瘦素介导的信号通路研究新进展
2016-01-27荣小丽,杨建增,王岩
瘦素介导的信号通路研究新进展
荣小丽,杨建增,王岩*
(吉林大学中日联谊医院 科学研究中心,吉林 长春130033)
瘦素是由位于人类染色体(7q 31.3)ob基因编码的一种分泌型蛋白质通过与瘦素受体结合发挥其生理功能[1]。瘦素是能同时参与几个系统的增殖和抗凋亡作用的一种多效性的荷尔蒙激素,既往研究认为瘦素具有降低食欲减轻体重,调节脂肪沉积和能量平衡,调节神经内分泌作用,参与机体的免疫应答反应等作用。近年来研究发现瘦素通过介导细胞内某些信号传导通路发挥促进肿瘤细胞增殖和转移的作用。本文主要就瘦素对肿瘤细胞的影响和瘦素介导的信号传导通路作一简要总结。
1瘦素促进细胞增殖
Wei Wang等[2]研究表明,瘦素能够促进A549(人肺腺癌细胞系)的增殖,并显示了瘦素能够抑制顺铂诱导的人类非小细胞肺癌细胞的凋亡。Nalabolu等[3]报道了在乳腺癌中瘦素和脂联素相关性,通过体外雌激素敏感试验证明代谢综合征和乳腺癌的抑癌基因具有相关性,并首次证明瘦素和脂联素共同参与了乳腺癌的增殖过程。另外Lai等[4]人研究瘦素在非小细胞肺癌中抗凋亡机制时,发现瘦素通过阻断ER受体介导的通路促进了A549细胞增殖。Park研究[5]证实瘦素可以加强内皮细胞COX-2 的表达,此过程是通过激活 p38有丝分裂原激酶激活蛋白和PI3K/Akt 通路引起的,进一步通过激活具有瘦素受体依赖性的VGEFR-2进行调节,经瘦素处理的组织能够增加VGEFR-2的表达,进而促进血管新生。Rajapurohitam实验也表明了[6]瘦素通过钙神经素通道和RhoA通路调节,能够诱导的心肌细胞肥大。
2瘦素介导的信号通路
2.1瘦素与JAK/STAT3信号通路
Qin等[7]描述了槲皮素能够抑制胃癌MGC-803细胞的增殖,通过JAK-STAT信号通路下调了瘦素、瘦素受体蛋白、瘦素mRNA、瘦素受体mRNA的表达。Wu等研究[8]了脂肪细胞补体相关蛋白(Acrp30)通过AMPK 和JAK/STAT 信号通路调节子宫内膜癌细胞系的SPEC-2表型的改变能够有效地逆转瘦素诱导的肿瘤转移。Li等[9]最新研究证明在恶性肾肿瘤有肾细胞caki-2细胞瘦素的促有丝分裂作用没有影响其受体表达的改变,但是通过JAK-STAT3 和 ERK1/2信号通路交互抑制作用而引起了肿瘤细胞的增殖。Li等[10]发现瘦素通过激活JAK/STAT3信号通路诱导人髓核细胞细胞周期蛋白d1的表达和增殖,利用新的分子机制解释了肥胖和椎间盘退行性变的密切联系。Shang等[11]利用通过瘦素激活的JAK-STAT信号通路恢复了在低氨基酸细胞中减少的11beta-HSD2表达及活性,活化了人胎盘细胞。另外,Ladyman等[12]利用小鼠动物模型研究了在小鼠弓状核细胞中,注入瘦素后增加了细胞中pSTAT3的活化,在妊娠小鼠中pSTAT3比在非妊娠小鼠中明显增高,注入瘦素导致了下丘脑中活化的pSTAT5减少。Wang等[13]验证了瘦素通过促进人乳腺癌细胞系(MCF-7细胞)中的p-STAT3和p-AKT磷酸化,促进了MCF-7细胞的迁移和侵袭能力,同时证明与JAK/STAT 及 PI3K/AKT信号通路上调了MMP-9 和TGF-beta的表达有关。
2.2瘦素与RhoA/LIMK1/Cofilin信号通路
LIMK1(Lim kinase1,lim激酶1)可以使丝切因子(Cofilin)磷酸化,从而逆转Cofilin诱导的肌动蛋白解聚[14]。Ratke等[15]研究瘦素诱导可使结肠癌细胞中LIMK1/Cofilin磷酸化水平增加,细胞迁移实验显示LIMK1参与瘦素诱导的细胞迁移。Li等[16]在NP(Nucleus pulposus cells,髓核细胞)中瘦素通过激活RhoA/ROCK 通路能引起细胞骨架重构,张力丝形成,LIMK1和cofilin2的磷酸化。骨关节炎(Osteoarthritis,OA)是常见的骨关节退行性变疾病之一,Liang等[17]用10 ng/ml瘦素激活OA蛋白,进一步诱导RhoA-ROCK信号通路激活。实验结果显示瘦素不仅能在转录和翻译水平上调节LIMKI和Cofiin蛋白含量,也能直接激活OA软骨细胞内的LIMKI蛋白、抑制Cofilin蛋白活性。小剂量的瘦素作用于体外培养的OA软骨细胞时,不会引起细胞迅速调亡。瘦素刺激OA软骨细胞较长时间后细胞内的F-actin表达量及荧光强度都明显的增强,.引起了细胞骨架的重排。此外,还有Harrod等[18]研究了异常的瘦素为了维持子宫肌层的收缩功能而增加了Rho激酶的表达和作用。zeidan等[19]报道,小鼠血管平滑肌细胞在瘦素刺激诱导之后肌动蛋白微丝(actin)显著增加,并且细胞明显比原来的细胞肥大,此过程是通过细胞骨架一调节RhoA/LIMKI/Cofilin信号通路而实现的。
2.3瘦素与MAPK/ERK信号通路
分裂素活化蛋白激酶(mitogen-activated protein kinase,MAPK)是一组激酶,它不但能够控制细胞的分化、增殖、和凋亡过程,还包含一些信号分子如细胞外调节蛋白激酶(extracellular regulated protein kinases,ERK)和 P38[20,21]。Will等[22]研究证明MAPK信号通道在细胞的增殖及凋亡等活动中发挥着重要的调节作用,瘦素和脂联素可能逆转肌细胞的生长,与p44/42 MAPK信号和配体受体基因表达改变有关。除此之外,Chen等研究[23]瘦素诱导的p38 MAPK通路参与了高糖诱导的细胞毒性、细胞增殖、凋亡和MMP在H9c2心肌细胞中的消散。Moreira等研究表明[24]瘦素是卵母细胞成熟和卵泡发育的重要调节因子,瘦素在卵巢中通过激活MAPK通路,可能是引发卵母细胞发育的重要因素。Liang等研究[25]了瘦素在脂多糖诱导的胸腺细胞凋亡中的调节作用,进一步解释了瘦素在免疫系统中发挥的作用,为一些由胸腺萎缩引起的创伤、感染休克、器官衰竭、自身免疫病等提供了新的治疗方法。
2.4瘦素与PI3K/Akt/mTOR信号通路
Beccari等发现[26]瘦素信号可以成为癌症治疗新的选择方法,尤其是在过渡肥胖的患者中。Wang等[27]研究了瘦素在结肠癌中的调控作用,在108名患者中检查了瘦素及其受体的表达情况,结果显示瘦素及其受体的表达与T期,TNM期,淋巴结转移和远处转移有着紧密的联系,并且与 p-mTOR,p-70S6 kinase,p-Akt表达正相关。说明瘦素能够通过调节PI3K/Akt/ mTOR通路刺激HCT-116结肠癌细胞的增值和抑制其凋亡。
3结语
综上所述,瘦素及其介导的信号转导通路具有促进肿瘤细胞增殖和转移的作用。随着对瘦素及其介导的信号转导通路的深入研究,探寻其与肿瘤发生发展的内在联系,寻求有效的化学药物或基因药物抑制或切断瘦素介导的信号通路,将为预防肿瘤发生和控制肿瘤发展奠定实验基础。
参考文献:
[1]Brennan AM,Mantzoros CS.Drug Insight:the role of leptin in human physiology and pathophysiology-emerging clinical pplications[J].Nat Clin Pract Endocrinol Metab,2006,2(6):318.
[2]Wang W,Yan H,Dou C,et al.Human leptin triggers proliferation of A549 cells via blocking endoplasmic reticulum stress-related apoptosis[J].Biochemistry (Mosc),2013,78(12):1333.
[3]Nalabolu MR,Palasamudram K,Jamil K.Adiponectin and Leptin Molecular Actions and Clinical Significance in Breast Cancer[J].Int J Hematol Oncol Stem Cell Res,2014,8(1):31.
[4]Lai Q,Sun Y.Human leptin protein induces proliferation of A549 cells via inhibition of PKR-like ER kinase and activating transcription factor-6 mediated apoptosis[J].Yonsei Med J,2013,54(6):1407.
[5]Park HY,Kwon HM,Lim HJ,et al.Potential role of leptin in angiogenesis:leptin induces endothelial cell proliferation and expression of matrix metalloproteinases in vivo and in vitro[J].Exp Mol Med,2007,33(2):95.
[6]Rajapurohitam V,Izaddoustdar F,Martinez-Abundis E,et al.Leptin-induced cardiomyocyte hypertrophy reveals both calcium-dependent and calcium-independent/RhoA-dependent calcineurin activation and NFAT nuclear translocation[J].Cell Signal,2012,24(12):2283.
[7]Qin Y,He L Y,Chen Y,et al.[Quercetin affects leptin and its receptor in human gastric cancer MGC-803 cells and JAK-STAT pathway].[J].Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi,2012,28(1):12.
[8]Wu X,Yan Q,Zhang Z,et al.Acrp30 inhibits leptin-induced metastasis by downregulating the JAK/STAT3 pathway via AMPK activation in aggressive SPEC-2 endometrial cancer cells[J].Oncol Rep,2012,27(5):1488.
[9]Li L,Gao Y,Zhang L L,et al.Concomitant activation of the JAK/STAT3 and ERK1/2 signaling is involved in leptin-mediated proliferation of renal cell carcinoma Caki-2 cells[J].Cancer Biol Ther,2008,7(11):1787.
[10]Li Z,Shen J,Wu WK,et al.Leptin induces cyclin D1 expression and proliferation of human nucleus pulposus cells via JAK/STAT,PI3K/Akt and MEK/ERK pathways[J].PLoS One,2012,7(12):e53176.
[11]Shang Y,Yang X,Zhang R,et al.Low amino acids affect expression of 11beta-HSD2 in BeWo cells through leptin-activated JAK-STAT and MAPK pathways[J].Amino Acids,2012,42(5):1879.
[12]Ladyman SR,Fieldwick DM,Grattan DR.Suppression of leptin-induced hypothalamic JAK/STAT signalling and feeding response during pregnancy in the mouse[J].Reproduction,2012,144(1):83.
[13]Wang L,Cao H,Pang X,et al.The effect of leptin and its mechanisms on the migration and invasion of human breast cancer MCF-7 cells[J].Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi,2013,29(12):1272.
[14]Takahashi H,H Funakoshi, T Nakamura,LIM-kinase as a regulator of actin dynamics in spermatogenesis[J].Cytogenet Genome Res,2008,103(3-4):p.290.
[15]Ratke J,Entschladen F,Niggemann B,et al.Leptin stimulates the migration of colon carcinoma cells by multiple signaling pathways[J].Endocr Relat Cancer,2010,17(1):179.
[16]Li Z,Liang J,Wu W K,et al.Leptin activates RhoA/ROCK pathway to induce cytoskeleton remodeling in nucleus pulposus cells[J].Int J Mol Sci,2014,15(1):1176.
[17]Liang J,Feng J,Wu W K,et al.Leptin-mediated cytoskeletal remodeling in chondrocytes occurs via the RhoA/ROCK pathway[J].J Orthop Res,2011,29(3):369.
[18]Harrod JS,Rada CC,Pierce SL,et al.Altered contribution of RhoA/Rho kinase signaling in contractile activity of myometrium in leptin receptor-deficient mice[J].Am J Physiol Endocrinol Metab,2011,301(2):E362.
[19]Zeidan A,Paylor B,Steinhoff K J,et al.Actin cytoskeleton dynamics promotes leptin-induced vascular smooth muscle hypertrophy via RhoA/ROCK- and phosphatidylinositol 3-kinase/protein kinase B-dependent pathways[J].J Pharmacol Exp Ther,2007,322(3):1110.
[20]Severin S,Ghevaert C.The mitogen-activated protein kinase signalling pathways:role in megakaryocyte differentiation[J].Thromb Haemost,2009,637(1-3):133.
[21]SharmaV,Mustafa S.Stimulation of cardiac fatty acid oxidation by leptin is mediated by a nitric oxide-p38 MAPK-dependent mechanism[J].Eur Pharmacol,2009,617(1-3):113.
[22]Will K,Kuzinski J,Kalbe C,et al.Effects of leptin and adiponectin on the growth of porcine myoblasts are associated with changes in p44/42 MAPK signaling[J].Domest Anim Endocrinol,2013,45(4):196.
[23]Chen J,Mo H,Guo R,et al.Inhibition of the leptin-induced activation of the p38 MAPK pathway contributes to the protective effects of naringin against high glucose-induced injury in H9c2 cardiac cells[J].Int J Mol Med,2014,33(3):605.
[24]Moreira F,Corcini CD,Mondadori RG,et al.Leptin and mitogen-activated protein kinase (MAPK) in oocytes of sows and gilts[J].Anim Reprod Sci,2013,139(1-4):89.
[25]Liang J,Feng J,Wu WK,et al.Leptin-mediated cytoskeletal remodeling in chondrocytes occurs via the RhoA/ROCK pathway[J].J Orthop Res,2011,29(3):369.
[26]Beccari S,Kovalszky I,Wade JD,et al.Designer peptide antagonist of the leptin receptor with peripheral antineoplastic activity[J].Peptides,2013,44:127.
[27]Wang D,Chen J,Chen H,et al.Leptin regulates proliferation and apoptosis of colorectal carcinoma through PI3K/Akt/mTOR signalling pathway[J].J Biosci,2012,37(1):91.
(收稿日期:2015-07-15)
作者简介:荣小丽,女,硕士在读,主要研究临床检验诊断学分子生物方向。
文章编号:1007-4287(2016)02-0329-03
*通讯作者
基金项目:国家自然科学基金30772488;国家自然科学基金81172000