APP下载

黄芩,由古籍里走进现代生活的药用植物*

2016-02-14崔孟颖CathieMartin陈晓亚

世界科学技术-中医药现代化 2016年11期
关键词:小柴胡黄芩黄酮

崔孟颖,柳 洁,杨 蕾,Cathie Martin,2,陈晓亚,3,赵 清**

(1. 中国科学院上海辰山植物科学研究中心/上海市资源植物功能基因组学重点实验室/上海辰山植物园上海 201602;2. 约翰因纳斯中心 诺维奇 NR4 7UH;3. 中科院上海生命科学研究院植物生理生态研究所 上海 200032)

黄芩,由古籍里走进现代生活的药用植物*

崔孟颖1,柳 洁1,杨 蕾1,Cathie Martin1,2,陈晓亚1,3,赵 清1**

(1. 中国科学院上海辰山植物科学研究中心/上海市资源植物功能基因组学重点实验室/上海辰山植物园上海 201602;2. 约翰因纳斯中心 诺维奇 NR4 7UH;3. 中科院上海生命科学研究院植物生理生态研究所 上海 200032)

黄芩作为传统的药用植物,以其根部入药,主治呼吸道感染、腹泻、痢疾、肝脏疾病等,在中国已有数千年的使用历史。本文综述了药用植物黄芩的古代文献记载及使用历史、活性成分及其药理作用现代研究。黄芩的活性成分主要为黄酮类,如黄芩苷、汉黄芩苷及其苷配基黄芩素、汉黄芩素,这些化合物具有抗癌、护肝、抗病毒等多种药理作用。本文也介绍了黄芩相关生物技术及黄芩黄酮的代谢生物学研究进展,探讨了黄芩生物学研究方面的发展趋势,以期为相关研究的未来发展方向提供一定的参考。

黄芩 黄酮 抗癌 代谢生物学

黄芩,又名山茶根,是唇形科植物黄芩Scutellaria baicalensis Georgi的干燥根,其基源植物披针形叶片对生,茎四棱,花紫色,根肉质且因含有大量黄酮类物质而显黄色(图1)。黄芩主产于中国,在蒙古、朝鲜、日本及俄罗斯东部均有分布,是宝贵的药用植物,我们的祖先对它的使用已有数千年历史[1,2]。黄芩以根入药,现已被列入国家药典,常用于煎剂或酊剂[3]。关于“芩”字,早在西周时期的《诗经·小雅》里便有记载,例如其开篇《鹿鸣》就有 “呦呦鹿鸣,食野之芩”的诗句。东汉时期,许慎《说文解字》有言“芩,作菳,从艸,今声”;明·李时珍进一步解释:“芩,说文作菳,谓其色黄也”[4,5]。大约在两汉时期成书的《神农本草经》最早记载了黄芩的药物应用:其性苦、寒,可治疗肺和肝脏方面的疾病[6]。东汉末年,张仲景的《伤寒论》将黄芩作为重要成分组成复方汤剂(例如小柴胡汤、黄芩汤等)来治疗各种疾病[7]。明代万历年间的《本草纲目》记载了黄芩用于治疗腹泻、痢疾、高血压、出血、失眠、炎症和呼吸道感染,作者李时珍花了较大篇幅描述黄芩,并提到在他20岁时用黄芩成功治疗了自己严重的肺部感染:“余年二十时,感冒发烧即久,遂病骨蒸发热,肤如火燎,每日吐痰碗许,暑月烦渴,寝食几废”,在服用了一些常规的清热消炎药物以后,并无缓解,后来却发展到“月余益剧,皆以为必死矣”。后来,李时珍的父亲受“金元四大家”之一李东垣治疗肺病使用黄芩的启发,给他服用一味黄芩汤,不久后便感觉“身热尽退,而痰嗽皆愈”,并感叹道“药中肯綮,如鼓应桴,医中之妙,有如是哉”[4]。

在黄芩的应用历史中,祖先留给我们诸多宝贵的经验。然而,在科学技术日益发达的今天,传统医学对黄芩的阐释却难以满足现代社会对它的新要求。因此,如何运用现代生物学手段去研究、开发和使用黄芩,使之满足现代人的健康需求,成为黄芩药用植物研究和新药研发需要面对的一个重要课题。

1 临床研究

黄芩,作为药用植物,在东亚国家已有悠久的应用历史。在中国,黄芩通常作为复方药的一部分[7]。现代临床数据证实,黄芩能够有效地治疗发热和细菌性肺炎[8,9]。2003年,Xue T H等的研究证实,含有黄芩的小柴胡汤能够有效治疗西医疗法难以有效缓解的疾病[10]。后来,小柴胡汤被美国的替代医学社区接受并引进[11]。1994年,一项日本的研究显示,在接受小柴胡汤治疗5年的98例肝炎患者中,78%的乙型肝炎患者和67%的非甲非乙型肝炎患者的肝功能均得到改善[12]。小柴胡汤对丙型肝炎同样有效。对80名具有干扰素抗性的丙型肝炎患者进行服用小柴胡汤的治疗和跟踪,与对照组(仅接受普通药物治疗)比较,发现在完全恢复肝脏酶功能的6名患者中有5名进行了小柴胡汤治疗,而在6名发展为肝癌的患者中仅有1例进行小柴胡汤治疗[13]。肺复方为另一种含有黄芩的传统复方药剂,它能够提高原发性支气管肺鳞状细胞癌患者的生存率[14]。同时,它对非小细胞肺癌(Non-Small Cell Lung Cancer,NSCLC)患者具有相同的效果。与接受常规化疗加中药安慰剂治疗的对照组相比,使用肺复方治疗能明显改善NSCLC老年患者的临床表现[15],能减轻临床症状、提高生活质量、增加体重,并能稳定瘤体、延缓疾病进展、延长生存期[16]。将肺复方配合化疗药物康莱特注射液治疗局部晚期非小细胞肺癌,也能够得到比单独使用该化疗药物更好的临床效果[17]。同时,黄芩也是扶正抗癌方的主要成分,将其结合化疗使用与单独使用常规化疗方法相比,扶正抗癌方对中晚期NSCLC患者有更好的效果[18,19]。将扶正抗癌方联合吉非替尼使用,能增强后者的效果,并减弱毒副作用,能有效地提高NSCLC患者的存活时间[20]。

图1 黄芩植物(A)及作为传统中药的干燥根(B)

2 活性物质基础及药理作用研究

黄芩植物体内含有多种多样的天然产物,包括氨基酸、精油、黄酮及类黄酮、苯乙醇和甾醇。黄芩根中有超过30种黄酮化合物,其中包括黄芩苷、黄芩素、白杨素、木蝴蝶素A、木蝴蝶素A -7-O-葡萄糖苷酸、汉黄芩素和汉黄芩苷[21,22]。其中,黄芩苷、黄芩素、汉黄芩苷和汉黄芩素是黄芩的主要活性成分[23-25]。

2.1 抗肿瘤活性

相关研究表明,黄芩对多数人源癌细胞系具有抑制作用[26-28]。黄芩根的水溶性提取物可以诱导细胞凋亡,从而抑制淋巴瘤和骨髓瘤细胞系的生长[29]。同样,黄芩提取物对几种人类的肺癌细胞系有选择性毒性,对正常的人体肺成纤维细胞则无毒性,这种作用可能是由于抑癌基因p53和Bax蛋白活性的增加而引起的[30]。黄芩根部的黄酮类物质如黄芩苷、汉黄芩苷、黄芩素和汉黄芩素是黄芩抗癌的主要活性物质[31-33]。黄芩苷可以抑制淋巴癌和骨髓癌的生长[29],汉黄芩苷对急性骨髓性白血病(Acute Myelogenous Leukemia,AML)细胞具有抑制作用,并且能显著提高调节细胞周期和分化相关基因的磷脂混杂酶1(Phospholipid Scramblase 1,PLSCR1)的转录[34]。黄芩苷、黄芩素和汉黄芩素对肺癌细胞的作用与黄芩提取物的作用相似[30]。黄芩黄酮的抗癌活性主要归因于其清除活性氧(Reactive Oxygen Species,ROS)能力,减弱NF-κB活性,降低细胞周期基因和COX-2基因的表达以及抗病毒作用[31,35,36]。2012年,Fox等[37]利用细胞定量的检测方法对超过4 000种化合物进行高通量的毒性筛选,最终确定22种有效的抗氧化剂,其中有3种具有良好效果,它们可以杀死癌细胞且不引起基因突变,其中就包括黄芩素,另外两种为白藜芦醇、染料木黄酮。

2.2 肝脏保护作用

黄芩还具有良好的肝脏保护活性,以黄芩为主要成分的汉方药小柴胡汤可以用于治疗肝炎、肝纤维化和肝癌等肝脏疾病[11,38,39]。养肝丸为一种含有黄芩苷的复方药剂,因具有对肝脏的保护作用而被大家熟知[40,41]。2012年,Yang的一项研究证实,养肝丸的主要活性物质黄芩苷,通过激活Wnt信号途径,从而阻断或逆转导致肝纤维化的肝星状细胞(Hepatic Stellate Cell,HSC)的活性[42]。黄芩还可以有效抑制大鼠肝脏的纤维化和脂质过氧化[43-45]。黄芩根部和嫩枝能够抑制由黄曲霉毒素B1导致的大鼠肝脏诱变[44]。Tan[46]等推测黄芩根提取物的抗纤维化活性可能是由于其可以增强cAMP应答元件结合蛋白的磷酸化。黄芩提取物也能阻断细胞周期,激活导致HSC-T6细胞凋亡的蛋白酶系统和ERK-p53通路,从而预防肝脏纤维化[47]。

2.3 抗菌和抗病毒活性

黄芩提取物具有良好的抑制多种细菌、真菌和病毒的作用[48,49]。黄芩苷在自制蛋黄酱中,可被用作食源性病原体(如沙门氏菌和葡萄球菌)的天然抗菌剂[50]。黄芩提取物能够提高抗生素如环丙沙星、头孢曲松、庆大霉素和青霉素G对金黄色葡萄球菌的抗菌活性[51]。小柴胡汤可以有效治疗肝炎,有研究观察到使用小柴胡汤的患者体内病毒量明显降低[11],说明黄芩提取物具有抗病毒的功效[52]。黄芩根提取物能够显著抑制HCV-RNA的复制[53]。黄芩苷作为非核苷酸反转录抑制剂对HIV-1有很强的抑制作用[54]。而且,黄芩苷可以通过扰乱细胞表面的HIV-1Env与HIV-1供受体的互作的方式来阻止HIV-1进入动物细胞[55]。黄芩苷已经成为广泛运用的预防艾滋病病毒感染的天然化合物之一[56-58]。黄芩素可以有效的抑制HIV的反转录活性及整合酶的活性[59,60]。黄芩素和黄芩苷对HIV的这些作用引起了人们的广泛关注[61]。

除了上述效应之外,黄芩的制剂还可以作为抗氧化剂、ROS清除剂[62,63]和抗惊厥剂[64]。最近,已经有课题组在神经退行性疾病的体内和体外模型研究黄芩及其黄酮类化合物的神经保护作用,结果表明:黄芩可能有希望应用于神经保护领域[65,66]。

3 黄芩研究的生物技术

由于黄芩黄酮具有多种有益的生物活性,如何增加它们在植物中的含量或者在普通的蔬菜水果中异源合成它们,成为生物技术领域一个较有价值的研究方向[67,68]。然而在做到此工作之前,我们首先需要了解黄芩中黄酮类化合物的合成途径及调节机制。

目前,有多个团队报道了黄芩的组织培养及再生体系[69-71],但尚未见稳定遗传转化体系的文献。发根农杆菌介导毛状根培养系统成为在研究中生产及提高黄芩黄酮产量的有效方式[72,73]。用发根农杆菌进行侵染叶片或子叶外植体,均可以得到毛状根[74]。通过对4种发根农杆菌菌株A4GUS、R1000、LBA9402及ATCC11325的比较研究,发现A4农杆菌菌株诱导黄芩毛状根的效率最高,可达42.6%[72]。外植体与发根农杆菌共培期间补充乙酰丁香酮进一步提高诱导效率[75]。黄芩毛状根具有与天然根相似的代谢模式,并且以茉莉酸甲酯处理毛状根可以提高主要黄酮类化合物的产量[76-78]。过表达PAL或CHI基因可以提高黄芩发根中黄酮的含量[74,79]。利用二代测序技术,研究人员筛选到可能参与黄酮生物合成的候选基因,并且确定了合成途径中的几个与结构相关的基因,其中包括6-羟化酶、8-O-甲基转移酶和7-O-葡糖醛酸基转移酶[80]。Yuan等也筛选了RNA测序数据库,发现几个MYB基因可能负责调控黄酮的产量,在用黄芩来源的MYB转录因子MYB8转化烟草后,研究者发现转基因烟草黄酮类成分的含量显著提高[81,82]。

4 黄芩黄酮的代谢生物学研究

4.1 黄酮及其合成代谢途径

黄酮物质存在于大多数高等植物中,在植物的花中起到共色素和防止UV辐射的作用[83,84]。它们是通过类黄酮途径合成的[85,86],柚皮素是经典黄酮类化合物合成中间物[87]。黄芩地上部分积累的野黄芩素和野黄芩苷便是通过这条经典的黄酮途径来合成。该途径以苯丙氨酸为起始物质,经过苯丙氨酸解氨酶(Phenylalnine Ammonialyase,PAL)、肉桂酰4羟化酶(Cinnamoyl 4 Hydroxylase,C4H)、对香豆酰辅酶A连接酶(4-Coumarate:coenzyme A Ligase,4CL),然后是查耳酮合酶(Chalcone Synthase,CHS)和查耳酮异构酶(Chalcone Isomerase,CHI)的作用形成柚皮素[88]。随后,柚皮素在黄酮合成酶(Flavone synthetase II-1,FNSII-1)的作用下氧化生成芹菜素,芹菜素进一步被羟基化、甲基化和糖基化最终生成野黄芩素和野黄芩苷。

4.2 黄芩中的根特异黄酮及合成

根特异黄酮是黄芩根部大量积累一种特殊的黄酮,其苯环上缺少4'-OH,而6位或8位含有羟基或甲氧基[89,90],主要成员包括黄芩素、汉黄芩素以及它们的糖苷。根特异黄酮不是以柚皮素为中间物,而是通过新的途径合成的。肉桂酸在根特异表达的酶SbCLL-7的作用下形成肉桂酰CoA,肉桂酰辅酶A和丙二酰辅酶A通过一个查耳酮合酶(SbCHS-2)的作用下缩合生成查尔酮,然后经野黄芩素合成途径相同的查尔酮异构酶(SbCHI)作用形成一个缺少4'-OH基团的黄烷酮即松属素。松属素在根特异表达的黄酮合成酶(SbFNSII-2)的催化下生成白杨素,白杨素作为4'位脱氧黄酮,再在6/8-黄酮羟化酶,8-O-甲基转移酶进一步修饰下最终生成黄芩根特异的黄酮化合物[75,91]。

根特异的4'位脱氧黄酮合成途径是随着唇形科的进化新近演化出来的[75],并且可能是由存在于脂肪酸代谢途径中的辅酶A连接酶所促成的,即肉桂酸的特异性。由于C4H在黄芩根部的表达促进了对肉桂酸的有效竞争从而为4'位脱氧黄酮合成提供条件。使用茉莉酮酸甲酯处理可诱导黄芩根特异黄酮的产生,表明根特异黄酮可能作为防御机制或植物微生物信号传导的一部分[92,93]。了解这种新进化的代谢调节途径可以为工业化合成这些重要的生物活性代谢物提供依据。根特异黄酮在黄芩的防御中的作用可以支持它们在传统医学中的用途,例如作为抗微生物剂。

黄芩素、汉黄芩素及它们的糖苷可在除黄芩以外的黄芩属的许多物种中发现[94]。与传统中药一样,滇黄芩S. amoena和丽江黄芩S. likiangensis的根部被广泛用作黄芩的替代品。迄今为止,4'脱氧黄酮仅在唇形目黄芩属外的木蝴蝶Oroxylumindicum[95]和大车前Plantago major中检测到[96]。同时,4'脱氧黄酮也在唇形目以外的植物鳝藤Anodendron affine和翁柱Cephalocereussenilis中被报道过[97,98]。研究确定这些4'-脱氧黄酮在不同植物种群中的演化史是十分有趣的,并且我们怀疑趋同进化很可能是其原因[99]。

4.3 根特异黄酮合成途径中未解决的问题

根特异黄酮的合成,尚需要6位羟化酶、8位羟化酶及8位甲氧基转移酶[75]。能催化类黄酮6位羟化的酶,最先在大豆中分离到,该酶为细胞色素P450家族蛋白CYP71D9,主要将黄烷酮甘草素转化为6,7,4'-三羟基黄烷酮,该酶对黄酮活性较低[100]。最近,Berim和Gang从罗勒Ocimum basilicum中分离到黄酮6位羟化酶CYP82D33,该酶负责将罗勒叶片中的芫花黄素转化为7-甲基野黄芩素,然而,该酶只能转化含7位甲氧基的芫花黄素,对于没有7位甲氧基的黄酮活性较低[101]。黄芩素合成不涉及7位甲氧基结构,因此尚不清楚黄芩的同源基因是否可以负责合成黄芩素。在罗勒中,最近还分离到一个8位羟化酶及8位甲氧基转移酶,这两个酶在罗勒叶毛高表达,负责将鼠尾草素转化为8-羟基鼠尾草素[102]。然而,根据目前的黄芩转录组数据,罗勒8位羟化酶同源基因在黄芩根中表达量极低,在花中高表达,而且预测为质体定位蛋白,这与黄芩根中高积累汉黄芩素的现象有所矛盾。因此,该基因是否为该同源基因或是还有别的相关基因负责汉黄芩素的合成,还有待进一步研究。

5 总结与展望

在现代社会,黄芩已走入我们的生活,许多治疗上呼吸道感染、肝病乃至皮肤病的药物均含有黄芩成分,例如清开灵口服液、银黄颗粒、小柴胡颗粒、养肝丸和黄芩软膏等。另外,日常使用的牙膏、化妆品及部分抗菌剂里也会添加黄芩苷或黄芩素。目前,已有大量数据显示,黄芩及其活性成分具有抑制癌细胞、抗肿瘤生长、保肝、抗菌、抗病毒及神经保护作用[37,42,90]。所以,对黄芩乃至黄芩属其他物种的生物学、生物技术、分子及代谢生物学研究应该投入更多关注。

黄芩中的活性物质为其根中积累的黄芩素、汉黄芩素及其糖苷等黄酮物质,这是一类A环多修饰而B环没有修饰的特异的黄酮,关于此类黄酮的生物合成关键酶基因的寻找及调控成为近年黄芩植物生物学领域研究热点[79,103]。目前,已有研究表明黄芩素,汉黄芩素的合成通过一个新进化出来的黄酮途径完成,并阐述了该途径到白杨素的过程[75]。而且,白杨素下游途径及整个根的特异黄酮在植物中的调控机制也将成为新的研究热点。

参考文献

1 Shang X F, He X R, He X Y, et al. The genus Scutellaria an ethnopharmacological and phytochemical review. J Ethnopharmacol, 2010,128 (2):279-313.

2 Bochoráková H, Paulová H, Slanina J, et al. Main flavonoids in the root of Scutellaria baicalensis cultivated in Europe and their comparative antiradical properties. Phytother Res, 2003,17(6):640-644.

3 Han J, Ye M, Xu M, et al. Characterization of flavonoids in the traditional Chinese herbal medicine-Huang Qin by liquid chromatography coupled with electrospray ionization mass spectrometery. J Chromatogr B Analyt Technol Biomed Life Sci, 2007, 848(2):355-362.

4 李时珍. 本草纲目. 北京: 华夏出版社, 2012:543-546.

5 许慎. 说文解字. 北京:中华书局. 1978:19.

6 马继兴. 神农本草经辑注. 人民卫生出版社2013:140.

7 张仲景. 伤寒论. 人民卫生出版社, 1974:27.

8 Huang Z H, Xu Z Q. Single huang-qin for treatment of bacterial pneumonia. Shizhen Trad Med Res, 1992, 3(4):106-107.

9 褚为民. 单味黄芩治疗妊娠期感冒的体会. 内蒙古中医药,2010, 29(16):15.

10 Xue T H, Roy R. Studying traditional Chinese medicine. Science, 2003, 300(5620):740-741.

11 Wen J D. Sho-saiko-to, A Clinically Documented Herbal Preperation for Treating Chronic Liver Disease. Herbal Gram, 2007, 59(73):34-43.

12 Yamamoto H, Miki S, Deguchi H. Five year follow up study of shosaiko-to (Xiao-Chai-Hu-Tang) administration in patients with chronic hepatitis. J Nissei Hospital,1994, 23:144-149.

13 Gibo Y, Nakamura Y, Takahashi N. Clinical study of sho saiko to therapy for Japanese patients with chronic hepatitis C. Prog Med, 1994,14:217-219.

14 Pan M Q, Li Y H, Liu J A, et al. Reports for 80 patients with bronchial lung squamous carcinoma (Mid or Late Stage) treated Lung FuFang and chemotherapy. J Trad Chin Med Pharm, 1990, 5:19-21.

15 Pan M Q, Li Y H, Jiang Y L. Clinical observation of old people NSCLC (mid or late stage) treated by Lung Fu Fang combined with chemotherapy. Shanxi Trad Chin Med, 2000,31:389-390.

16 蒋益兰, 潘敏求, 蔡美, 等. 肺复方治疗中晚期老年非小细胞肺癌多中心临床研究. 北京中医药大学学报, 2012, 35(10):712-715.

17 彭巍, 蒋益兰. 肺复方联合康莱特治疗局部晚期非小细胞肺癌27例临床研究. 国医论坛, 2014(3):34-35.

18 Duan X, Jia C F, Duan M. Treatmenf of non-small-cell lung cancer by FuZheng Anti-cancer Prescription combined with chemotherapy. Shanxi Trad Chin Med, 2014, 35:311-312.

19 何敏, 周浴, 邝军, 等. 扶正抗癌方联合化疗治疗非小细胞肺癌疗效研究. 环球中医药, 2014(4):278-281.

20 柴小姝, 吴万垠, 李柳宁, 等. 扶正抗癌方联合吉非替尼治疗PS≤2 分晚期 NSCLC 的疗效与安全性研究. 现代中西医结合杂志, 2014, 23(3):229-231.

21 Li H B, Jiang Y, Chen F. Separation methods used for Scutellaria baicalensis active components. J Chromatogr B Analyt Technol Biomed Life Sci, 2005, 812(1-2):277-290.

22 Zhou Y, Hirotani M, Yoshikawa T, et al. Flavonoids and phenylethanoids from hairy root cultures of Scutellaria baicalensis. Phytochemistry, 1997,44(1):83-87.

23 Makino T, Hishida A, Goda Y, et al. Comparison of the major flavonoid content of S. baicalensis, S. lateriflora, and their commercial products. J Nat Med, 2008, 62(3):294-299.

24 Choi J, Conrad C C, Malakowsky C A, et al. Flavones from Scutellaria baicalensis Georgi attenuate apoptosis and protein oxidation in neuronal cell lines. Biochimica Et Biophysica Acta, 2002,1571(3):201-210.

25 Dong H K, Su J J, Son K H, et al. The ameliorating effect of oroxylin A on scopolamine-induced memory impairment in mice. Neurobiol Learn Mem, 2007,87(4):536-546.

26 Scheck A C, Perry K, Hank N C, et al. Anticancer activity of extracts derived from the mature roots of Scutellaria baicalensis on human malignant brain tumor cells. BMC Complement Altern Med, 2006, 6:27.

27 Ye F, Jiang S Q, Volshonok H, et al. Molecular mechanism of antiprostate cancer activity of Scutellaria baicalensis extract. Nutr Cancer, 2007, 57(1):100-110.

28 Zhang D Y, Wu J, Ye F, et al. Inhibition of cancer cell proliferation and prostaglandin E2 synthesis by Scutellaria baicalensis. Cancer Res, 2003, 63(14):4037-4043.

29 Kumagai T, Muller C I, Desmond J C, et al. Scutellaria baicalensis, a herbal medicine: anti-proliferative and apoptotic activity against acute lymphocytic leukemia, lymphoma and myeloma cell lines. Leuk Res, 2007, 31(4):523-530.

30 Gao J, Morgan W A, Sanchez-Medina A, et al. The ethanol extract of Scutellaria baicalensis and the active compounds induce cell cycle arrest and apoptosis including upregulation of p53 and Bax in human lung cancer cells. Toxicol Appl Pharmacol, 2011, 254(3):221-228.

31 Li-Weber M. New therapeutic aspects of flavones: The anticancer properties of Scutellaria and its main active constituents Wogonin, Baicalein and Baicalin. Cancer Treat Rev, 2009, 35(1):57-68.

32 Woźniak D, Lamer-Zarawska E, Matkowski A. Antimutagenic and antiradical properties of flavones from the roots of Scutellaria baicalensis Georgi. Nahrung, 2004, 48(1):9-12.

33 Chou C C, Pan S L, Teng C M, et al. Pharmacological evaluation of several major ingredients of Chinese herbal medicines in human hepatoma Hep3B cells. Eur J Pharm Sci, 2003, 19(5):403-412.

34 Chen Y, Hui H, Yang H, et al. Wogonoside induces cell cycle arrest and differentiation by affecting expression and subcellular localization of PLSCR1 in AML cells. Blood, 2013,121(18):3682-3691.

35 Kim D H, Kim H K, Park S, et al. Short-term feeding of baicalin inhibits age-associated NF-κB activation. Mech Ageing Dev, 2006,127(9):719-725.

36 Krakauer T, Li B Q, Young H A. The flavonoid baicalin inhibits superantigen-induced inflammatory cytokines and chemokines. FEBS Lett, 2001, 500(1-2):52-55.

37 Fox J T, Sakamuru S, Huang R L, et al. High-throughput genotoxicity assay identifies antioxidants as inducers of DNA damage response and cell death. Proc Natl Acad Sci U S A, 2012,109(14):5423-5428.

38 Shimizu I, Ma Y R, Mizobuchi Y, et al. Effects of sho-saiko-to, a japanese herbal medicine, on hepatic fibrosis in rats. Hepatology, 1999, 29(1):149-160.

39 Ohta Y, Nishida K, Sasaki E, et al. Comparative Study of Oral and Parenteral Administration of Sho-saiko-to (Xiao-Chaihu-Tang) Extract on D-galactosamine-induced Liver Injury in Rats. Am J Chin Med, 2012, 25(3-4):333-342.

40 Yang M D, Deng Q G, Chen S, et al. Hepatoprotective mechanisms of Yan-gan-wan. Hepatol Res, 2005, 32(4):202-212.

41 Yang M, Chen K, Shih J C. Yang-Gan-Wan protects mice against experimental liver damage. Am J Chin Med, 2000, 28(2):155-162.

42 Yang M D, Chiang Y M, Higashiyama R, et al. Rosmarinic acid and baicalin epigenetically derepress peroxisomal proliferator-activated receptor gamma in hepatic stellate cells for their antifibrotic effect. Hepatology, 2012, 55(4):1271-1281.

43 Chen H J, Liang T M, Lee I J, et al. Effect of Scutellaria baicalensis on hepatic stellate cells. Planta Med, 2014, 80(10):817.

44 de Boer J G, Quiney B, Walter P B, et al. Protection against aflatoxin-B1-induced liver mutagenesis by Scutellaria baicalensis. Mutation Research, 2005,578(1-2):15-22.

45 Kim S J, Moon Y J, Lee S M. Protective effects of baicalin against ischemia/reperfusion injury in rat liver. J Nat Prod, 2010,73(12):2003-2008.

46 Tan Y, Lv Z P, Bai X C, et al. Traditional Chinese medicine Bao Gan Ning increase phosphorylation of CREB in liver fibrosis in vivo and in vitro. J Ethnopharmacol, 2006,105(1-2):69-75.

47 Pan T L, Wang P W, Leu Y L, et al. Inhibitory effects of Scutellaria baicalensis extract on hepatic stellate cells through inducing G2/M cell cycle arrest and activating ERK-dependent apoptosis via Bax and caspase pathway. J Ethnopharmacol, 139(3):829-837.

48 Shan B, Cai Y Z, Brooks J D, et al. The in vitro antibacterial activity of dietary spice and medicinal herb extracts. Int J Food Microbiol, 2007,117(1):112-119.

49 Blaszczyk T, Krzyzanowska J, Lamer-Zarawska E. Screening for antimycotic properties of 56 traditional Chinese drugs. Phytother Res, 2000,14(3):210-212.

50. Bruzewicz S, Malicki A, Oszmianski J, et al. Baicalin, added as the only preservative, improves the microbiological quality of homemade mayonnaise. Pakistan J Nutr, 2006,15(1):30-33.

51 Yang Z C, Wang B C, Yang X S, et al. The synergistic activity of antibiotics combined with eight traditional Chinese medicines against two different strains of Staphylococcus aureus. Colloids Surf B Biointerfaces, 2005,41(2-3):79-81.

52 Guo Q, Zhao L, You Q, et al. Anti-hepatitis B virus activity of wogonin in vitro and in vivo. Antiviral Res, 2007,74(1):16-24.

53 Tang Z M, Peng M, Zhan C J, et al. Screening 20 Chinese Herbs often Used for Clearing Heat and Dissipating Toxin with Nude Mice Model of Hepatitis C Viral Infection. Zhongguo Zhong Xi Yi Jie He Za Zhi, 2003,23(6):447-448.

54 Kitamura K, Honda M, Yoshizaki H, et al. Baicalin, an inhibitor of HIV-1 production in vitro. Antiviral Res, 1998,37(2):131-140.

55 Li B Q, Fu T, Yao D Y, et al. Flavonoid baicalin inhibits HIV-1 infection at the level of viral entry. Biochem Biophys Res Commun, 2000, 276(2):534-538.

56 De Clercq E. Current lead natural products for the chemotherapy of human immunodeficiency virus (HIV) infection. Med Res Rev, 2000,20(5):323-349.

57 Zhao J, Zhang Z, Chen H, et al. Synthesis of baicalin derivatives and evaluation of their anti-human immunodeficiency virus (HIV-1) activity. Yao Xue Xue Bao,1998,33(1):22-27.

58 Lam T L, Lam M L, Au T K, et al. A comparison of human immunodeficiency virus type-1 protease inhibition activities by the aqueous and methanol extracts of Chinese medicinal herbs. Life Sci, 2000,67(23):2889-2896.

59 Ono K, Nakane H, Fukushima M, et al. Inhibition of reverse transcriptase activity by a flavonoid compound, 5,6,7-trihydroxyflavone. Biochem Biophys Res Commun, 1989,160(3):982-987.

60 Ahn H C, Lee S Y, Kim J W, et al. Binding aspects of baicalein to HIV-1 integrase. Mol Cells, 2001,12(1):127-130.

61 Wu J A, Attele A S, Zhang L, et al. Anti-HIV activity of medicinal herbs: usage and potential development. Am J Chin Med, 2012,29(1):69-81.

62 Schinella G R, Tournier H A, Prieto J M, et al. Antioxidant activity of anti-inflammatory plant extracts. Life Sci, 2002,70(9):1023-1033.

63 Gao Z, Huang K, Yang X, et al. Free radical scavenging and antioxidant activities of flavonoids extracted from the radix of Scutellaria baicalensis Georgi. Biochim Et Biophys Acta, 1999,1472(3):643-650.

64 Wang H H, Liao J F, Chen C F. Anticonvulsant effect of water extract of Scutellariae radix in mice. J Ethnopharmacol, 2000,73(1-2):185-190.

65 Gaire B P, Moon S K, Kim H. Scutellaria baicalensis in Stroke Management: Nature’s Blessing in Traditional Eastern Medicine. Chin J Integr Med, 2014,20(9):712-720.

66 Shang Y, Cheng J, Qi J, et al. Scutellaria flavonoid reduced memory dysfunction and neuronal injury caused by permanent global ischemia in rats. Pharmacol Biochem Behav, 2005,82(1):67-73.

67 Zhang Y, Butelli E, Alseekh S, et al. Multi-level engineering facilitates the production of phenylpropanoid compounds in tomato. Nat commun, 2015,6:8635.

68 Zhang Y, Butelli E, Martin C. Engineering anthocyanin biosynthesis in plants. Curr Opin Plant Biol, 2014,19:81-90.

69 王丹. 黄芩组织培养与快速繁殖研究. 现代化农业. 2009,1:18-20.

70 高山林, 陈柏君. 黄芩组织培养快速繁殖技术的优化. 中草药. 2004,35(3):312-315.

71 王蕊, 张东向, 张磊. 黄芩的组织培养及遗传转化研究. 高师理科学刊. 2007,27(6):56-59.

72 Tiwari R K, Trivedi M, Guang Z C, et al. Agrobacterium rhizogenes mediated transformation of Scutellaria baicalensis and production of flavonoids in hairy roots. Biol Plant, 2008,52(1):26-35.

73 Joshee N, Parajuli P, Medina-Bolivar F, et al. Scutellaria Biotechnology: Achievements and Future Prospects. Bulletin of the University of Agricultural Sciences & Veterinary, 2010,1:1843-5394.

74 Park N I, Xu H, Li X H, et al. Enhancement of flavone levels through overexpression of chalcone isomerase in hairy root cultures of Scutellaria baicalensis. Funct Integr Genomics, 2011,11(3):491-496.

75 Zhao Q, Zhang Y, Wang G, et al. A specialized flavone biosynthetic pathway has evolved in the medicinal plant, Scutellaria baicalensis. Sci Adv, 2016,2(4):e1501780.

76 Kuzovkina I N, Guseva A V, Alterman I E, et al. Flavonoid Production in Transformed Scutellaria baicalensis Roots and Ways of Its Regulation. Russ J Plant Physl, 2001,48(4):448-452.

77 Kuzovkina I N, Guseva A V, Kovacs D, et al. Flavones in genetically transformed Scutellaria baicalensis roots and induction of their synthesis by elicitation with methyl jasmonate. Russ J Plant Physl, 2005,52(1):77-82.

78 Howie J A, Avendano S, Tolkamp B J, et al. Flavonoid Production in Transformed Root Cultures of Scutellaria baicalensis. Russ J Plant Physl, 2000,156(1):121-125.

79 Park N I, Xu H, Li X, et al. Overexpression of phenylalanine ammonialyase improves flavones production in transgenic hairy root cultures of Scutellaria baicalensis. Process Biochem, 2012,47(12):2575-2580.

80 Liu J, Hou J, Jiang C, et al. Deep Sequencing of the Scutellaria baicalensis Georgi Transcriptome Reveals Flavonoid Biosynthetic Profiling and Organ-Specific Gene Expression. PloS one, 2015,10(8):e0136397.

81 Qi L, Jian Y, Yuan Y, et al. Overexpression of two R2R3-MYB genes from Scutellaria baicalensis induces phenylpropanoid accumulation and enhances oxidative stress resistance in transgenic tobacco. Plant Physiol Biochem, 2015,94:235-243.

82 Yuan Y, Qi L, Yang J, et al. A Scutellaria baicalensis R2R3-MYB gene, SbMYB8, regulates flavonoid biosynthesis and improves drought stress tolerance in transgenic tobacco. Plant Cell Tiss Org, 2014,120(3):1-12.

83 Koes R, Verweij W F. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci, 2005,10(5):236-242.

84 Williams C A, Grayer R J. Anthocyanins and other flavonoids. Nat Prod Rep, 2004,21(4):539-573.

85 Noel J P, Austin M B, Bomati E K. Structure-function relationships in plant phenylpropanoid biosynthesis. Curr Opin Plant Biol, 2005,8(3):249-253.

86 Yang L, Yang C, Li C, et al. Recent advances in biosynthesis of bioactive compounds in traditional Chinese medicinal plants. Science Bull(Beijing), 2016,61:3-17.

87 Martens S, Mithofer A. Flavones and flavone synthases. Phytochemistry, 2005,66(20):2399-2407.

88 Lepiniec L, Debeaujon I, Routaboul J M, et al. Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol, 2006,57(1):405-430.

89 Islam M N, Downey F, Ng CKY. Comparative analysis of bioactive phytochemicals from Scutellaria baicalensis, Scutellaria lateriflora, Scutellaria racemosa, Scutellaria tomentosa and Scutellaria wrightii by LC-DAD-MS. Metabolomics, 2011,7(3):446-453.

90 Zhao Q, Chen X Y, Martin C. Scutellaria baicalensis, the golden herb from the garden of Chinese medicinal plants. Science Bull(Beijing), 2016,61(18):1391-1398.

91 Hirotani M, Kuroda R, Suzuki H, et al. Cloning and expression of UDP-glucose: flavonoid 7-O-glucosyltransferase from hairy root cultures of Scutellaria baicalensis. Planta, 2000,210(6):1006-1013.

92 杨光,郭兰萍,郭晓恒,等. 药用植物与丛枝根真菌的选择性侵染研究. 中国中医药信息杂志,2012,19(1):53- 55.

93 Guo H J, Wang W, He X L. Effects of Host Plants on Growth and Development of Arbuscular Mycorrhizal Fungi in Rhizospere of Scutellaria baicalensis. Journal of Henan Agricultural Sciences, 2011,40(12):98-2439.

94 Parajuli P, Joshee N, Rimando A M, et al. In vitro Antitumor Mechanisms of Various Scutellaria Extracts and Constituent Flavonoids. Planta Med, 2009,75(1):41-48.

95 Chen L J, Games D E, Jones J. Isolation and identification of four flavonoid constituents from the seeds of Oroxylum indicum by highspeed counter-current chromatography. J Chromatogr A, 2003,988(1):95-105.

96 Samuelsen A B. The traditional uses, chemical constituents and biological activities of Plantago major L. A review. J Ethnopharmacol, 2000,71(1-2):1-21.

97 Tai M C, Tsang S Y, Chang L Y, et al. Therapeutic potential of wogonin:A naturally occurring flavonoid. CNS Drug Rev, 2005,11(2):141-150.

98 Liu Q, Markham K R, Pare P W, et al. Flavonoids from elicitor-treated cell-suspension cultures of Cephalocereus senilis. Phytochemistry, 1993,32(4):925-8.

99 Pichersky E, Lewinsohn E. Convergent Evolution in Plant Specialized Metabolism. Annu Rev Plant Biol, 62:549-566.

100 Latunde-Dada A O, Cabello-Hurtado F, Czittrich N, et al. Flavonoid 6- hydroxylase from soybean (Glycine max L.), a novel plant P-450 monooxygenase. J Biol Chem, 2001,276(3):1688-1695.

101 Berim A, Gang D R. The Roles of a Flavone-6-Hydroxylase and 7-ODemethylation in the Flavone Biosynthetic Network of Sweet Basil. J Biol Chem,2013,288(3):1795-1805.

102 Berim A, Park J J, Gang D R. Unexpected roles for ancient proteins:flavone 8-hydroxylase in sweet basil trichomes is a Rieske-type,

PAO-family oxygenase. Plant J, 2014,80(3):385-395.

103 Park N I, Xu H, Li X, et al. Enhancement of flavone levels through overexpression of chalcone isomerase in hairy root cultures of Scutellaria baicalensis. Funct Integr Genomics, 2011,11(3):491-496.

Huang Qin, an Medicinal Plant Recorded in Ancient Books and Used in Modern Times

Cui Mengying1, Liu Jie1, Yang Lei1, Cathie Martin1,2, Chen Xiaoya1,3, Zhao Qing1
(1. Plant Science Research Center / Key Laboratory of Plant Functional Genomics and Resources / Shanghai Chenshan Botanical Garden, Chinese Academy of Sciences, Shanghai 201602, China; 2. John Innes Centre, Norwich, NR4 7UH, UK; 3. Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China)

Scutellaria baicalensis Georgi, or Huang qin, has been widely used in China during its long history as a kind of herb. Its dried root has been used in the treatment of respiratory infections, diarrhea, dysentery and liver problems, etc. In this paper, we reviewed the history of the utilization of Huang qin and its active components and their pharmacological properties in the treatment of diseases. The bioactive compounds in Huang qin were baicalin, wogonoside and baicaleinand wogonin. These favones performed various pharmacological activities, including anti-cancer, hepatoprotection, antibacterial and antiviral, antioxidant, anticonvulsant and neuroprotective effects. We also made the recent progresses on the investigations of biosynthesis of flavones in the plant and the biotechnologies involved, and discussed the developing trends in this area in hopes of providing references for related studies.

Scutellaria baicalensis Georgi, flavones, anti-cancer, metabolic biology

10.11842/wst.2016.11.014

R282.71

A

(责任编辑:马雅静,责任译审:朱黎婷)

2016-10-25

修回日期:2016-11-02

* 上海市绿化和市容管理局2017年辰山专项(G172402):黄芩属植物类黄酮代谢产物分析及代谢途径解析,负责人:Cathie Marin、赵清。

** 通讯作者:赵清,助理研究员,主要研究方向:药用植物次生代谢。

猜你喜欢

小柴胡黄芩黄酮
基于网络药理学探讨小柴胡汤对2型糖尿病的治疗作用机制
黄芩的高产栽培技术
张永新:种植黄芩迷上了“茶”
黄芩使用有讲究
黄芩苷脉冲片的制备
HPLC法同时测定固本补肾口服液中3种黄酮
MIPs-HPLC法同时测定覆盆子中4种黄酮
DAD-HPLC法同时测定龙须藤总黄酮中5种多甲氧基黄酮
瓜馥木中一种黄酮的NMR表征
从经方小柴胡汤谈跟师孙光荣教授心得