APP下载

超声波促进的水相Biginelli反应合成二氢嘧啶酮衍生物*

2016-01-17王英焦锐连云港师范高等专科学校化学系江苏连云港222006

合成化学 2015年11期
关键词:催化合成水相

王英,焦锐(连云港师范高等专科学校化学系,江苏连云港 222006)



超声波促进的水相Biginelli反应合成二氢嘧啶酮衍生物*

王英,焦锐
(连云港师范高等专科学校化学系,江苏连云港222006)

摘要:报道了水相中硫酸氢钠催化的乙酰乙酸酯、醛和脲(硫脲)参与的Biginelli型反应,在超声波促进下高效地合成11个3,4-二氢嘧啶酮衍生物,收率80%~93%,其结构经1H NMR和HR-MS确证。

关键词:Biginelli反应;催化;超声波;水相;二氢嘧啶酮;合成

二氢嘧啶酮具有广泛的生物活性,如抗病毒、抗肿瘤、抗菌及消炎等[1]。其衍生物还是潜在的钙通道阻滞剂,α1a-肾上腺素拮抗剂和神经肽受体拮抗剂[2]。合成该类化合物的最为经典的方法是Biginelli反应[13]。到目前为止,研究已发现离子液体[4-6]、金属路易斯酸[7-10]及负载型酸性催化剂[11-18]等均可有效催化Biginelli反应合成二氢嘧啶酮衍生物,但是多数反应在催化剂制备、反应效率及环境友好性方面依然有待改进。

超声波促进的有机反应近年来被广泛研究。与传统的有机合成方法相比,超声波辐射下的反应可以在更加温和的条件下进行,同时可以显著提高产率和缩短反应时间,甚至可以使某些传统条件下难以发生的反应得以顺利进行。研究表明,超声波不仅可以促进氧化、还原、取代、加成及缩合等经典反应,对偶联反应和多组分反应同样具有较好的促进作用[19]。

本文报道了超声波促进的水相Biginelli反应高效合成二氢嘧啶酮衍生物。以乙酰乙酸酯(1a 和1e),醛(2a~2d)和脲(或硫脲)(3a和3i)为原料,经超声波促进的Biginelli型反应合成了11个3,4-二氢嘧啶酮衍生物(4a~4k,Scheme 1),收率80%~93%,其结构经1H NMR和HR-MS确证。

1 实验部分

1.1仪器与试剂

Scheme 1

X-4型显微熔点仪(温度未校正); FTNMR Bruker 250 MHz型核磁共振仪(DMSO-d6为溶剂,TMS为内标); TOF-MS型质谱仪。

所用试剂均分析纯。

1.2 4a~4k的合成通法

在反应瓶中依次加入1 2.2 mmol,2 2 mmol,3 2.2 mmol,NaHSO40.4 mmol,水3 mL和乙醇1 mL,搅拌下于55℃(水浴)超声反应10 h~15 h(TLC监测)。冷却,旋蒸除溶,残余物经硅胶柱层析[洗脱剂:V(乙酸乙酯)∶V(石油醚)=1∶6]纯化得4a~4k。

4a:白色固体,m.p.205℃~207℃;

1H NMR δ:1.08(t,J=7.1 Hz,3H,CH3),2.24(s,3H,CH3),3.98(q,J=7.1 Hz,2H,OCH2),5.06(d,J=2.15 Hz,1H,CH),7.27(m,5H,ArH),7.76(s,1H,NH),9.21(s,1H,NH); HR-ESI-MS m/z:Calcd for C14H16N2O3[M+]260.116 1; found 260.115 8。

4b:白色固体,m.p.199℃~200℃;

1H NMR δ:1.14(t,J=7.12 Hz,3H,CH3),2.34(s,3H,CH3),3.77(s,3H,OCH3),4.05(q,J=7.12 Hz,2H,OCH2),5.34(d,J=2.28 Hz,1H,CH),6.82(d,J=8.60 Hz,2H,ArH),7.21(d,J=8.60 Hz,2H,ArH),7.75(s,1H,NH),9.25(s,1H,NH); HR-ESI-MS m/z:Calcd for C15H18N2O4[M+]290.126 7; found 290.126 3。

4c:棕色固体,m.p.209℃~211℃;

1H NMR δ:1.10(t,J=7.04 Hz,3H,CH3),2.31(s,3H,CH3),4.04(q,2H,J=7.12 Hz,OCH2),5.79(d,J=2.28 Hz,1H,CH),7.50(d,J=9.18 Hz,2H,ArH),7.68(s,1H,NH),8.15(d,J=9.16 Hz,2H,ArH),9.06(s,1H, NH); HR-ESI-MS m/z:Calcd for C14H15N3O5[M+]305.101 2; found 305.101 0。

4d:白色固体,m.p.213℃~214℃;

1H NMR δ:1.11(t,J=7.14 Hz,3H,CH3),2.30(s,3H,CH3),3.90(q,J=7.16 Hz,2H,OCH2),5.71(d,J=2.28 Hz,1H,CH),7.22(d,J=9.18 Hz,2H,ArH),7.68(s,1H,NH),7.95(d,J=9.18 Hz,2H,ArH),9.16(s,1H,NH); HR-ESI-MS m/z:Calcd for C14H15N2O3Cl [M+]294.077 1; found 294.077 0。

4e:白色固体,m.p.235℃~236℃;

1H NMR δ:2.30(s,3H,CH3),3.91(s,3H,CO2CH3),5.45(d,J=2.15 Hz,1H,CH),7.14(d,J=9.05 Hz,2H,ArH),7.52(s,1H,NH),7.88(d,J=9.06 Hz,2H,ArH),9.01(s,1H,NH); HR-ESI-MS m/z:Calcd for C13H13N2O3Cl [M+]280.061 5; found 280.0616。

4f:棕色固体,m.p.228℃~229℃;

1H NMR δ:2.21(s,3H,CH3),3.90(s,3H,CO2CH3),5.51(d,J=2.15 Hz,1H,CH),7.43(d,J=9.11 Hz,2H,ArH),7.45(s,1H,NH),8.05(d,J=9.10 Hz,2H,ArH),9.05(s,1H,NH); HR-ESI-MS m/z:Calcd for C13H13N3O5[M+]291.085 5; found 291.085 3。

4g:白色固体,m.p.192℃~193℃;

1H NMR δ:2.25(s,3H,CH3),3.91(s,3H,CO2CH3),3.76(s,3H,OCH3),5.21(d,J=2.21 Hz,1H,CH),6.75(d,J=8.58 Hz,2H,ArH),7.19(d,J=8.58 Hz,2H,ArH),7.63(s,1H,NH),9.16(s,1H,NH); HR-ESI-MS m/z:Calcd for C14H16N2O4[M+]276.111 0; found 276.111 0。

4h:白色固体,m.p.205℃~206℃;

1H NMR δ:2.18(s,3H,CH3),3.86(s,3H,CO2CH3),5.03(d,J=2.07 Hz,1H,CH),7.25(m,5H,ArH),7.65(s,1H,NH),9.14(s,1H,NH); HR-ESI-MS m/z:Calcd for C13H14N2O3[M+]246.100 4; found 246.100 1。

4i:黄色固体,m.p.209℃~210℃;

1H NMR δ:1.10(t,J=7.21 Hz,3H,CH3),2.28(s,3H,CH3),4.12(q,J=7.24 Hz,2H,OCH2),5.15(d,J=2.05 Hz,1H,CH),7.52(m,5H,ArH),7.80(s,1H,NH),9.42(s,1H,NH); HR-ESI-MS m/z:Calcd for C14H16N2O2S[M+]276.093 2; found 276.093 0。

4j:棕色固体,m.p.201℃~202℃;

1H NMR δ:1.16(t,J=7.14 Hz,3H,CH3),2.28(s,3H,CH3),4.02(q,J=7.11 Hz,2H,OCH2),5.80(d,J=2.06 Hz,1H,CH),7.24~7.37(m,4H,ArH),7.77(s,1H,NH),9.34(s,1H,NH); HR-ESI-MS m/z:Calcd for C14H15N3O4S[M+]321.078 3; found 321.078 2。

4k:黄色固体,m.p.149℃~150℃;

1H NMR δ:1.18(t,J=7.11 Hz,3H,CH3),2.36(s,3H,CH3),4.13(s,3H,OCH3),4.15(q,J=7.10 Hz,2H,OCH2),5.45(d,J=2.15 Hz,1H,CH),7.12(d,J=8.15 Hz,2H,ArH),7.38(d,J=8.11 Hz,2H,ArH),7.85(s,1H,NH),9.44(s,1H,NH); HR-ESI-MS m/z:Calcd for C15H18N2O3S[M+]306.103 8; found 306.103 1。

2 结果与讨论

2.1反应条件的优化

以1a,2a和3a的反应为模板反应,对反应条件进行优化。实验结果表明,以20 mol% NaHSO4为催化剂,在水相中于室温反应12 h,只有微量产物生成;反应温度升至55℃,反应12 h,4a收率48%;当把反应体系放入超声波环境中时,于55℃反应4 h,反应基本结束,整个反应体系自始至终呈现浑浊状。考虑到原料的溶解性对反应的影响,尝试以25%乙醇为溶剂,发现反应在1 h左右即可完成,并以90%的分离收率获得4a。将NaHSO4的用量降低至10 mol%时,反应收率明显下降。

2.2反应的普适性探讨

以20mol% NaHSO4作为催化剂,在50℃超声波条件下,进行了底物的拓展。实验发现,乙酰乙酸乙酯和乙酰乙酸甲酯都能很好地参与反应,对于芳香醛而言,芳环上取代基的电子效应对反应影响较小,无论强吸电子基团硝基,还是强供电子基团甲氧基,相应芳醛参与的反应均能顺利进行,以85%~93%的优良收率获得目标产物(4a~4h)。除了尿素能发生反应外,硫脲类化合物也能顺利参与反应,在最优条件下,可以82%~93%的收率获得目标产物(4i~4k),芳香醛中芳环上所带基团的电子效应对反应收率的影响甚微。

将醛底物拓展到脂肪醛时,反应几乎不能进

行。这可能与反应中生成的亚胺中间体的稳定性有关[20],芳香醛亚胺的稳定性要高于脂肪醛亚胺,越稳定的亚胺越利于后续反应的进行。

3 结论

报道了水相中超声波促进下乙酰乙酸酯、芳醛和(硫)脲的Biginelli反应,高效地合成了3,4-二氢嘧啶酮衍生物,产率高达93%。

该方法具有反应条件温和、操作简便、收率高、绿色环保等优点。该研究结果为发展超声波条件下的高效合成方法提供了借鉴。

参考文献

[1]Kappe C O.100 years of the biginelli dihydropyrimidine synthesis[J].Tetrahedron,1993,49(32):6937-6963.

[2]Atwal K S,Swanson B N,Unger S E,et al.Dihydropyrimidine calcium channel blockers.3.3-Carbamoyl-4-aryl-1,2,3,4-tetrahydro-6-methyl-5-pyrimidinecarboxylic acid esters as orally effective antihypertensive agents[J].J Med Chem,1991,34(2):806-811.

[3]Kappe C O.Biologically active dihydropyrimidones of the Biginelli-type a literature survey[J].Eur J Med Chem,2000,35(12):1043-1052.

[4]Alvim H G O,Lima T B,Oliveira H C B,et al.Ionic liquid effect over the Biginelli reaction under homogeneous and heterogeneous catalysis[J].ACS Catal,2013,3(7):1420-1430.

[5]Elhamifar D,Nasr-Esfahani M,Shábani A,et al.Ionic liquid and sulfonic acid based bifunctional periodic mesoporous organosilica(BPMO-IL-SO3H)as a highly efficient and reusable nanocatalyst for the Biginelli reaction[J].ChemCatChem,2014,6(9):2593-2599.

[6]Elhamifar D,Shábani A.Nitrogen and phosphorus dual-doped hierarchical porous carbon foams as efficient metal-free electrocatalysts for oxygen reduction reactions[J].Chem Eur J,2014,20(11):3212-3217.

[7]Chitra S,Pandiarajan K.Calcium fluoride:An efficient and reusable catalyst for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones and their corresponding 2(1H)thione:An improved high yielding protocol for the Biginelli reaction[J].Tetrahedron Lett,2009,50(19):2222-2224.

[8]Cai Y F,Yang H M,Xu L W.Cooperative and enantioselective NbCl5/primary amine catalyzed Biginelli reaction[J].Eur J Org Chem,2010,(26):4986-4990.

[9]Qiu Y,Sun H,Xia W,et al.Efficient,stable,and reusable Lewis acid-surfactant-combined catalyst:Onepot Biginelli and solvent-free esterification reactions [J].J Mol Catal A:Chem,2014,392:76-82.

[10]Oliverio M,Rivalta I,Procopio A.Facile ecofriendly synthesis of monastrol and its structural isomers via Biginelli reaction[J].ACS Sustain Chem Eng,2014,2(5):1228-1233.

[11]Nandi G C,Samai S,Singh M S.Biginelli and Hantzsch-type reactions leading to highly functionalized dihydropyrimidinone,thiocoumarin,and pyridopyrimidinone frameworks via ring annulation with β-oxodithioesters[J].J Org Chem,2010,75(22):7785-7795.

[12]Kalbasi R J,Massah A R,Daneshvarnejad B.Preparation and characterization of bentonite/PS-SO3H nanocomposites as an efficient acid catalyst for the Biginelli reaction[J].Appl Clay Sci,2012,55:1-9.

[13]Pramanik M,Bhaumik A.Phosphonic acid functionalized ordered mesoporous material:A new and ecofriendly catalyst for one-pot multicomponent Biginelli reaction under solvent-free conditions[J].ACS Appl Mater Interfaces,2014,6(2):933-941.

[14]Quan Z J,Da Y X,Wang X C,et al.PS-PEG-SO3H as an efficient catalyst for 3,4-dihydropyrimidones via Biginelli reaction[J].Catal Commun,2009,10(8):1146-1148.

[15]Konkala K,Reddy V K,Prasad R B N,et al.Revisit to the Biginelli reaction:A novel and recyclable bioglycerol-based sulfonic acid functionalized carbon catalyst for one-pot synthesis of substituted 3,4-dihydropyrimidin-2-(1H)-ones[J].Tetrahedron Lett,2012,53(15):1968-1973.

[16]Zamani F,Izadi E.Synthesis and characterization of sulfonated-phenylacetic acid coated Fe3O4nanoparticles as a novel acid magnetic catalyst for Biginelli reaction[J].Catal Commun,2013,42:104-108.

[17]Kolvari E,Koukabi N,Armandpour O.A simple and efficient synthesis of 3,4-dihydro-pyrimidin-2-(1H)-ones via Biginelli reaction catalyzed by nanomagneticsupported sulfonic acid[J].Tetrahedron,2014,70(6):1383-1386.

[18]Gong K,Wang H,Wang S,et al.β-Cyclodextrinpropyl sulfonic acid:A new and eco-friendly catalyst for one-pot multi-component synthesis of 3,4-dihydropyrimidones via Biginelli reaction[J].Tetrahedron,2015,71(29):4830-4834.

[19]纪顺俊,史达清,等.现代有机合成新技术,第二版[M].北京:化学工业出版社,2014.

[20]Folkers K,Johnson T B.Researches on pyrimidines.CXXXVI.The mechanism of formation of tetrahydropyrimidines by the Biginelli reaction[J].J Am Chem Soc,1933,55(9):3784-3791.

·制药技术·

Synthesis of Dihydropyrimidin-2(1H)-ones by Aqueous Biginelli Reaction under Ultrasonic Irradiation

WANG Ying,JIAO Rui
(Department of Chemistry,Lianyungang Teachers College,Lianyungang 222006,China)

Abstract:Eleven 3,4-dihydropyrimidin-2(1H)-ones were efficiently synthesized by aqueous Biginelli reaction of β-ketoester,aldehyde and urea(or thiourea)catalyzed by NaHSO4under ultrasonic irradiation with the yields of 80%~93%.The structures were confirmed by1H NMR and HR-MS.

Keywords:Biginelli reaction; catalysis; ultrasonic irradiation; aqueous reaction; 3,4-dihydropyrimidin-2(1H)-one; synthesis

作者简介:王英(1972-),女,汉族,江苏扬州人,硕士,主要从事有机合成方法学研究。E-mail:yingwang721110@163.com

基金项目:江苏省教育厅“青蓝工程”项目

收稿日期:2015-06-30

DOI:10.15952/j.cnki.cjsc.1005-1511.2015.11.1060 *

文献标识码:A

中图分类号:O626; O621.3

通信联系人:焦锐,副教授,Tel.0518-85608859,E-mail:jr7228@163.com

猜你喜欢

催化合成水相
P204 萃取硫酸体系中V(IV)的性能研究
离子液体分散液液微萃取-水相固化-高效液相色谱法测定食用菌中3种拟除虫菊酯类农药的残留量
海上中高渗透率砂岩油藏油水相渗曲线合理性综合分析技术
更 正
多酸化学的研究及应用
重视隐性德育关注心灵成长
综合化学实验设计:RGO/MnO复合材料的合成及其电化学性能考察
八种氟喹诺酮类药物人工抗原的合成及鉴定
满文单词合成系统的设计
文学经典催化高教情商教育