the influence factors of the speciation and release of heavy metals in sediment with tubificid bioturbation [D]. Changchun: Jilin University, 2011: 19-41 (in Chinese)
[74] Ciutat A, Anschutz P, Gerino M, et al. Effects of bioturbation on cadmium transfer and distribution into freshwater sediments [J]. Environmental Toxicology and Chemistry, 2005, 24(5): 1048-1058
[75] Klerks P L, Felder D L, Strasser K, et al. Effects of ghost shrimp on zinc and cadmium in sediments from Tampa Bay, FL [J]. Marine Chemistry, 2007, 104(1-2): 17-26
[76] Devaugelas J, Buscail R. Organic matter distribution in burrows of the thalassinid crustacean Callichirus laurae, Gulf of Aqaba (Red Sea) [J]. Hydrobiologia, 1990, 207: 269-277
[77] Felder D L, Griffis R B. Dominant Infaunal Communities at Risk in Shoreline Habitats: Burrowing Thalassinid Crustacea [M]. New Orleans: U.S. Department of Interior MMS, Gulf of Mexico OCS Regional Office, 1994: 87
[78] Feijtel T C, Delaune R D, Patrick W H. Biogeochemical control on metal distribution and accumulation in Louisiana sediments [J]. Journal of Environmental Quality, 1988, 17(1): 88-94
[79] Peterson G S, Ankley G T, Leonard E N. Effect of bioturbation on metal-sulfide oxidation in surficial freshwater sediments [J]. Environmental Toxicology and Chemistry, 1996, 15(12): 2147-2155
[80] Gambrell R P, Wiesepape J B, Patrick W H, et al. The effects of pH, redox, and salinity on metal release from a contaminated sediment [J]. Water Air and Soil Pollution, 1991, 57(1): 359-367
[81] Green A S, Chandler G T. Meiofaunal bioturbation effects on the partitioning of sediment-associated cadmium [J]. Journal of Experimental Marine Biology and Ecology, 1994, 180(1): 59-70
[82] Ciutat A, Gerino M, Boudou A. Remobilization and bioavailability of cadmium from historically contaminated sediments: Influence of bioturbation by tubificids [J]. Ecotoxicology and environmental Safety, 2007, 68(1): 108-117
[83] Ciutat A, Boudou A. Bioturbation effects on cadmium and zinc transfers from a contaminated sediment and on metal bioavailability to benthic bivalves [J]. Environmental Toxicology and Chemistry, 2003, 22(7): 1574-1581
[84] 路永正, 阎百兴. 颤蚓扰动作用对铅镉在沉积物-水相中迁移的影响[J]. 中国环境科学, 2010, 30(2): 251-255
Lu Y Z, Yan B X. Effect of bioturbation by worms on the transport of Pb and Cd between sediments and waters[J]. China Environments Science, 2010, 30(2): 251-255 (in Chinese)
[85] Lewandowski J, Hupfer M. Effect of macrozoobenthos on two-dimensional small-scale heterogeneity of pore water phosphorus concentrations in lake sediments: A laboratory study [J]. Limnology and Oceanography, 2005, 50(4): 1106-1118
[86] Lagauzere S, Moreira S, Koschorreck M. Influence of bioturbation on the biogeochemistry of littoral sediments of an acidic post-mining pit lake [J]. Biogeosciences, 2011, 8(2): 339-352
[87] Hedman J E, Bradshaw C, Thorsson M H, et al. Fate of contaminants in Baltic Sea sediments: Role of bioturbation and settling organic matter [J]. Marine Ecology Progress Series, 2008, 356: 25-38
[88] Wall S B, Isely J J, LaPoint T W. Fish bioturbation of cadmium-contaminated sediments: Factors affecting Cd availability to Daphnia magna [J]. Environmental Toxicology and Chemistry, 1996, 15(3): 294-298
[89] Goldberg E D. Marine geochemistry.1. Chemical scavengers of the sea [J]. Journal of Geology, 1954, 62(3): 249-265
[90] Chapman P M, Wang F Y, Janssen C, et al. Ecotoxicology of metals in aquatic sediments: Binding and release, bioavailability, risk assessment, and remediation [J]. Canadian Journal of Fisheries and Aquatic Sciences, 1998, 55(10): 2221-2243
[91] Sundelin B, Eriksson A K. Mobility and bioavailability of trace metals in sulfidic coastal sediments [J]. Environmental Toxicology and Chemistry, 2001, 20(4): 748-756
[92] Simpson S L, Pryor I D, Mewburn B R, et al. Considerations for capping metal-contaminated sediments in dynamic estuarine environments [J]. Environmental Science & Technology, 2002, 36(17): 3772-3778
[93] Di Toro D M, Mahony J D, Gonzalez A M. Particle oxidation model of synthetic FeS and sediment acid-volatile sulfide [J]. Environmental Toxicology and Chemistry, 1996, 15(12): 2156-2167
[94] Remaili T M, Simpson S L, Amato E D, et al. The impact of sediment bioturbation by secondary organisms on metal bioavailability, bioaccumulation and toxicity to target organisms in benthic bioassays: Implications for sediment quality assessment [J]. Environmental Pollution, 2016, 208(Part B): 590-599
[95] Simpson S L, Batley G E. Disturbances to metal partitioning during toxicity testing of iron(II)-rich estuarine pore waters and whole sediments [J]. Environmental Toxicology and Chemistry, 2003, 22(2): 424-432
[96] Matisoff G. Effects of Bioturbation on Solute and Particle Transport in Sediments [M]. Chelsea: Ann Arbor Press, 1995: 201-272
[97] 吕继涛. 颤蚓生物扰动对沉积物中重金属释放及形态分布的影响[D]. 长春: 吉林大学, 2009: 18-37
Lv J T. Effect of tubificid bioturbation on the release and speciation of heavy metals in sediment [D]. Changchun: Jilin University, 2009: 18-37 (in Chinese)
[98] Atkinson C A, Jolley D F, Simpson S L. Effect of overlying water pH, dissolved oxygen, salinity and sediment disturbances on metal release and sequestration from metal contaminated marine sediments [J]. Chemosphere, 2007, 69(9): 1428-1437
[99] Crusius J, Kenna T C. Ensuring confidence in radionuclide-based sediment chronologies and bioturbation rates [J]. Estuarine, Coastal and Shelf Science, 2007, 71(3-4): 537-544
[100]Hammerschmidt C R, Fitzgerald W F. Sediment-water exchange of methylmercury determined from shipboard benthic flux chambers [J]. Marine Chemistry, 2008, 109(1-2): 86-97
[101]Benoit J M, Shull D H, Harvey R M, et al. Effect of bioirrigation on sediment-water exchange of methylmercury in Boston Harbor, Massachusetts [J]. Environmental Science & Technology, 2009, 43(10): 3669-3674
[102]King J K, Saunders F M, Lee R F, et al. Coupling mercury methylation rates to sulfate reduction rates in marine sediments [J]. Environmental Toxicology and Chemistry, 1999, 18(7): 1362-1369
[103]Cardoso P G, Lillebo A I, Lopes C B, et al. Influence of bioturbation by Hediste diversicolor on mercury fluxes from estuarine sediments: A mesocosms laboratory experiment [J]. Marine Pollution Bulletin, 2008, 56(2): 325-334
[104]He Y, Men B, Yang X F, et al. Bioturbation/bioirrigation effect on thallium released from reservoir sediment by different organism types [J]. Science of the Total Environment, 2015, 532: 617-624
[105]Brumbaugh W G, Besser J M, Ingersoll C G, et al. Preparation and characterization of nickel-spiked freshwater sediments for toxicity tests: Toward more environmentally realistic nickel partitioning [J]. Environmental Toxicology and Chemistry, 2013, 32(11): 2482-2494
[106]Besser J M, Brumbaugh W G, Ingersoll C G, et al. Chronic toxicity of nickel-spiked freshwater sediments: Variation in toxicity among eight invertebrate taxa and eight sediments [J]. Environmental Toxicology and Chemistry, 2013, 32(11): 2495-2506
[107]Lagauzère S, Boyer P, Stora G, et al. Effects of uranium-contaminated sediments on the bioturbation activity of Chironomus riparius larvae (Insecta, Diptera) and Tubifex tubifex worms (Annelida, Tubificidae) [J]. Chemosphere, 2009, 76(3): 324-334
[108]Dias V, Vasseur C, Bonzorn J M. Exposure of Chironomus riparius larvae to uranium: Effects on survival, development time, growth, and mouthpart deformities [J]. Chemosphere, 2008, 71(3): 574-581
[109]Anschutz P, Ciutat A, Lecroart P, et al. Effects of tubificid worm bioturbation on freshwater sediment biogeochemistry [J]. Aquatic Geochemistry, 2012, 18(6): 475-497
[110]Teal L R, Parker E R, Solan M. Coupling bioturbation activity to metal (Fe and Mn) profiles in situ [J]. Biogeosciences, 2013, 10(4): 2365-2378
[111]Ritvo G, Kochba M, Avnimelech Y. The effects of common carp bioturbation on fishpond bottom soil [J]. Aquaculture, 2004, 242(1-4): 345-356
[112]布吉红, 陈辉辉, 许宜平, 等. 辽河表层沉积物重金属生态风险与综合毒性表征[J]. 生态毒理学报, 2014, 9(1): 24-34
Bu J H, Chen H H, Xu Y P, et al. Ecological risk of interstitial water heavy metals and toxicity characterization of surface sediments in branches of Liaohe River [J]. Asian Journal of Ecotoxicology, 2014, 9(1): 24-34 (in Chinese)
[113]Ahearn G A, Duerr J M, Zhuang Z, et al. Ion transport processes of crustacean epithelial cells [J]. Physiological and Biochemical Zoology, 1999, 72(1): 1-18
[114]Amiard J C, Amiard-Triquet C, Barka S, et al. Metallothioneins in aquatic invertebrates: Their role in metal detoxification and their use as biomarkers [J]. Aquatic Toxicology, 2006, 76(2): 160-202
[115]Khati W, Ouali K, Mouneyrac C, et al. Metallothioneins in Aquatic Invertebrates: Their Role in Metal Detoxification and Their Use in Biomonitoring [M]// Salame C, Aillerie M, Khoury G. eds. Terragreen 2012: Clean Energy Solutions for Sustainable Environment. Vol 18-Energy Procedia. Beirut, Lebanon, 2012: 784-794
[116]Burgos M G, Rainbow P S. Uptake, accumulation and excretion by Corophium volutator (Crustacea : Amphipoda) of zinc, cadmium and cobalt added to sewage sludge [J]. Estuarine Coastal and Shelf Science, 1998, 47(5): 603-620
[117]Nassiri Y, Rainbow P S, Amiard-Triquet C, et al. Trace-metal detoxification in the ventral caeca of Orchestia gammarellus (Crustacea : Amphipoda) [J]. Marine Biology, 2000, 136(3): 477-484
[118]Taylor D. The significance of the accumulation of cadmium by aquatic organisms [J]. Ecotoxicology and Environmental Safety, 1983, 7(1): 33-42
[119]van Hattum B, Timmermans K R, Govers H A. Abiotic and biotic factors influencing in situ trace metal levels in macroinvertebrates in freshwater ecosystems [J]. Environmental Toxicology and Chemistry, 1991, 10(2): 275-292
[120]Timmermans K R, Vanhattum B, Kraak M H S, et al. Trace-metals in a littoral foodweb: Concentrations in organisms, sediment and water [J]. Science of the Total Environment, 1989, 87-88: 477-494
[121]Men B, He Y, Yang X, et al. Bioturbation effects on heavy metals fluxes from sediment treated with activated carbon [J]. Environmental Science and Pollution Research, 2016, 23(9): 9114-9121
[122]Schaller J, Brackhage C, Mkandawire M, et al. Metal/metalloid accumulation/remobilization during aquatic litter decomposition in freshwater: A review [J]. Science of the Total Environment, 2011, 409(23): 4891-4898
[123]Bosch A C, O'Neill B, Sigge G O, et al. Heavy metals in marine fish meat and consumer health: A review [J]. Journal of the Science of Food and Agriculture, 2016, 96(1): 32-48
◆
Bioturbation Effect on the Migration and Transformation of Heavy Metals in Sediment: A Review
He Yi1,2, Men Bin1,#, Yang Xiaofang1, Xu Hui1, Wang Dongsheng1,*
1. State Key Laboratory of Environmental Aquatic Chemistry, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China 2. University of the Chinese Academy of Sciences, Beijing 100049, China
Received 3 May 2016 accepted 27 May 2016
Heavy metal contaminated sediments may pose a risk for the ecological quality of surface waters. Bioturbation can change the physical and chemical properties of the sediment, and therefore have significant effects on the occurence, migration and transformation of heavy metals in the sediment. This paper introduced the definition and types of bioturbation, the main factors influencing the pollutant release during the process of the disturbance, and reviewed bioturbation effects on the environmental behavior of heavy metals in sediments such as copper, zinc, lead, cadmium and other heavy metals.
heavy metal; sediment; migration; transformation; bioturbation
国家自然科学基金(No. 41201498)
何怡(1987-),女,博士,研究方向为重金属污染控制,E-mail: heyi.216216@163.com
*通讯作者(Corresponding author), E-mail: wgds@rcees.ac.cn
10.7524/AJE.1673-5897.20160413002
2016-05-03 录用日期:2016-05-27
1673-5897(2016)6-025-12
X171.5
A
王东升(1970-),男,博士,研究员,主要研究方向为环境水质学、混凝科学与技术。
门彬(1983-),女,博士,助理研究员,主要研究方向为微界面水质化学、沉积物界面过程、重金属污染过程与控制。
# 共同通讯作者(Co-corresponding author), E-mail: binmen@rcees.ac.cn
何怡, 门彬, 杨晓芳, 等. 生物扰动对沉积物中重金属迁移转化影响的研究进展[J]. 生态毒理学报,2016, 11(6): 25-36
He Y, Men B, Yang X F, et al. Bioturbation effect on the migration and transformation of heavy metals in sediment: A review [J]. Asian Journal of Ecotoxicology, 2016, 11(6): 25-36 (in Chinese)