APP下载

研究生教育课程高等量子力学教学改革

2015-08-05胡苹彭志华郭萍胡继文

科教导刊 2015年19期
关键词:量子力学研究性教学创新能力

胡苹+彭志华+郭萍+胡继文

摘 要 研究生阶段既是知识深化的学习过程,也是科研能力培养的过程,学习知识为科学研究打下基础。本文从现阶段研究生授课模式存在的问题出发,探讨了高校研究生高等量子力学教学的必要性,在教学过程中引入研究性教学模式,提高教学质量,使学生在掌握量子力学基本原理的基础上,综合素质能力、科研创新能力得到极大的提高。

关键词 量子力学 教学改革 创新能力 研究性教学

中图分类号:G643.0 文献标识码:A DOI:10.16400/j.cnki.kjdks.2015.07.017

Graduate Education Course Advanced Quantum Mechanics Teaching Reform

HU Ping, PENG Zhihua, GUO Ping, HU Jiwen

(College of Mathematics and Science, University of South China, Hengyang, Hu'nan 451001)

Abstract Postgraduate both the learning process to deepen the knowledge of the process is scientific ability, knowledge of scientific basis. From Graduate Teaching Mode existing problems, discusses the necessity of quantum mechanics graduate students in higher education, research teaching model introduced in the teaching process, improve the quality of teaching so that students master the basic principles of quantum mechanics, based on general ability, innovation ability has been greatly improved.

Key words Quantum Mechanics; teaching reform; innovative ability; research teaching

自上个世纪80年初期恢复研究生教育,我国的研究生教育进入了蓬勃发展的时期。①随着我国高等教育的发展,研究生教育规模的也迅速扩大,研究生教育质量已成为一个全社会关注的焦点问题。我国研究生的素质关系到国家的未来发展,研究生教育是为国家培养现代化建设、发展科技培养高水平、高层次人才;研究生教育是我国站上世界知识经济高点的重要支持;同时也是高校实现由教学型向研究型转变的重要基础。研究生教育不同于本科生教育,研究生教育不仅包含课程教学,同时包含了社会实践、学位论文等诸多环节。②然而作为科研能力、自主创新能力发展的基础——课程教学不仅要传授知识,更重要的是要指导研究生思考,是提高研究生培养质量的根本。

研究生教学质量是整个研究生教育的一个重要部分,如何合理利用现有教学资源条件,使得研究生教学质量能够稳步提高,则成为研究生管理的首要解决问题之一。自上个世纪80年代以来,高等教育改革逐渐兴起,其主要目标就是培养创新型人才,教育界越来越多地关注教学方法创新研究。首先,研究性教学,是一种能有效引导学生主动探究、培养学生创新能力的教学方式,引起全世界各地的教育及其相关部门的关注。目前,教育部实施研究生科研创新项目研究计划, 现在全国已有100多所大学参加这项计划。其次,在过去的几十年中,国内外在总结以前高等教育成果与不足的基础上,以培养创新型人才为教育主要目标,对原有的传统高等教育模式进行了改革。

自从20世纪50年代美国施瓦布教授首先提出学生的学习过程和科学家的研究过程是一致的以来,研究性学习引起了人们的广泛关注,提出了各种相关的理论。③④⑤ 然而,现在国内的高校课堂教学大部分都是基于传统教学模式:教师教学——课堂讲授为主的教学模式。而研究性学习,则主要是以研究问题为基础、由学生主动提出问题、并设计解决方案、解决问题,并在这一过程中获得知识、培养相应的能力,基于此中方式来展开教学与研究的教学模式在国内现有的教学理念与教学资源条件下,应用并不广泛。尤其是在相对较为抽象难懂的理工类课程如量子力学课程教学中应用更是甚少。⑥研究生教育主要是培养学生的科研能力与素养,首先要在“研究”的培养上下功夫,而研究生课程教学正好提供了这一平台。在本文中主要以高等量子力学课程教学为主要研究内容,探讨如何进行课堂教学改革。

自1978年国内恢复研究生招生制度以来,高等量子力学就被列为物理系各专业研究生必修的学位课程之一,同时高等量子力学也是报考博士研究生的考试科目之一,在原来本科阶段“量子力学”的基础上进行深化和拓展,主要是提供学生在后学研究工作中要用的一些知识和方法。量子理论已经成为解决物理学、生命科学、信息科学和材料科学等理论问题的关键。

量子力学作为一门微观物理课程,与经典物理学相比,有一个很明显的差异:其中很多理论很难与日常生活和经验对应,涉及的理论、概念非常抽象,同时涉及非常多的数学知识,如(线性代数、Hilbert 空间、群论、数学物理方法和复变函数等),内容繁多,知识结构广泛,使得学生理解起来有非常大的困难,同时容易诱使学生陷入复杂繁琐的计算,而失去对量子力学学习的兴趣。目前,从我校物理系硕士研究生的实际情况来看,学生的量子力学知识水平参差不齐,有的学生以前没有学习过量子力学,有的学生学量子力学学时非常短,同时每个研究方向对量子力学的需求也不尽相同。 因此,量子力学成为教师公认难教的课程、学生公认难学的课程。 高等量子力学的教学效果将直接影响学生以后的科学研究创新能力与论文水平。为了培养研究生日后的科研能力,我们主要从教学内容和教学方法上进行了改革探讨。

在教学内容上,结合本校教学时限(48学时)和本校学生的特点、学生的研究方向,主要目标是将量子力学的知识应用到其它领域,避免冗长的理论计算,激发学生的创新热情。重点学习量子力学的形式理论、微扰理论、对称性和守恒定律、量子散射理论等。

在教学方法上,根据学生的知识基础和教学内容的特点,改变传统的教学方式,采用学生为主的教学方式。传统的教学方式主要是以教师讲授为主的灌输式、填充式,由于量子力学本身的特点,这些教学方法对量子力学的教学实效非常有限。一方面,一个主角的表演使得本身比较枯燥的量子力学课堂毫无生气,学生面对复杂繁琐的数学推导,思维跟不上教师的节奏,学生的学习热情下降。另一方面,学生本身的角色没有改变,自主学习、自主思考没有可锻炼的平台。教师考虑到自然科学的特点,一定要从知识的传承角度出发,这样教师要去贯彻启发式的教学方式。学生学一门课,学的是前人从实践中总结出来的间接知识。一个好的教师,应当引导学生设身处地去思考,自己是否也能根据一定的实验现象,通过分析和推理去得出前人已认识到的规律?自然科学中任何一个新的概念和原理,总是在旧概念和原理与新的实验现象的矛盾中诞生的。⑦作为教师,要充分利用新旧理论的矛盾提出问题,让学生思考问题,并设计一套完成的解决方案。在量子力学的课堂教学中,笔者结合实际情况,主要采取的是学生讲授为主、教师辅导的方式。尽管学生对量子力学知识的理解有限,但是一方面可以促使学生在课前预习;另一方面学生为了准备一堂课,要查阅相关资料,这样就可以极大地提高学生查找资料的能力,拓展学生知识面。作为教师,从学生讲授中也可以得到一些启发,诸如学生对一个问题理解的切入点与教师理解的不同,从而教师可以调整日后的课堂教学,使得课堂教学的内容从抽象化为通俗。

将科学研究融入到课堂教学,也是实现课堂教学改革的有效方式之一。研究生不仅要学习知识,更要的是做科学研究,寓教于研同样可以提高教学效果。在课题教学中,针对一个主题,在讲授基本知识的同时,更多的引入与之相关的前沿知识,并要求学生设计相关的问题,展开调查研究,以论文、学术报告的方式提交研究成果。通过此种方式,研究生的科学研究能力得到锻炼,创新思维能力得到培养,符合我们培养创新型人才的目标。

本文结合本校研究生的实际情况以及量子力学学科特色,我们主要从从教学内容、教学方法两方面探讨高等量子力学课程的教学改革。随着我国高等教育的发展,研究生课程教学改革还有待进一步地深化,这样才能提升我国研究生教育的整体水平,为祖国的发展培养更多的人才,日益增强国家的综合国力。

本文得到南华大学教学改革研究课题,2014XJG49;南华大学研究生教学改革研究项目 资助

注释

① 周萍.量子力学研究性教学[J]. 中国科教创新导, 2011(17): 89-90

② 高芬.美国高校研究生教学中的“教”与“学”——以美国马萨诸塞大学阿默斯特分校教育学院为例[J].学位与研究生教育,2011(3):73-77.

③ 沈元华.设计性、研究性物理实验介绍[J].物理实验,2004(2):33-37.

④ 顾沛.把握研究性教学、推进课堂教学方法改革[J].中国高等教育研究,2009, (7) :3 1-33 .

⑤ 陈兴文,白日霞,李敏.开展研究性教学培养大学生创新能力[J].黑龙江教育:高教研究与评估,2009(1):123-125.

⑥ 别敦荣.大学教学方法创新与提高高等教育质量[J].清华大学教育研究,2009(30):95- 101.

⑦ 曾谨言. 量子力学教学与创新人才培养[J].物理,2000(29):436-438.

猜你喜欢

量子力学研究性教学创新能力
高中数学课堂教学中创新能力的培养
创新能力培养视角下的无机化学教学研究
推进软件产业创新能力提升
基于创新能力培养的高职音乐教育改革探讨
原子物理教学中的实验观
研究型大学本科生科研能力提升策略
基于研究性教学的数字电路与系统实验教学改革
水质工程学课程群研究性教学改革与实践
研究性教学理念下的普通心理学教学改革
地方工科院校《量子力学》课程教法的探索与实践