高分辨磁共振成像评价他汀治疗逆转颈动脉粥样硬化斑块研究进展
2016-01-18宋昌鹏陈步星
宋昌鹏,陈步星
颈动脉粥样硬化斑块不仅是缺血性脑血管事件发生的重要危险因素,还是评价全身动脉粥样硬化情况的窗口[1],通过评价他汀治疗逆转颈动脉粥样硬化斑块,可反映他汀治疗对全身动脉粥样硬化效应。评价他汀治疗逆转颈动脉粥样硬化的影像学方法包括:颈动脉超声、数字减影血管造影(digital subtraction angiography,DSA)、CT血管成像(computed tomography angiography,CTA)、磁共振血管成像(magnetic resonance angiography,M R A)、血管内超声(intravascular ultrasound,IVUS)、光学相干层析技术(optical coherence tomography,OCT),其中超声主要依据颈动脉内膜中层厚度(intimamedia thickness,IMT)来反映动脉粥样硬化程度,但易受周围组织影响,且图像重复性低。DSA、CTA和MRA虽然可反映动脉狭窄程度,但无法提供管壁信息,评价斑块稳定性的价值有限[2]。IVUS和OCT虽可提供动脉狭窄程度及管壁信息,但均为有创检查,且价格昂贵,不适合大规模应用于临床筛查不稳定性斑块。
高分辨磁共振成像(high-resolution magnetic resonance imaging,HR-MRI)作为一种新兴的无创性成像技术,可准确评价颈动脉管壁情况,并可对斑块负荷及斑块内各种组分进行定量分析,分析结果有良好的组织一致性[3]。目前HR-MRI已用于在体评价他汀治疗逆转颈动脉粥样硬化斑块效应。本文对HRMRI评价他汀治疗逆转颈动脉粥样硬化进展作一综述。
1 评价他汀治疗逆转颈动脉粥样硬化的传统影像学技术
评价他汀治疗逆转颈动脉粥样硬化的传统成像技术有很多种(表1)。颈动脉超声通过定量分析颈动脉IMT变化来评价他汀治疗对颈动脉斑块的逆转作用[4]。但颈动脉超声测得IMT的准确性受检查者操作经验、患者配合度影响大,目前IMT反映动脉粥样硬化严重程度的可靠性还存在争议[5]。Beishuizen等[6]发现接受他汀治疗的糖尿病患者临床心血管事件发生率明显降低,但监测IMT无明显变化,提示超声测量IMT评价他汀逆转斑块的敏感性不高。血管造影成像方法包括:DSA、CTA和MRA,通过测量动脉狭窄程度,反映动脉粥样硬化严重程度。但由于存在血管的正性重构效应(即斑块占血管的横截面积<40%时斑块所处位置的动脉代偿性扩张)[7],造成了管腔狭窄度一定程度上低估了动脉粥样硬化严重程度,而且血管造影成像对判断斑块负荷、斑块内组分价值有限,故很难用于评价他汀治疗对斑块的逆转作用。新型虚拟组织学血管内超声(virtual histology in intravascular ultrasound,VH-IVUS)可定性、定量分析斑块内纤维成分、钙化成分及脂质成分[8],但IVUS空间分辨率为100 μm,而典型的薄纤维帽易损斑块纤维帽厚度通常小于65 μm,故IVUS识别薄纤维帽易损斑块及评价他汀治疗对纤维帽厚度的影响时有困难[9]。OCT为光学成像技术,空间分辨率达20 μm,可以准确识别易损斑块组分、薄纤维帽粥样斑块及斑块内巨噬细胞聚集[10],是目前评价他汀治疗逆转动脉粥样硬化斑块最准确的影像学方法,但OCT为有创性方法,且费用昂贵,不适用于临床高危患者易损斑块的筛查。
2 HR-MRI评价他汀治疗逆转颈动脉粥样硬化斑块的优势
HR-MRI技术可评价在体动脉粥样硬化斑块负荷及斑块内组分,磁共振成像主要依靠组织信号频差(尤其是水中质子频差)成像,无放射性损害,可重复筛查。HR-MRI血管壁成像结合黑血及亮血技术,可以提供血管组织结构、管壁厚度、斑块成分等信息。Fabiano等[11]采用HR-MRI技术评价颈动脉内膜剥脱术前患者颈动脉管壁情况,并与术后剥脱的内膜病理进行对比,发现两者之间存在高度一致性。研究发现多序列磁共振成像(magnetic resonance imaging,MRI)可准确分析斑块特征,判定及定量分析包括脂质坏死核心、纤维帽厚度、斑块内出血、钙化等组分[12],这些优势使得HRMRI技术逐渐成为临床评价机体动脉粥样硬化进展和他汀治疗逆转斑块的影像学技术(图1)。
图1 颈动脉高分辨磁共振图像
3 HR-MRI技术他汀治疗逆转颈动脉粥样硬化斑块
他汀类药物可延缓甚至逆转动脉粥样硬化进展,HR-MRI技术通过分析斑块内组分变化评价他汀治疗逆转斑块效应。
3.1 HR-MRI通过分析斑块负荷评价他汀治疗效应 研究发现HR-MRI不仅可清楚地探测血管壁,而且可定量分析管壁厚度、管壁面积、管壁面积百分比、管壁体积百分比及斑块体积等反映斑块负荷的变量[13-14]。Corti等[15-16]最早采用HR-MRI技术评价辛伐他汀治疗对高胆固醇血症患者动脉粥样硬化斑块的影响,结果发现他汀治疗1年后患者动脉管壁面积、管壁厚度明显减低,2年后患者动脉管壁面积进一步缩小,并且管腔面积增大。在Christopher等[17]的研究中,应用HR-MRI斑块成像监测颈内动脉斑块体积药物治疗前后的变化,结果发现他汀联合烟酸使用的效果要优于单独使用他汀治疗。Migrino等[18]的研究发现颈动脉HR-MRI检查在超声发现IMT变化前即可检测到斑块体积变化,提示HR-MRI检查在评价他汀类药物疗效方面可能比超声更有优势。斑块负荷一定程度上与动脉粥样硬化严重性相关,HR-MRI可在体评价他汀治疗对斑块负荷的作用,且敏感性较高,对指导临床治疗有重要意义。
3.2 HR-MRI通过分析斑块内纤维成分及脂质成分变化评价他汀治疗效应 病理学研究显示大脂质核心覆以薄纤维帽的动脉粥样硬化斑块容易发生破裂,引起临床心脑血管事件[19]。对症状性脑血管病患者的MRI检查结果与上述病理学研究结果一致[20]。Zhao等[21]发现他汀可降低斑块内脂质含量、增加纤维含量,从而稳定动脉粥样硬化斑块,降低心脑血管事件发生。Underhill等[22]采用HR-MRI对接受高强度他汀治疗(瑞舒伐他汀40~80 mg)的33例患者的颈动脉进行评价发现,与基线水平相比,他汀治疗2年后斑块内富含脂质核心(lipid rich necrotic core,LRNC)体积、LRNC%明显降低,而纤维成分体积比增加,表明高强度他汀治疗可减少斑块内脂质成分,增加纤维成分[21]。Ping等[23]的研究中,接受瑞舒伐他汀治疗的患者,分别在启动他汀治疗前,他汀治疗后3个月、6个月、12个月和24个月行HR-MRI检查,结果显示:他汀治疗3个月时即可检测到斑块内脂质成分明显减低,提示他汀治疗在早期即可影响斑块内组分的构成比例,稳定颈动脉粥样硬化斑块。
3.3 HR-MRI通过分析斑块内出血变化评价他汀治疗效应 斑块内出血可促进白细胞聚集、加速动脉粥样硬化进展,它同薄纤维帽、大脂质核心一样,是轻-中度颈动脉狭窄患者发生脑血管事件的危险因素[24]。Gupta等[25]纳入9项研究共779例患者的Meta分析,发现颈动脉粥样硬化斑块内出血预测未来卒中/短暂性脑缺血发作的风险比是4.59(95%可信区间2.91~7.24)。Umar等[26]比较了60例患者颈动脉HR-MRI图像后发现,急性症状性脑血管病患者检出斑块内出血比例为55%,而近期症状性患者和无症状患者这一比例分别为35%和5%。Kwee等[27]通过HR-MRI评价轻中度颈动脉狭窄患者颈动脉斑块特征时发现,患者他汀类药物服用史与患者斑块内出血的检出率呈负相关,提示他汀治疗可能具有延缓甚至逆转斑块内出血发生。但还需临床研究证实。
3.4 HR-MRI通过分析斑块内滋养血管变化评价他汀治疗效应 他汀治疗降低颈动脉外膜滋养血管的机制尚不清楚。研究指出炎症状态下,斑块内滋养血管膨胀扩张,渗透性增加,红细胞流出,导致巨噬细胞聚集,进一步加重炎症反应[28]。他汀类药物的抗炎作用可使斑块内巨噬细胞密度减低、逆转外膜下滋养血管。Wilson等[29]在母猪动物模型上发现他汀类药物可延缓冠状动脉内新生脉管增殖速度。Dong等[30]采用动态对比增强MRI技术分析了28例基线动态对比增强MRI发现具有动脉管壁滋养血管的患者,接受高强度他汀治疗1年后行对比增强MRI检查,结果显示外膜下滋养血管密度明显减低,该研究还显示:滋养脉管密度的降低与血清超敏C反应蛋白水平及MRI所见脂质核心容积下降之间并没有明确的相关性,这可能与滋养脉管的生理作用有关,滋养血管不仅是斑块内脂质沉积的通道,同时也可以增加内膜下脂质向血管外膜转运[29]。
3.5 HR-MRI通过分析炎症变化评价他汀治疗效应 他汀治疗可降低斑块内炎症水平。早期临床上只能通过病理学检查方法分析斑块内炎症水平,Crisby等[31]的研究发现接受他汀治疗的患者颈动脉剥脱内膜中巨噬细胞及T细胞密度明显低于未接受他汀治疗的患者。而最新研究发现超顺磁性氧化铁(ultrasmall superparamagnetic iron oxide,USPIO)颗粒通过受损的内皮细胞进入斑块内,并被巨噬细胞所吞噬,以USPIO为造影剂可通过MRI技术在体分析他汀治疗对动脉粥样硬化斑块的效应[32]。阿托伐他汀治疗降低巨噬细胞活动性研究(Atorvastatin Therapy: Effects on Reduction of Macrophage Activity,ATHEROMA)研究采用USPIO增强HR-MRI技术评价阿托伐他汀对颈动脉斑块内炎症及巨噬细胞活动性的作用,研究结果显示:高强度阿托伐他汀(80 mg)治疗组在6周及12周时斑块内巨噬细胞聚集密度明显减低,斑块内炎症水平下降,而低强度阿托伐他汀(10 mg)治疗组未见此改变[33],该对比增强成像技术可连续评价他汀类药物对斑块内炎症作用,以及斑块内炎症状态同临床心脑血管事件的相关性。
HR-MRI可用于临床评价动脉粥样硬化患者斑块负荷和斑块内组分,识别包括薄纤维帽、纤维帽破裂、大的脂质坏死核心、斑块内出血和斑块内新生血管等易损斑块病理学特征,评价HR-MRI图像下斑块内组分同临床急性心脑血管事件发生风险的相关性。
HR-MRI技术以其无创、组织分辨率高等优势,已经开始运用于临床观察在体动脉粥样硬化斑块进展过程。此外,HR-MRI可评价经典抗动脉粥样硬化药物逆转斑块作用,尤其是他汀类药物相关研究较多,从影像上直接证实了他汀治疗逆转斑块、稳定斑块的作用,对于其他如烟酸等药物的抗动脉粥样硬化作用目前仍存在争议,需要未来大规模临床试验去证实。
HR-MRI是一项新兴成像技术,随着成像序列、对比增强方法、场强的发展,该技术必将在临床动脉粥样硬化性疾病的诊断、治疗、预防等方面扮演更加重要的角色。
1 Rosamond W, Flegal K, Friday G, et al. AHA.Heart Disease and Stroke Statistics-2007 Update[J].Circulation, 2007, 115:e69-e171.
2 Libby P. Coronary artery injury and the biology of atherosclerosis inflammation, thrombosis, and stabilization[J]. Am J Cardiol, 2000, 86:3J-8J.
3 Yuan C, Beach KW, Smith LH Jr, et al. Measurement of atherosclerotic carotid plaque size in vivo using high resolution magnetic resonance imaging[J]. Circulation,1998, 98:2666-2671.
4 Mercuri M, Bond MG, Sirtori CR, et al. Pravastatin reduces carotid intima-media thickness progression in an asymptomatic hypercholesterolemic Mediterranean population:the Carotid Atherosclerosis Italian Ultrasound Study[J]. Am J Med, 1996, 101:627-634.
5 Nguyen-Thanh HT, Benzaquen BS. Screening for subclinical coronary artery disease measuring carotid intima media thickness[J]. Am J Cardiol, 2009,104:1383-1388.
6 Beishuizen ED, van de Ree MA, Jukema JW, et al. Twoyear statin therapy does not alter the progression of intima-media thickness in patients with type 2 diabetes without manifest cardiovascular disease[J]. Diabetes Care, 2004, 27:2887-2892.
7 Glagov S, Weisenberg E, Zarins CK, et al.Compensatory enlargement of human atherosclerotic coronary arteries[J]. N Engl J Med, 1987, 316:1371-1375.
8 Nozue T, Yamamoto S, Tohyama S, et al. Treatment with statin on atheroma regression evaluated by intravascular ultrasound with Virtual Histology(TRUTH Study):rationale and design[J]. Circ J, 2009,73:352-355.
9 Jang IK, Bouma BE, Kang DH, et al. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography:comparison with intravascular ultrasound[J]. J Am Coll Cardiol, 2002,39:604-609.
10 陈步星, 马凤云, 罗维, 等. 光学相干断层成像在冠心病介入治疗中的应用价值[J]. 中华心血管病杂志, 2006,34:130-133.
11 Fabiano S, Mancino S, Stefanini M, et al. High resolution multicontrast-weighted MR imaging from human carotid endarterectomy specimens to assess carotid plaque components[J]. Eur Radiol, 2008,18:2912-2921.
12 Yuan C, Mitsumori LM, Ferguson MS, et al. In vivo accuracy of multispectral magnetic resonance imaging for identifying lipid-rich necrotic cores and intraplaque hemorrhage in advanced human carotid plaques[J].Circulation, 2001, 104:2051-2056.
13 Zhang S, Cai J, Luo Y, et al. Measurement of carotid wall volume and maximum area with contrast enhanced 3D MR imaging:initial observations[J]. Radiology,2003, 228:200-205.
14 Deyama J, Nakamura T, Takishima I, et al. Contrastenhanced ultrasound imaging of carotid plaque neovascularization is useful for identifying high-risk patients with coronary artery disease[J]. Circ J, 2013,77:1499-1507.
15 Corti R, Fayad ZA, Fuster V, et al. Effects of lipidlowering by simvastatin on human atherosclerotic lesions:a longitudinal study by high-resolution,noninvasive magnetic resonance imaging[J].Circulation, 2001, 104:249-252.
16 Corti R, Fuster V, Fayad ZA, et al. Lipid lowering by simvastatin induces regression of human atherosclerotic lesions:two years’ follow-up by high resolution noninvasive magnetic resonance imaging[J].Circulation, 2002, 106:2884-2887.
17 Sibley CT, Vavere AL, Gottlieb I, et al. MRI-measured regression of carotid atherosclerosis induced by statins with and without niacin in a randomised controlled trial:the NIA plaque study[J]. Heart, 2013, 99:1675-1680.
18 Migrino RQ, Bowers M, Harmann L, et al. Carotid plaque regression following 6-month statin therapy assessed by 3T cardiovascular magnetic resonance:comparison with ultrasound intima media thickness[J]. J Cardiovasc Magn Reson, 2011, 13:37.
19 Virmani R, Kolodgie FD, Burke AP, et al, Lessons from sudden coronary death:a comprehensive morphological classification scheme for atherosclerotic lesions[J].Arterioscler Thromb Vasc Biol, 2000, 20:1262-1275.
20 Briley-Saebo KC1, Mulder WJ, Mani V, et al. Magnetic resonance imaging of vulnerable atherosclerotic plaques:current imaging strategies and molecular imaging probes[J]. J Magn Reson Imaging, 2007,26:460-479.
21 Zhao XQ, Dong L, Hatsukami T, et al. MR imaging of carotid plaque composition during lipid-lowering therapy a prospective assessment of effect and time course[J]. JACC Cardiovasc Imaging, 2011, 4:977-986.
22 Underhill HR, Yuan C, Zhao XQ, et al. Effect of rosuvastatin therapy on carotid plaque morphology and composition in moderately hypercholesterolemic patients:a high-resolution magnetic resonance imaging trial[J]. Am Heart J, 2008, 155:584. e1-e8.
23 Wu HM, Ma L, Ye P, et al. Early decrease in carotid plaque lipid content as assessed by magnetic resonance imaging during treatment of rosuvastatin[J]. BMC Cardiovasc Disord, 2014, 14:83.
24 Truijman MT, de Rotte AA, Aaslid R, et al. Intraplaque hemorrhage, fibrous cap status, and microembolic signals in symptomatic patients with mild to moderate carotid artery stenosis:the Plaque at RISK study[J].Stroke, 2014, 45:3423-3426.
25 Gupta A, Baradaran H, Schweitzer AD, et al. Carotid plaque MRI and stroke risk:a systematic review and meta-analysis[J]. Stroke, 2013, 44:3071-3077.
26 Sadat U, Weerakkody RA, Bowden DJ, et al. Utility of high resolution MR imaging to assess carotid plaque morphology:a comparison of acute symptomatic,recently symptomatic and asymptomatic patients with carotid artery disease[J]. Atherosclerosis, 2009,207:434-439.
27 Kwee RM, van Oostenbrugge RJ, Prins MH, et al.Symptomatic patients with mild and moderate carotid stenosis:plaque features at MRI and association with cardiovascular risk factors and statin use[J]. Stroke,2010, 41:1389-1393.
28 Moreno PR, Purushothaman KR, Sirol M, et al.Neovascularization in human atherosclerosis[J].Circulation, 2006, 113:2245-2252.
29 Wilson SH, Herrmann J, Lerman LO, et al. Simvastatin preserves the structure of coronary adventitial vasa vasorum in experimental hypercholesterolemia independent of lipid lowering[J]. Circulation, 2002,105:415-418.
30 Dong L, Kerwin WS, Chen H, et al. Carotid artery atherosclerosis:effect of intensive lipid therapy on the vasa vasorum--evaluation by using dynamic contrastenhanced MR imaging[J]. Radiology, 2011, 260:224-231.
31 Crisby M, Nordin-Fredriksson G, Shah PK, et al. Pravastatin treatment increases collagen content and decreases lipid content, inflammation,metalloproteinases, and cell death in human carotid plaques:implications for plaque stabilization[J].Circulation, 2001, 103:926-933.
32 Trivedi RA1, U-King-Im JM, Graves MJ, et al. In vivo detection of macrophages in human carotid atheroma:temporal dependence of ultrasmall superparamagnetic particles of iron oxide-enhanced MRI[J]. Stroke, 2004, 35:1631-1635.
33 Tang TY, Howarth SP, Miller SR, et al. The ATHEROMA (Atorvastatin Therapy:Effects on Reduction of Macrophage Activity) Study. Evaluation using ultrasmall superparamagnetic iron oxideenhanced magnetic resonance imaging in carotid disease[J]. J Am Coll Cardiol, 2009, 53:2039-2050.