(12)
根据模型(3)的第二个方程,当k>N时,有
(13)
由于R1<1,存在充分小的ε>0,使
综合定理1、2得,
定理3 当R1<1时,系统(3)的无病周期解(S*(t),0,R*(t))全局渐近稳定。
2 正周期解的存在性与分支
由于系统(3)的第一、二个方程不含移出者R(t),因而只需研究下面的子系统
(14)
下面利用分支定理[10]讨论系统(14)正周期解的存在性与分支。
考察阈值R1,不难发现,R1与脉冲免疫接种周期T成正比,若T过大,将导致R1≥1,无病周期解(S*(t),0,R*(t))不稳定。假设T=T0时R1=1,选取T为分支参数,并进行变量替换x1(t)=S(t),x2(t)=I(t),将系统(14)改写为
(15)
显然,
根据分支定理,若BC≠0,则系统(15)可由边界周期解分支出非平凡周期解。并且当BC<0时,分支是超临界的,当BC>0时,分支是次临界的。令
得到如下定理。
定理4 若条件(H)成立,则系统(15)在T0点存在超临界分支,即可由边界周期解(S*(t),0)分支出非平凡正周期解。这里,T0满足R1(T0)=1。
3 讨 论
模型(3)采用饱和接种率
θ反映了接种率受医疗资源限制的程度,θ越大,对易感者的免疫接种率越低。阈值R1与模型(3)中所有参数有关,下面考察R1与医疗资源的限制程度θ及疫苗接种周期T之间的关系(如图1)
图1 R1与参数θ、T之间的关系Fig.1 The relationship of the R1 between the parameter θ and T
显然,若医疗资源的限制程度θ为定值,阈值R1与疫苗接种周期T成正比。同样,若疫苗接种周期T固定,R1随θ的增大而增大。因此,充实医疗资源、缩短疫苗接种周期,使阈值R1<1,则疾病灭绝。否则,疾病持续。
[1]D’ONOFRIOA.StabilitypropertiesofpulsevaccinationstrategyinSEIRepidemicmodel[J].MathematicalBiosciences, 2002, 179(1): 57-72.
[2]ZHAOZ,CHENLS,SONGXY.ImpulsivevaccinationofSEIRepidemicmodelwithtimedelayandnonlinearincidencerate[J].MathematicsandComputersinSimulation, 2008, 79(3): 500-510.
[3] 赵文才,孟新柱.具有垂直传染的SIR脉冲预防接种模型[J]. 应用数学,2009, 22(3): 676-682.
[4]MENGXZ,CHENLS.GlobaldynamicalbehaviorsforanSIRepidemicmodelwithtimedelayandpulsevaccination[J].TaiwaneseJournalofMathematics, 2008, 12(5): 1107-1122.
[5]MENGXZ,CHENLS,WUB.AdelaySIRepidemicmodelwithpulsevaccinationandincubationtimes[J].NonlinearAnalysis:RealWorldApplications, 2010, 11(1): 88-98.
[6]ZHAOWC,ZHANGTQ,CHANGZB,etal.DynamicalanalysisofSIRepidemicmodelswithdistributeddelay[J].JournalofAppliedMathematics, 2013, 2013:ArticleID154387.doi:10.1155/2013/154387.
[7]GAOSJ,LIUYJ,NIETOJJ,etal.Seasonalityandmixedvaccinationstrategyinanepidemicmodelwithverticaltransmission[J].MathematicsandComputersinSimulation, 2011, 81(9): 1855-1868.
[8] 庞国萍,陈兰荪. 具饱和传染率的脉冲免疫接种SIRS模型[J]. 系统科学与数学, 2007, 27(4):563-572.
[9] 王刚,唐三一. 非线性脉冲状态依赖捕食被捕食模型的定性分析[J]. 应用数学和力学,2013,34(5): 496-505.
[10]LAKMECHEA,ARINOO.Bifurcationofnontrivialperiodicsolutionsofimpulsivedifferentialequationsarisingchemotherapeutictreatment[J].DynamicsofContinuousDiscreteandImpulsiveSystems, 2000, 7(2): 265-287.
Periodic Solution and Bifurcation of an SIR Epidemic Model with Nonlinear Pulse Vaccination
ZHAOWencai,LIUYulin
(Shandong University of Science and Technology, College of Mathematics and Systems Science, Qingdao 266590, China)
Due to limited medical resources, vaccine immunization rates are not often constant. To adapt nonlinear pulse vaccination function, an SIR epidemic model with lifelong immunity and pulse vaccination is stablished. By using stroboscopic map and fixed point of difference equations, the existence of disease free periodic solution in the model is discussed. The global asymptotically stability of disease free periodic solution is proved by applying Floquet multiplier theory and differential pulse comparison theorem. By choosing the pulse vaccination period as a bifurcation parameter, a sufficient condition under which the system has a positive periodic solution is obtained by using the bifurcation theorem.
nonlinear pulse vaccination; epidemic model; periodic solution; global asymptotically stability; bifurcation
2014-05-13
国家自然科学基金资助项目(11371230);山东省自然科学基金资助项目(ZR2012AM012);山东省高等学校科技计划资助项目(J13LI05)
赵文才(1966年生),男;研究方向:生物数学;E-mail:wencaizhao@126.com
10.1347/j.cnki.acta.snus.2015.01.004
O
A
0529-6579(2015)01-0013-06