日本福岛核电站事故后的海洋放射化学
2015-06-09刘广山
刘广山
厦门大学环境与生态学院,福建厦门 361102
日本福岛核电站事故后的海洋放射化学
刘广山
厦门大学环境与生态学院,福建厦门 361102
由于对环境影响的关注,日本福岛核电站事故后,人们进行了大气、陆地和海洋环境人工放射性核素变化监测与研究,研究的主要核素是131I、137Cs、134Cs和129I。除了关注浓度水平的变化外,还进行了通过大气和海流对事故释放的放射性核素运行路径的模拟研究。研究表明,受气候条件的控制,事故释放进入大气的放射性核素先经过太平洋到达北美,然后越过大西洋到达欧洲,最后绕北半球一周后到达中国。除事故核电站周边外,全球大气中131I活度浓度在mBq/m3量级,137Cs活度浓度在0.1~1 mBq/m3量级。事故释放进入海洋的放射性核素将随海流向东输运,然后在北太平洋随环流输运。研究也发现在离开源地不远的海区,由于混合进入200 m水深以下的次表层水,在远离事故核电站海区水体的137Cs活度浓度可达100 Bq/m3,但大部分水体137Cs活度浓度在Bq/m3量级,仅稍高于本底水平。
日本福岛;核电站事故;海洋环境;放射化学
Key words:Fukushima;nuclear power plant accident;marine environment;radiochemistry
2011年3月11日,日本东部近海发生9.0级大地震。地震及其引发的海啸导致东京电力公司福岛第一核电站(FDNPP,38.3°N,142.4°E)发生事故,向大气和海洋排放大量放射性物质。这些进入大气和海洋的放射性物质将向何处去,对海洋生态环境的影响如何,成为人们极为关注的问题。
福岛核电站事故后,全球从事放射性监测,核安全,应用放射性核素进行地球化学、海洋学、大气科学、环境科学、生态学研究的机构和科学家总动员,进行了大量监测与研究工作,发表的研究文章与评述文章数以万计,四年来经久不衰。
人们对事故的放射性核素释放量进行了估算[1-16],对大气放射性水平的变化进行了监测[17-54],并对大气放射性物质的输运途径进行了模拟[55-64]。事故后很长一段时间内,人们对事故排放的放射性物质造成的陆地[65-81]和海洋放射性水平的变化[82-120]与放射性核素在海洋中的输运途径[119-128]进行了研究。
日本福岛核电站事故已经过去四年,在人们心中的阴影也逐渐消淡。核事故释放的进入大气的放射性物质或沉积在陆地或沉积在海洋中,除了对核电站周边陆地环境造成严重影响外,即除日本外,对其它国家的环境影响在无关紧要的水平。事故排放入海的放射性物质,基本都在太平洋,量很大;在事故核电站周边海域,短时间的放射性水平也相当高,但显然对具有庞大水体的海洋来说,总体讲也不会产生宏观的影响,而且事故释放的放射性物质也远低于核实验的大气沉降,甚至低于前苏联切尔诺贝利核电站事故和一些后处理厂的排放量[129]。人们对进入海洋的放射性物质的研究除关注海洋中放射性水平的提高外,主要集中在放射性物质在海洋中的输运途径上。也有研究认为该事故对海洋学研究有正效应,例如,事故释放入海的放射性物质可用于示踪北太平洋的环流等[130]。
日本核电站事故后,中国很多单位进行了陆地和大气放射性水平监测[131-153],对放射性物质通过大气和海洋的输运进行了模型预测[126-128],但关于海洋环境放射性研究的报道甚少[95,110,140]。本文对福岛核电站释放的放射性物质、事故后全球各地大气与海水中放射性水平的变化、大气和海洋对放射性核素的输运过程研究进行综述。
1 已探测的事故释放的放射性核素
核反应堆长期运行会产生很多种放射性核素,当发生事故时会释放出来。但是这些核素大部分半衰期很短,所以进入环境并被探测到的核素种数较少。表1列出一些研究者报道的日本核电站事故释放的放射性核素,为叙述方便,列出衰变数据[154]。这其中一些核素研究的文章多,而大部分核素的研究文章很少,可以从以下几方面讨论。(1)大部分被测定的裂变产物衰变发出高能量和高丰度的γ射线,例如131I、134Cs、137Cs,测定这些核素利用了γ谱方法测量核素制样简单、识别直观的优点,所以研究的文章很多。(2)表1中的大部分核素半衰期在天到几十天时间尺度,只能在事故发生的短时间内探测到,从时间上限制了研究的可能性和可操作性。由于这种原因,大多数的海洋放射性水平变化研究的核素是较长寿命的137Cs、134Cs和90Sr。(3)随着质谱技术(包括加速器质谱)的发展,对长寿命的放射性核素,包括14C、129I和超铀元素Pu、Am和Cm的同位素探测灵敏度极大提高,所以日本福岛核电站事故后出现了这些核素的研究。但除129I[3,68,78,81,84-85,141]和Pu同位素[7,30,98,102,117]外,其
它核素的研究较少[98,102]。有两方面的原因,一是质谱技术在环境放射性监测中应用不普及;二是这些长寿命核素的环境水平研究的不够,测量结果是否明显高出本底水平的判断存在或然性。
2 事故放射性释放量与入海通量
2.1 事故放射性物质释放量
日本福岛核电站多个机组在2011年3月12日至23日之间发生多次事故,在空间上是点源,在时间上以脉冲形式往环境中多次释放放射性物质,包括气体释放和废水排放,使得释放量(以放射性活度计,A)的估算很困难,但还是有研究者进行了释放量的估算。表2列出事故131I、133Xe、137Cs、239+240Pu和241Pu的释放量,但没有列出网上数据。由表2可知,不同研究者给出的释放量不同,有些核素的差异还较大,从数值上看也有可能是重复引用,但还是能看出福岛核事故以下核素的释放量:239+240Pu在GBq量级,241Pu在100 GBq量级,137Cs在10 PBq量级,131I在100 PBq量级,133Xe最高,在10 EBq量级。
Hou等[3]通过测定福岛核电站周边近海海水中的129I分布,估算得到核电站事故直接释放入海的129I为2.35 GBq,大气沉降入海的为1.09 GBq,核事故总的129I释放量为8.06 GBq(1.2 kg)。Steinhauser等[9]将福岛核电站事故的放射性释放量与切尔诺贝利核电站事故进行了比较发现:易挥发核素,包括惰性气体、碘、铯和碲,切尔诺贝利事故的释放量比福岛事故高一个量级;而锕系核素,福岛核事故比切尔诺贝利事故低4个量级;除惰性气体外,切尔诺贝利事故总放射性释放量为5 300 PBq,福岛事故为340~800 PBq。
表1 已探测的源于福岛核电站事故的放射性核素衰变数据Table 1 Decay data of radionuclides detected from FDNPP accident
表2 估算的福岛核事故放射性释放量Table 2 Estimated discharges from FDNPP accident
2.2 不同核事件释放的放射性核素入海量比较
至今,核试验落下灰仍然是全球环境中最主要的人工放射性贡献者,其次依次是切尔诺贝利核事故、放射性废物处置、后处理厂排放和福岛核事故。在进入海洋的源项中,也是以核试验落下灰为主,其次是海洋放射性废物处置、后处理厂排放和核事故排放,福岛核事故和切尔诺贝利核事故释放入海的放射性物质在同一水平。不同核事件137Cs释放量(A0(137Cs))与入海量估算值(A(137Cs))列入表3。切尔诺贝利事故向环境排放的放射性物质远高于福岛核事故,但由于切尔诺贝利远离海洋,可以预见,事故释放的放射性物质大都沉积在陆地上,事实是事故后东、北欧,特别是波罗地海周边地区陆地沉积了大量放射性物质。福岛核电站位于东海边,加上事故发生时盛行西风,所以,事故释放的气载放射性物质约70%~80%沉降在西太平洋[116]。而液体的排放也都进入海洋。
表3 不同核事件137Cs释放量与入海量估算值Table 3 Discharges and the amount into sea for137Cs from nuclear events
3 事故后不同海域放射性核素浓度水平变化与输运
3.1 福岛核电站邻水体放射性浓度变化
事故后先是气载放射性物质的沉降,接着是放射性废液排放入海,使核电站周边海域水体放射性水平明显提高。3月24日前在距核电站10 km远的两个采样点,海水中的137Cs浓度分别为9~13 Bq/L和20~100 Bq/L。在3月26日至4月8日,由于放射性废液的排放,使核电站邻近海域水体平均137Cs活度浓度水平达1.57× 104Bq/L,最高水平达6.8×104Bq/L,海水中的137Cs浓度升高三个量级。由于海洋巨大的稀释能力,在一个月之后,核电站邻近2 km以内,水体中的137Cs活度浓度降低至102Bq/L水平,2个月后降至10 Bq/L量级水平[1]。
3.2 远离福岛核电站海域水体中放射性核素浓度变化
3.2.1134Cs和137Cs 开阔海域,包括日本沿岸,水体中的137Cs活度浓度本底水平为1~4 Bq/ m3[157]。由于半衰期仅2.06 a,除核设施周边海域外,全球大部分海域探测不到134Cs,太平洋探测到的134Cs来自福岛核事故。事故发生至今,人们对北太平洋海水的134Cs和137Cs进行了广泛研究[86,92-94,104-108,113-116]。在一些研究中给出了比本底高得多的137Cs水平。Povinec等[89]给出在距事故核电站30~600 km海域水体中的137Cs活度浓度为1.8~3 500 Bq/m3,134Cs/137Cs活度比接近1。Men等[110]给出西北太平洋、包括台湾海峡和巴士海峡水体中的134Cs和137C活度浓度分别为ND(未探测到)~9.68 Bq/m3和0.41~18.1 Bq/m3。Kaeriyama等[93]给出的北太平洋134Cs和137Cs活度浓度为10~153 Bq/m3。从空间和时间分布上看,每个研究者或不同研究者给出的结果离散较大,这是由于放射性液体随时间呈脉冲式排放,并随水团在海洋中运移,受污染的水体放射性浓度较高,未受污染水体放射性浓度则较低。Povinec等[89]和Men等[110]的研究均发现在约200 m水深,存在137Cs浓度极大值。
3.2.2129I 日本福岛核电站事故后,人们对海洋中的129I进行了研究,这是以往核事故中很少见的。Tumey等[85]于事故后的2013年5月在北太平洋采样,测定了海水中的129I,给出2013年5—6月海水中的129I/127I原子比为(2.16~5.16)×10―11。天然丰度129I/127I原子比为10―12,由于核工业的发展,使海洋上层水129I/127I原子比水平提高,所以,从数值分布并不能看出核电站事故对太平洋129I水平的影响,可能是大气沉降量有限,而液体排放的放射性物质还未运移到研究海区。Hou等[3]2011年6月3—17日从福岛核电站向东40~530 km远的太平洋采样,给出海水中无机129I/127I原子比为(0.26~21.95)×10―10,稍高于中太平洋约一个量级。Suzuki等[84]对核电站事故发生前后邻近海域129I水平进行了调查,给出事故前表层水129I/127I原子比为(3.13~6.38)×10―11;事故后为(4.47~362)×10―11。平均看事故后的129I浓度比事故前升高近8倍。
3.3 放射性物质在海洋中的输运
福岛核事故发生后一段时间,释放进入海洋的放射性物质存在于距离核电站很近的海域。有一些研究者依据大洋环流格局,用数值模拟的方法估算了福岛核事故释放入海的放射性物质在海洋中可能的运移路径和预期到达某海域的时间[126-127]。在福岛核电站邻近的北太平洋,黑潮与亲潮流交汇后形成向东的北太平洋暖流,所以可以大致估算得核事故释放的进入海洋的放射性物质将随北太平洋暖流输运。
Aoyama等[119]在太平洋38°N—42°N、121°E—120°W海域,于2011年3月至2012年3月,采样研究水体中的134Cs和137Cs,发现放射性水团主体沿40°N纬度线输运。在2012年3月到达国际日期变更线,并推算出北太平洋暖流流速达8 cm/s,低于黑潮流流速20 cm/s。
3.4 事故液体排放使北太平洋放射性水平的提高
设北太平洋的面积占整个太平洋面积的1/3,福岛核事故输入的放射性在北太平洋混合层(设为100 m)均匀分布,可以计算得福岛核事故将使北太平洋137Cs活度浓度提高4.5 Bq/m3。当然Pevinec等[89]的综述认为福岛核事故输入到太平洋的放射性可能比27 PBq要低一个量级,这样算下来,福岛核事故使北太平洋137Cs活度浓度提高0.45 Bq/m3。但是,可以预期的是核事故排放的放射性实际使开阔海域放射性水平的提高非常有限,原因是铯是亲岩元素,极易吸附在粘土矿物上沉积进入沉积物,这个过程在近岸海域特别重要。实际上大气层核试验造成的海洋放射性水平的提高也远低于估算的输入总量在全球海洋的平均值。
4 事故后大气放射性核素浓度与入海通量
大部分研究者报道大气气溶胶样品中探测到131I、134Cs和137Cs;一些研究者报道还探测到132Te。一些实验室报道探测了133Xe(表1)。除气体核素将在大气中衰变掉外,其余核素最终归宿或是在大气中衰变掉,或是沉降到陆地和海洋。
4.1 事故后大气中放射性核素的浓度
事故发生后,全球大气中测量的131I、134Cs、137Cs和133Xe水平列入表4。由表4可知:日本本土大气中的放射性浓度最高,131I、134Cs和137Cs活度浓度在Bq/m3量级,比其它地区高2~3个量级;美国的131I最大活度浓度为103.6 mBq/m3,加拿大的最大活度浓度为9.76 mBq/m3;欧洲探测到的131I最大活度浓度为6.0 mBq/m3;中国大气中131I活度浓度小于7.9 mBq/m3;美国探测到大气中134Cs和137Cs的最大活度浓度分别为3.44、3.40 mBq/m3;加拿大和欧洲探测到这两个核素的最大活度浓度均低于1 mBq/m3;大气氡活度浓度约在10 Bq/m3量级,所以福岛核电站事故对远离日本的公众增加的辐射剂量极为有限。
未受污染大气中人工放射性核素浓度很低,所以大部分研究并未考虑非事故情况下大气本底的影响。研究表明:这种影响是存在的,樊元庆等[135]研究了2006年11月—2010年6月北京地区大气气溶胶137Cs的活度浓度为0.77~25.42μBq/m3,而同时期131I活度浓度为1.17~1 704μBq/m3。两个核素的浓度与研究者报道的核事故影响条件下大气气溶胶中两个核素的浓度(表4)在可比较的水平。
4.2 放射性物质通过大气的输运
东亚,从日本到东海,再到南海,属季风气候,冬季盛行东北风,风由日本吹向中国的东海,经台湾海峡吹向南海北部;夏季盛行东南风,风由南海经台湾海峡吹向东海,再吹向日本。日本福岛核电站事故发生在早春,本来的东北风提前转向为西南风。整体看,在事故发生后一段时间内,受当时气象条件的控制,福岛核事故释放的气载放射性核素会穿过太平洋,到达北美洲大陆后,再穿过大西洋到达欧洲,然后经西亚到达东亚。漂移过程中一路沉降,输运距离越远,放射性浓度越低。
表4 福岛核电站事故后世界各地大气中放射性核素的活度浓度Table 4 Activity concentration of radionuclides in the atmosphere over the world following FDNPP accident
福岛核电站事故多次释放放射性物质到环境中。第一次发生在2011年3月12日,3月14日污染气团到达俄罗斯东部。向东的放射性气团漂过太平洋17日到达美国西海岸,之后穿过北美洲和北大西洋,3月19日和20日冰岛一个站点探测到放射性物质,并且污染气团到达斯堪的纳维亚北部,23日欧洲很多国家探测到福岛核电站事故释放的放射性;中国27日报道探测到来自福岛核电站事故的放射性[136]。从事故发生的15天,福岛核事故释放的放射性物质弥散遍及整个北半球,而且以赤道为界,事故发生的四周内放射性物质局限于北半球。到4月13日,在南半球的亚洲太平洋地区,澳大利亚、裴济、马来西亚和巴布亚新几内亚探测到福岛核电站事故的放射性,但短寿命的核素131I和133Xe水平已很低[26]。
4.3 释放进入大气的放射性核素的入海量
研究认为福岛核电站事故的气载放射性物质19%沉积在日本,仅2%沉积在亚洲和北美洲,其余主要部分沉积在太平洋[25]。根据表4的数据,假设大气中的137Cs活度浓度为10 mBq/m3,按受污染大气厚度为1 000 m计算,如果这些放射性全部沉积在地表或海洋表面,在混合层混合均匀,可以计算得海洋中137Cs活度浓度水平提高为0.05 Bq/m3,比目前海洋中的137Cs本底水平低2个量级。
5 结语与展望
(1)核事故会使大范围环境放射性水平提高,但远离事故核电站或核设施地区的放射性水平变化极为有限。福岛核电站事故后全球的环境监测结果也说明这一点,除日本本土外,其它国家报道的大气中131I的活度浓度大都低于10 mBq/m3量级,而134Cs和137Cs活度浓度大都低于mBq/m3量级。以后的研究工作可能要集中在日本周边海域,包括放射性水平、生物效应和核素化学形态变化等。
(2)日本核电站事故是一次研究北太平洋环流的很好机会,也是研究北半球大气环流的难得机会。海洋放射化学未来最重要的研究方向是人工放射性核素的海洋生物地球化学。这是人们迫切想知道福岛核电站事故对环境影响应当选择的研究方向。
(3)核反应堆事故排放最多的放射性核素是3H和14C,但却很少有测量3H和14C的报道。原因是采用计数方法测量这两个核素的采样量大,样品预处理方法困难,将加速器质谱方法应用于环境样品测量可解决该问题。另外,由于对131I剂量影响的关注,人们迫切想了解事故造成的某地131I的沉降量,但由于131I半衰期仅8 d,事故后很快衰变殆尽,为此人们提出用长寿命的129I作为替代物[88,158],而环境中的129I测量也需要加速器质谱方法。
(4)放射性监测的重要性在于通过监测避免事故的发生,也就是说常规监测比应急监测更重要,即低水平——环境水平的放射性测量更重要。目前的问题是要解决环境监测中存在的困难。对于事故后环境放射性水平和对环境影响的研究,应开展长寿命核素,如14C、129I等的研究。由于加速器质谱方法日臻成熟,开展这方面的工作已具备了条件。
[1] du Bois P B,Laguionie P,Boust D,et al.Estimation of marine source-term following Fukushima Dai-ichi accident[J].J Environ Radioact,2012,114:2-9.
[2] Chino M,Nakayama H,Nagai H,et al.Preliminary estimation of release amounts of131I and137Cs accidentally discharged from the Fukushima Daiichi Nuclear Power Plant into the atmosphere[J].J Nucl Sci Technol,2011,48(7):1129-1134.
[3] Hou X,Povinec P P,Zhang L,et al.Iodine-129 in seawater off shore Fukushima:distribution,inorganic speciation,sources,and budget[J].Environ Sci Technol,2013,47:3091-3098.
[4] Estournel C,Bosc E,Bocquet M,et al.Assessment of the amount of cesium-137 released into the Pacific Ocean after the Fukushima accident and analysis of its dispersion in Japanese coastal waters[J]. J Geophys Res,2012,117,C11014/1-13,doi:10. 1029/2012JC007933.
[5] Stohl A,Seibert P,Wotawa G,et al.Xenon-133and caesium-137 releases into the atmosphere from the Fukushima Daiichi Nuclear Power Plant:determination of the source term,atmospheric dispersion,and deposition[J].Atmos Chem Phys,2012,12:2313-2343.
[6] Stohl A,Seibert P,Wotawa G.The total release of Xenon-133 from the Fukushima Daiichi nuclear power accident[J].J Environ Radioact,2012,112:155-159.
[7] Zheng J,Tagami K,Watanabe Y,et al.Isotopic evidence of plutonium release into the environment from the Fukushima DNPP accident[J].Sci Rep,2012,2:304/1-8.doi:10.1038/srep00304.
[8] 程卫亚,杨宏伟,陈凌,等.利用航测数据反推福岛核事故137Cs的释放量[J].原子能科学技术,2012,46(2):252-256.
[9] Steinhauser G,Brandl A,Johnson T E.Comparison of the chernobyl and Fukushima nuclear accidents:a review of the environmental impacts[J]. Sci Total Environ,2014,470-471:800-817.
[10]Winiarek V,Bocquet M,Saunier O,et al.Estimation of errors in the inverse modeling of accidental release of atmospheric pollutant:application to the reconstruction of the cesium-137 and iodine-131 source terms from the Fukushima Daiichi power plant[J].J Geophys Res,2012,117,D05122/1-16,doi:10.1029/2011JD016932.
[11]Unno Y,Yunoki A,Sato Y,et al.Estimation of immediate fallout after the accident at Fukushima Daiichi Nuclear Power Plant by using HPGe detector and EGS5 code[J].Appl Radiat Isot,2013,81:348-352.
[12]Hirao S,Yamazawa H,Nagae T.Estimation of release rate of iodine-131 and cesium-137 from the Fukushima Daiichi Nuclear Power Plant[J].J Nucl Sci Technol,2013,50(2):139-147.
[13]Schöppner M,Plastino W,Povinec P P,et al.Estimation of the time-dependent radioactive sourceterm from the Fukushima Nuclear Power Plant accident using atmospheric transport modeling[J].J Environ Radio,2012,114:10-14.
[14]Miyazawa Y,Masumoto Y,Varlamov S M,et al. Inverse estimation of source parameters of oceanic radioactivity dispersion models associated with the Fukushima accident[J].Biogeosciences,2013,10:2349-2363.
[15]Koo Y H,Yang Y S,Song K W.Radioactivity release from the Fukushima accident and its consequences:a review[J].Prog Nucl Energy,2014,74:61-70.
[16]Charette M A,Breier C F,Henderson P B,et al. Radium-based estimates of cesium isotope transport and total direct ocean discharges from the Fukushima Nuclear Power Plant accident[J].Biogeosciences,2013,10:2159-2167.
[17]Gudelis A,Gorina I,EdveckaitèT,et al.Activity measurement of gamma-ray emitters in aerosol filters exposed in Lithuania,in March-April 2011[J]. Appl Radiat Isot,2013,81:362-365.
[18]Povinec P P,Sykora I,Holy K,et al.Aerosol radioactivity record in Bratislava/Slovakia following the Fukushima accident:a comparison with global fallout and the Chernobyl accident[J].J Environ Radioact,2012,114:81-88.
[19]Loaiza P,Brudanin V,Piquemal F,et al.Air radioactivity levels following the Fukushima reactor accident measured at the Laboratoire Souterrain de Modane,France[J].J Environ Radioact,2012,114:66-70.
[20]Paatero J,Vira J,Siitari-Kauppi M,et al.Airborne fission products in the high Arctic after the Fukushima nuclear accident[J].J Environ Radioact,2012,114:41-47.
[21]Bikit I,Mrda D,Todorovic N,et al.Airborne radioiodine in northern Serbia from Fukushima[J].J Environ Radioact,2012,114:89-93.
[22]Doi T,Masumoto K,Toyoda A,et al.Anthropogenic radionuclides in the atmosphere observed at Tsukuba:characteristics of the radionuclides derived from Fukushima[J].J Environ Radioact,2013,122:55-62.
[23]López-Pérez M,Ramos-López R,Perestelo N R,et al. Arrival of radionuclides released by the Fukushima accident to Tenerife(Canary Islands)[J].J Environ Radioact,2013,116:180-186.
[24]Sinclair L E,Seywerd H C J,Fortin R,et al.Aerial measurement of radioxenon concentration off the west coast of Vancouver Island following the Fukushima reactor accident[J].J Environ Radioact,2011,102(11):1018-1023.
[25]Kinoshita N,Sueki K,Sasa K,et al.Assessment of individual radionuclide distributions from the Fukushima nuclear accident covering central-east Japan[J].PNAS,2011,108(49):19526-19529.
[26]Thakur P,Ballard S,Nelson R.Radioactive fallout in the United States due to the Fukushima NuclearPlant accident[J].J Environ Monitor,2012,14:1317-1324.
[27]Leppänen A P,Mattila A,Kettunen M,et al.Artificial radionuclides in surface air in Finland following the Fukushima Dai-ichi Nuclear Power Plant accident[J].J Environ Radioact,2013,126:273-283.
[28]Long N Q,Truong Y,Hien P D,et al.Atmospheric radionuclides from the Fukushima Dai-ichi nuclear reactor accident observed in Vietnam[J].J Environ Radioact,2012,111:53-58.
[29]Momoshima N,Sugihara S,Ichikawa R,et al.Atmospheric radionuclides transported to Fukuoka,Japan remote from the Fukushima Dai-ichi nuclear power complex following the nuclear accident[J].J Environ Radioact,2012,111:28-32.
[30]Oh J S,Lee S H,Choi J K,et al.Atmospheric input of137Cs and239,240Pu isotopes in Korea after the Fukushima Nuclear Power Plant accident[J].Appl Radiat Isot,2014,87:53-56.
[31]Masson O,Ott A de V,Bourcier L,et al.Change of radioactive cesium(137Cs and134Cs)content in cloud water at an elevated site in France,before and after the Fukushima nuclear accident:comparison with radioactivity in rainwater and in aerosol particles[J].Atmos Res,2015,151:45-51.
[32]Yang W,Guo L.Depositional fluxes and residence time of atmospheric radioiodine(131I)from the Fukushima accident[J].J Environ Radioact,2012,113:32-36.
[33]Simgen H,Arnold F,Aufmhoff H,et al.Detection of133Xe from the Fukushima Nuclear Power Plant in the upper troposphere above Germany[J].J Environ Radioact,2014,132:94-99.
[34]Pham M K,Eriksson M,Levy I,et al.Detection of Fukushima Daiichi Nuclear Power Plant accident radioactive traces in Monaco[J].J Environ Radioact,2012,114:131-137.
[35]Bowyer T W,Biegalski S R,Cooper M,et al.Elevated radioxenon detected remotely following the Fukushima nuclear accident[J].J Environ Radioact,2012,102:681-687.
[36]Barsanti M,Conte F,Delbono I,et al.Environmental radioactivity analyses in Italy following the Fukushima Dai-ichi nuclear accident[J].J Environ Radioact,2012,114:126-130.
[37]Potiriadis C,Kolovou M,Clouvas A,et al.Environmental radioactivity measurements in Greece following the Fukushima Daiichi nuclear accident[J]. Radiat Prot Dosim,2012,150(4):441-447.
[38]Perrot F,Hubert Ph,Marquet Ch,et al.Evidence of131I and134,137Cs activities in Bordeaux,France due to the Fukushima nuclear accident[J].J Environ Radioact,2012,114:61-65.
[39]Evrard O,Beek P V,Gateuille D,et al.Evidence of the radioactive fallout in France due to the Fukushima nuclear accident[J].J Environ Radioact,2012,114:54-60.
[40]Ogata Y.Fallout by the disaster of Fukushima Daiichi Nuclear Plant at Nagoya[J].Radiat Meas,2013,55:96-98.
[41]Ott A de V,Gurriaran R,Cagnat X,et al.Fission product activity ratios measured at trace level over France during the Fukushima accident[J].J Environ Radioact,2013,125:6-16.
[42]Ioannidou A,Manenti S,Gini L,et al.Fukushima fallout at Milano,Italy[J].J Environ Radioact,2012,114:119-125.
[43]Huh C A,Hsu S C,Lin C Y.Fukushima-derived fission nuclides monitored around Taiwan:free tropospheric versus boundary layer transport[J]. EPSL,2012,319-320:9-14.
[44]Clemenza M,Fiorini E,Previtali E,et al.Measurement of airborne131I,134Cs and137Cs due to the Fukushima reactor incident in Milan(Italy)[J].J Environ Radioact,2012,114:113-118.
[45]Hazama R,Matsushima A.Measurement of fallout with rain in Hiroshima and several sites in Japan from the Fukushima reactor accident[J].J Radioanal Nucl Chem,2013,297:469-475.
[46]Kanai Y.Monitoring of aerosols in Tsukuba after Fukushima Nuclear Power Plant incident in 2011[J].J Environ Radioact,2012,111:33-37.
[47]Beresford N A,Barnett C L,Howard B J,et al.Observations of Fukushima fallout in Great Britain[J].J Environ Radioact,2012,114:48-53.
[48]Morino Y,Ohara T,Nishizawa M.Atmospheric behavior,deposition,and budget of radioactive materials from the Fukushima Daiichi Nuclear Power Plant in March 2011[J].Geophys Res Lett,2011,38,L00G11/1-7,doi:10.1029/2011GL048689.
[49]Lozano R L,Hernández-Ceballos M A,Adame J A,et al.Radioactive impact of Fukushima accident on the Iberian Peninsula:evolution and plume previous pathway[J].Environ Int,2011,37:1259-1264.
[50]Manolopoulou M,Stoulos S,Ioannidou A,et al.Radioecological indexes of fallout measurements from the Fukushima nuclear accident[J].Ecol Indic,2013,25:197-199.
[51]Rizzo S,Tomarchio E.Radionuclide concentrations in air particulate at Palermo(Italy)following Fukushima accident[J].Radiat Prot Dosim,2013,153:534-540.
[52]Huh C A,Lin C Y,Hsu S C.Regional dispersal of Fukushima-derived fission nuclides by East-Asian Monsoon:a synthesis and review[J].Aerosol Air Qual Res,2013,13:537-544.
[53]Becker A,Ceranna L,Ross O,et al.Towards a new daily in-situ precipitation data set supporting parameterization of wet-deposition of CTBT relevant radionuclides[J].Geophy Res Abs,2012,14:EGU2012-11479.
[54]Matsumoto T,Maruoka T,Shimoda G,et al.Tritium in Japanese precipitation following the March 2011 Fukushima Dai-ichi Nuclear Plant accident[J]. Sci Total Environ,2013,445-446:365-370.
[55]Biegalski S R,Bowyer T W,Eslinger P W,et al. Analysis of data from sensitive U.S.monitoring stations for the Fukushima Daiichi nuclear reactor accident[J].J Environ Radioact,2012,114:15-21.
[56]Korsakissok I,Mathieu A,Didier D.Atmospheric dispersion and ground deposition induced by the Fukushima Nuclear Power Plant accident:a localscale simulation and sensitivity study[J].Atmos Environ,2013,70:267-279.
[57]Woo T H.Atmospheric modeling of radioactive material dispersion and health risk in Fukushima Daiichi Nuclear Power Plants accident[J].Ann Nucl Energy,2013,53:197-201
[58]Povinec P P,Gera M,Holy K,et al.Dispersion of Fukushima radionuclides in the global atmosphere and the ocean[J].Appl Radiat Isot,2013,81:383-392.
[59]Draxler R,Arnold D,Chino M,et al.World meteorological organization's model simulations of the radionuclide dispersion and deposition from the Fukushima Daiichi Nuclear Power Plant accident[J].J Environ Radioact,2015,139:172-184.
[60]Evangeliou N,Balkanski Y,Anne Cozic A,et al. Global transport and deposition of137Cs following the Fukushima Nuclear Power Plant accident in Japan:emphasis on Europe and Asia using high-resolution model versions and radiological impact assessment of the human population and the environment using interactive tools[J].Environ Sci Technol,2013,47:5803-5812.
[61]Arnold D,Maurer C,Wotawa G,et al.Influence of the meteorological input on the atmospheric transport modelling with FLEXPART of radionuclides from the Fukushima Daiichi nuclear accident[J].J Environ Radioact,2015,139:212-225.
[62]Saito K,Shimbori T,Draxler R.JMA's regional atmospheric transport model calculations for the WMO technical task team on meteorological analyses for Fukushima Daiichi Nuclear Power Plant accident[J].J Environ Radioact,2015,139:185-199.
[63]Christoudias T,Lelieveld J.Modelling the global atmospheric transport and deposition of radionuclides from the Fukushima Dai-ichi nuclear accident[J].Atmos Chem Phys,2013,13:1425-1438.
[64]乔方利,王关锁,赵伟,等.2011年3月日本福岛核泄漏物质输运扩散路径的情景模拟和预测[J].科学通报,2011,56(12):887-894.
[65]Parache V,Pourcelot L,Roussel-Debet S,et al. Transfer of131I from Fukushima to the vegetation and milk in France[J].Environ Sci Technol,2011,45:9998-10003.
[66]Park K H,Kang T W,Kim W J,et al.134Cs and137Cs radioactivity in soil and moss samples of Jeju Island after Fukushima nuclear reactor accident[J]. Appl Radiat Isot,2013,81:379-382.
[67]Ohmura Y,Matsukura K,Abe J P,et al.137Cs concentrations in foliose lichens within Tsukuba-city as a reflection of radioactive fallout from the Fukushima Dai-ichi Nuclear Power Plant accident[J].J Environ Radioact,2015,141:38-43.
[68]Herod M N,Clark I D,Kieser W E,et al.129I dispersion and sources in Northwest Canada[J].Nucl Instru Meth Phys Res B,2013,294:552-558.
[69]Fujimura S,Muramatsu Y,Ohno T,et al.Accumulation of137Cs by rice grown in four types of soil contaminated by the Fukushima Dai-ichi Nuclear Power Plant accident in 2011 and 2012[J].J Environ Radioact,2015,140:59-64.
[70]Yoshimura K,Onda Y,Sakaguchi A,et al.An extensive study of the concentrations of particulate/ dissolved radiocaesium derived from the Fukushima Dai-ichi Nuclear Power Plant accident in various river systems and their relationship with catchment inventory[J].J Environ Radioact,2015,139:370-378.
[71]Merz S,Shozugawa K,Steinhauser G.Analysis of Japanese radionuclide monitoring data of food before and after the Fukushima nuclear accident[J].Environ Sci Technol,2015,49:2875-2885.
[72]Yasunari T J,Stohl A,Hayano R S,et al.Cesium-137 deposition and contamination of Japanese soils due to the Fukushima nuclear accident[J].PNAS,2011,108(49):19530-19534.
[73]Matsuda N,Mikami S,Shimoura S,et al.Depth profiles of radioactive cesium in soil using a scraper plate over a wide area surrounding the Fukushima Dai-ichi Nuclear Power Plant,Japan[J].J Environ Radioact,2015,139:427-434.
[74]Lepage H,Evrard O,Onda Y,et al.Environmental mobility of110Agm:lessons learnt from Fukushima accident(Japan)and potential use for tracking the dispersion of contamination within coastal catchments[J].J Environ Radioact,2014,130:44-55.
[75]Bolsunovsky A,Dementyev D.Evidence of the radioactive fallout in the center of Asia(Russia)following the Fukushima nuclear accident[J].J Environ Radioact,2011,102:1062-1064.
[76]Koarashi J,Atarashi-Andoh M,Matsunaga T,et al.Factors affecting vertical distribution of Fukushima accident-derived radiocesium in soil under different land-use conditions[J].Sci Total Environ,2012,431:392-401.
[77]Baeza A,Corbacho J A,Rodríguez A,et al.Influence of the Fukushima Dai-ichi nuclear accident on Spanish environmental radioactivity levels[J].J Environ Radioact,2012,114:138-145.
[78]Daraoui A,Michel R,Gorny M,et al.Iodine-129,iodine-127 and caesium-137 in the environment:soils from Germany and Chile[J].J Environ Radioact,2012,112:8-22.
[79]Niimura N,Kikuchi K,Tuyen N D,et al.Physical properties,structure,and shape of radioactive Cs from the Fukushima Daiichi Nuclear Power Plant accident derived from soil,bamboo and shiitake mushroom measurements[J].J Environ Radioact,2015,139:234-239.
[80]Xu S,Cook G T,Alan J,et al.Radiocarbon concentration in modern tree rings from Fukushima,Japan[J].J Environ Radioact,2015,146:67-72.
[81]Miyake Y,Matsuzaki H,Fujiwara T,et al.Isotopic ratio of radioactive iodine(129I/131I)released from Fukushima Daiichi NPP accident[J].Geochem J,2012,46:327-333.
[82]Buesseler K O,Jayneb S R,Fisher N S,et al. Fukushima-derived radionuclides in the ocean and biota off Japan[J].PNAS,2012,109(16):5984-5988.
[83]Casacuberta N,MasquèP,Garcia-Orellana J,et al.90Sr and89Sr in seawater off Japan as a consequence of the Fukushima Dai-ichi nuclear accident[J].Biogeosciences,2013,10:3649-3659.
[84]Suzuki T,Otosaka S,Kuwabara J,et al.Iodine-129 concentration in seawater near Fukushima before and after the accident at the Fukushima Daiichi Nuclear Power Plant[J].Biogeosciences,2013,10:3839-3847.
[85]Tumey S J,Guilderson T P,Brown T A,et al.Input of129I into the Western Pacific Ocean resulting from the Fukushima nuclear event[J].J Radioanal Nucl Chem,2013,296:957-962.
[86]Inoue M,Kofuji H,Hamajima Y,et al.134Cs and137Cs activities in coastal seawater along Northern Sanriku and Tsugaru Strait,northeastern Japan,after Fukushima Dai-ichi Nuclear Power Plant accident[J].J Environ Radioact,2012,111:116-119.
[87]Inoue M,Furusawa Y,Fujimoto K,et al.228Ra/226Ra ratio and7Be concentration in the Sea of Japan as indicators for water transport:comparison with migration pattern of Fukushima Dai-ichi NPP-derived134Cs and137Cs[J].J Environ Radioact,2013,126:176-187.
[88]Yoshida N,Kanda J.Tracking the Fukushima radionuclides[J].Science,2012,336:1115-1116.
[89]Povinec P P,Aoyama M,Biddulph D,et al.Cesium,iodine and tritium in NW Pacific waters:a comparison of the Fukushima impact with global fallout[J].Biogeosciences,2013,10:5481-5496.
[90]Honda M C,Kawakami H,Watanabe S,et al. Concentration and vertical flux of Fukushima-derived radiocesium in sinking particles from two sites in the Northwestern Pacific Ocean[J].Biogeosciences,2013,10:3525-3534.
[91]Thornton B,Ohnishi S,Ura T,et al.Continuous measurement of radionuclide distribution off Fukushima using a towed sea-bed gamma ray spectrometer[J].Deep-Sea Res I,2013,79:10-19.
[92]Inoue M,Kofuji H,Fujimoto K,et al.Delivery mechanism of134Cs and137Cs in seawater off the Sanriku Coast,Japan,following the Fukushima Dai-ichi NPP accident[J].J Environ Radioact,2014,137:113-118.
[93] Kaeriyama H,Ambe D,Shimizu Y,et al.Direct observation of134Cs and137Cs in surface seawater in the western and central North Pacific after the Fukushima Dai-ichi Nuclear Power Plant accident[J]. Biogeosciences,2013,10:4287-4295.
[94] Maderich V,Jung K T,Bezhenar R,et al.Dispersion and fate of90Sr in the Northwestern Pacific and adjacent seas:global fallout and the Fukushima Dai-ichi accident[J].Sci Total Environ,2014,494-495:261-271.
[95] Yu W,He J,Lin W,et al.Distribution and risk assessment of radionuclides released by Fukushima nuclear accident at the Northwest Pacific[J].J Environ Radioact,2015,142:54-61.
[96] Thornton B,Ohnishi S,Ura T,et al.Distribution of local137Cs anomalies on the seafloor near the Fukushima Dai-ichi Nuclear Power Plant[J].Mar Pollut Bull,2013,74:344-350.
[97] Zheng J,Aono T,Uchida S,et al.Distribution of Pu isotopes in marine sediments in the Pacific 30 km off Fukushima after the Fukushima Dai-ichi Nuclear Power Plant accident[J].Geochem J,2012,46:361-369.
[98] Oikawa S,Watabe T,Takata H.Distributions of Pu isotopes in seawater and bottom sediments in the coast of the Japanese archipelago before and soon after the Fukushima Dai-ichi Nuclear Power Station accident[J].J Environ Radioact,2015,142:113-123.
[99] Kumamoto Y,Murata A,Kawano T,et al.Fukushima-derived radiocesium in the Northwestern Pacific Ocean in February 2012[J].Appl Radiat Isot,2013,81:335-339.
[100]Kumamoto Y,Aoyama M,Hamajima Y,et al. Impact of Fukushima-derived radiocesium in the western North Pacific Ocean about ten months after the Fukushima Dai-ichi Nuclear Power Plant accident[J].J Environ Radioact,2015,140:114-122.
[101]Buesseler K,Aoyama M,Fukasawa M.Impacts of the Fukushima Nuclear Power Plants on marine radioactivity[J].Environ Sci Technol,2011,45,9931-9935.
[102]Sakaguchi A,Kadokura A,Steier P,et al.Isotopic determination of U,Pu and Cs in environmental waters following the Fukushima Daiichi Nuclear Power Plant accident[J].Geochem J,2012,46:355-360.
[103]Yamamoto M,Sakaguchi A,Ochiai S,et al.Isotopic Pu,Am and Cm signatures in environmental samples contaminated by the Fukushima Dai-ichi Nuclear Power Plant accident[J].J Environ Radioact,2014,132:31-46.
[104]Inoue M,Kofuji H,Nagao S,et al.Lateral variation of134Cs and137Cs concentrations in surface seawater in and around the Japan Sea after the Fukushima Dai-ichi Nuclear Power Plant accident[J].J Environ Radioact,2012,109:45-51.
[105]Nakano M,Povinec P P.Long-term simulations of the137Cs dispersion from the Fukushima accident in the world ocean[J].J Environ Radioact,2012,111:109-115.
[106]Inoue M,Kofuji H,Nagao S,et al.Low levels of134Cs and137Cs in surface seawaters around the Japanese Archipelago after the Fukushima Dai-ichi Nuclear Power Plant accident in 2011[J].Geochem J,2012,46:311-320.
[107]Min B,Periáňez R,Kim I G,et al.Marine dispersion assessment of137Cs released from the Fukushima nuclear accident[J].Mar Pollut Bull,2013,72:22-33.
[108]Suseno H,Prihatiningsih W R.Monitoring137Cs and134Cs at marine coasts in Indonesia between 2011 and 2013[J].Mar Pollut Bull,2014,88:319-324.
[109]Baumann Z,Casacuberta N,Baumann H,et al. Natural and Fukushima-derived radioactivity in macroalgae and mussels along the Japanese shoreline[J].Biogeosciences,2013,10:3809-3815.
[110]Men W,He J,Wang F,et al.Radioactive status of seawater in the Northwest Pacific more than one year after the Fukushima nuclear accident[J].Scientific Reports,2015,5:7757/1-8.doi:10. 1038/srep 07757.
[111]Sohtome T,Wada T,Mizuno T,et al.Radiological impact of TEPCO's Fukushima Dai-ichi Nuclear Power Plant accident on invertebrates in the coastal benthic food web[J].J Environ Radioact,2014,138:106-115
[112]Povinec P P,Hirose K,Aoyama M.Radiostrontium in the Western North Pacific:characteristics,behavior,and the Fukushima impact[J].Environ Sci Technol,2012,46:10356-10363.
[113]Inoue M,Kofuji H,Oikawa S,et al.Spatial variations of low levels of134Cs and137Cs in seawaters within the sea of Japan after the Fukushima Dai-ichi Nuclear Power Plant accident[J].Appl Radiat Isot,2013,81:340-343.
[114]Watabe T,Oikawa S,Isoyama N,et al.Spatiotemporal distribution of137Cs in the sea surrounding Japanese Islands in the decades before the disaster at the Fukushima Daiichi Nuclear Power Plant in 2011[J].Sci Total Environ,2013,463-464:913-921.
[115]Aoyama M,Tsumune D,Uematsu M,et al. Temporal variation of134Cs and137Cs activities in surface water at stations along the coastline near the Fukushima Dai-ichi Nuclear Power Plant accident site,Japan[J].Geochem J,2012,46:321-325.
[116]Normile D.The Pacific swallows Fukushima's fallout[J].Science,2013,340:547.
[117]Bu W,Zheng J,Guo Q,et al.Ultra-trace plutonium determination in small volume seawater by sector field inductively coupled plasma mass spectrometry with application to Fukushima seawater samples[J].J Chromatogr A,2014,1337:171-178.
[118]Bu W T,Zheng J,Aono T,et al.Vertical distributions of plutonium isotopes in marine sediment cores off the Fukushima coast after the Fukushima Dai-ichi Nuclear Power Plant accident[J].Biogeosciences,2013,10:2497-2511,
[119]Aoyama M,Uematsu M,Tsumune D,et al.Surface pathway of radioactive plume of TEPCO Fukushima NPP1 released134Cs and137Cs[J].Biogeosciences,2013,10:3067-3078.
[120]Keum D K,Jun I,Kim B H,et al.A dynamic model to estimate the activity concentration and whole body dose rate of marine biota as consequences of a nuclear accident[J].J Environ Radioact,2015,140:84-94.
[121]Tsumune D,Tsubono T,Aoyama M,et al.Distribution of oceanic137Cs from the Fukushima Daiichi Nuclear Power Plant simulated numerically by a regional ocean model[J].J Environ Radioact,2012,111:100-108.
[122]Kawamura H,Kobayashi T,Furuno A,et al. Preliminary numerical experiments on oceanic dispersion of131I and137Cs discharged into the ocean because of the Fukushima Dai-ichi Nuclear Power Plant disaster[J].J Nucl Sci Technol,2011,48(11):1349-1356.
[123]Maderich V,Bezhenar R,Heling R,et al.Regional long-term model of radioactivity dispersion and fate in the Northwestern Pacific and adjacent seas:application to the Fukushima Dai-ichi accident[J].J Environ Radioact,2014,131:4-18.
[124]Budyansky M V,Goryachev V A,Kaplunenko D D,et al.Role of mesoscale eddies in transport of Fukushima-derived cesium isotopes in the ocean[J].Deep-Sea Res I,2015,96:15-27.
[125]Wai K M,Yu P K N.Trans-oceanic transport of137Cs from the Fukushima nuclear accident and impact of hypothetical Fukushima-like events of future nuclear plants in Southern China[J].Sci Total Environ,2015,508:128-135.
[126]何晏春,郜永祺,王会军,等.2011年3月日本福岛核电站核泄漏在海洋中的传输[J].海洋学报,2012,34(4):12-20.
[127]王辉,王兆毅,朱学明,等.日本福岛放射性污染物在北太平洋海水中的输运模拟与预测[J].科学通报,2012,57(22):2111-2118.
[128]赵昌,乔方利,王关锁,等.福岛核事故泄漏进入海洋的137Cs对中国近海影响的模拟与预测[J].科学通报,2014,59(34):3416-3423.
[129]IAEA.Worldwide marine radioactivity studies,radionuclide levels in the oceans and seas:IAEATECDOC-1429[R].Vienna,Austria:IAEA,2005:1-187.
[130]Lighton A.Fukushima has positive fallout for marine science[J].Nature News,30 May 2012,doi:10.1038/nature.2012:10750.
[131]陈文涛,宋海青,李灵娟,等.福岛核电站事故后广东地区放射性水平监测结果与初步分析[J].辐射防护,2012,32(6):386-391.
[132]刘鸿诗,胡丹,向元益,等.日本福岛核事故期间浙江省环境放射性的监测结果及分析[J].辐射防护,2012,32(6):380-385.
[133]刘龙波,武山,曹军骥,等.福岛核事故泄漏的大气放射性核素监测及其对西安地区的影响[J].科学通报,2013,58(4):372-378.
[134]马永忠,娄云,万玲,等.北京地区应对日本福岛核事故污染的监测技术措施与效果[J].首都公共卫生,2012,6(2):60-66.
[135]樊元庆,王世联,李慧娟,等.北京地区大气中7Be、137Cs和131I活度浓度分布规律初步研究[J].原子能科学技术,2013,47(2):189-192.
[136]万恩源,郑向东,万国江,等.2011年春季日本福岛核泄漏污染输送:贵阳131I和137Cs观测示踪分析[J].环境科学学报,2012,32(9):2182-2188.
[137]殷经鹏,申茂泉,杨文静,等.福岛核事故后西北某地放射性核素监测[J].核电子学与探测技术,2012,32(3):265-268.
[138]何泽勇.日本福岛核电站事故后山西辐射环境监测结果及分析[J].辐射防护,2012,32(6):392-397.
[139]崔力萌,娄云,陈肖华,等.北京市2011—2013年水中总α、总β放射性测量分析[J].环境与职业医学,2015,32(1):43-46.
[140]吴俊文,周宽波,戴民汉.从人为放射性核素137Cs看福岛核事故对中国海的影响[J].科学通报,2012,57(32):3100-3108.
[141]谢林波,李奇,王世联,等.大气颗粒物中129I的加速器质谱测量[J].原子能科学技术,2014,48(9):1675-1680.
[142]何海明,张腊根.福岛核电站核泄漏事故对广东省辐射环境的影响[J].资源节约与环保,2014(7):174-175.
[143]王延俊,李秀萍,亢凤琴,等.福岛核事故对兰州地区黄河水、自来水中放射性水平的影响[J].中国辐射卫生,2013,22(2):196-198.
[144]杨名生,杨远,廖燕庆,等.福岛核事故期间广西地区辐射环境应急监测[J].辐射防护通讯,2012,32(2):20-23.
[145]陈彬,胡晓燕,邵亮,等.福岛核事故期间杭州地区雨水中131I监测[J].辐射防护通讯,2012,32(2):45-46.
[146]何必胜,陈彬,羊佳,等.福岛核事故期间日本至杭州飞机外表面放射性污染监测[J].辐射防护通讯,2012,32(2):49-51.
[147]王瑞俊,张艾明,高泽全,等.福岛核事故期间山西地区辐射环境应急监测[J].辐射防护通讯,2012,32(2):12-19.
[148]王晓锋,孟玲玲,黄琼中.福岛核事故期间西藏地区辐射环境应急监测[J].辐射防护通讯,2012,32(2):28-29.
[149]王国全,刁春娜,时良辰,等.福岛核事故期间新疆地区辐射环境应急监测[J].辐射防护通讯,2012,32(2):24-27.
[150]胡丹,丁逊,宋建锋,等.福岛核事故期间浙江地区大气中氙的监测[J].辐射防护通讯,2012,32(2):40-44.
[151]向元益,刘鸿诗,羊佳,等.福岛核事故期间浙江地区空气中放射性水平应急监测[J].辐射防护通讯,2012,32(2):35-39.
[152]向元益,羊佳,胡飞,等.福岛核事故期间浙江地区生物样品放射性水平监测[J].辐射防护通讯,2012,32(2):47-51.
[153]Tuo F,Xu C,Zhang J,et al.Radioactivity analysis following the Fukushima Dai-ichi nuclear accident[J].Appl Radiat Isot,2013,78:77-81.
[154]卢玉楷.简明放射性同位素应用手册[M].上海:上海科学普及出版社,2004.
[155]NEA Committee Protection and Public Health. Chernobyl ten years on:radiological and health impact[R].Paris:OECD Nuclear Energy Agency,1995.
[156]Aarkrog A.Input of anthropogenic radionuclides into the world ocean[J].Deep-Sea ResⅡ,2003,50:2597-2606.
[157]Hong G H,Baskaran M,Povinec P P.Artificial radionuclides in the Western North Pacific:an review[M]∥Shiyomi M,Kawahata H,Koizumi H,et al. Global environmental change in the ocean and land.Tokyo:Terrapub,2004:147-172.
[158]Endo S,Tomita J,Tanaka K,et al.Iodine-129 measurements in soil samples from Dolon village near the Semipalatinsk nuclear test site[J].Radiat Environ Biophys,2008,47:359-365.
Maryne Radyochemystry Progress After Fukushyma Dayychy NucIear Power PIant Accydent
LIU Guang-shan
College of the Environment and Ecology,Xiamen University,Xiamen 361102,China
Because being paid close attention to environment impact from the Fukushima Daiichi Nuclear Power Plant(FDNPP)accident,artificial radionuclides in the atmosphere,land and ocean were studied and monitored.The main nuclides detected are131I,137Cs,134Cs and129I.When the concentration levels are measured,the transport path of radionuclides in the atmosphere and ocean were simulated.The results showed that controlling by climate condition,the airborne radionuclides released by FDNPP accident reached America via the Pacific,and then arrived to Europe over Atlantic,and finally transported to China.Over the globe the activity concentration of131I from FDNPP accident is in the order of magnitude of mBq/m3,and 0.1-1 mBq/m3for137Cs.The nuclides released to the sea headed eastward with the ocean current and then would circulate in the North Pacific.With mixing,the radionuclides went down to 200 m depth,where not very far from FDNPP.In the open ocean far from FDNPP,the137Cs activity concentration may be in the order of magnitude of 100 Bq/m3,but most of waters is in the Bq/m3level,only slightly higher than background.
O615;P734;P736.4
A
0253-9950(2015)05-0341-14
2015-06-19;
2015-08-19
刘广山(1959—),男,山西灵丘人,教授,从事环境变化与年代学研究
doy:10.7538/hhx.2015.37.05.0341