ALDH2对缺血再灌中心肌损伤的保护作用及其作用机制
2015-01-23庞佼佼陈玉国山东大学齐鲁医院急诊科山东济南500CenterforCardiovascularResearchandAlternativeMedicineUniversityofWyomingCollegeofHealthSciencesLaramieWY807USA
庞佼佼,陈玉国,任 骏(山东大学齐鲁医院急诊科,山东 济南 500;Center for Cardiovascular Research and Alternative Medicine,University of Wyoming College of Health Sciences,Laramie,WY 807,USA)
·综述·
ALDH2对缺血再灌中心肌损伤的保护作用及其作用机制
庞佼佼1,2,陈玉国1,任 骏2(1山东大学齐鲁医院急诊科,山东 济南 250012;2Center for Cardiovascular Research and Alternative Medicine,University of Wyoming College of Health Sciences,Laramie,WY 82071,USA)
随着冠心病发病率的升高和诊疗技术的提高,如何有效保护心肌免受缺血再灌注损伤(ischemia-reperfusion injury or I/R injury),提高治疗效果成为目前临床治疗的突出问题.乙醛脱氢酶2(Aldehyde Dehydrogenase-2,ALDH2)是人体中活性最强的醛脱氢酶,近年来其参与心肌保护的特殊角色越来越被人们熟知.本文将就 ALDH2在心肌缺血再灌注中的心肌保护作用、主要机制及转化医学研究予以综述.
ALDH2;心肌缺血再灌注;转化
0 引言
心肌损伤是各类心血管疾病进展为心力衰竭的共同通路和关键环节,是多种心脏疾病的病理生理基础,是疾病级联反应中的根本促发因素.随着冠心病发病率的升高和临床诊疗技术的提高,心肌缺血再灌注损伤成为心肌损伤领域的重要课题.及时有效恢复缺血心肌的血流供应是减轻缺血症状、防止心肌梗死面积进一步加大的最有效方法,然而再灌注可使心肌损伤进一步加重,并有发生致命性心律失常等危险.临床血管成形术与溶栓术并不能预防缺血造成的心肌损伤,也不能减轻再灌注损伤.如何有效减轻缺血再灌注损伤仍是医学界的难题.
心肌在不良刺激下是适应、存活,还是损伤、死亡,结局取决于其内源性保护机制与死亡信号之间的角力.氧化应激是缺血再灌注损伤最主要的机制,在缺血再灌注过程中将产生大量活性氧(Reactive oxygen species,ROS)[1].在 ROS的攻击下,细胞内非饱和脂质被氧化,同时产生大量活性醛类物质,其中乙醛就是其中产量最高和毒性最强的代谢产物[2].由于醛类远比ROS稳定,所以将弥散到器官各处,放大了氧化损伤的效应.4-HNE(4-羟壬烯醛 )和 MDA(丙二醛)是醛类主要的代谢产物,毒性高,可与蛋白质、DNA等大分子物质形成加合物影响其功能[3].随着心脏内醛类物质的蓄积,将对心肌细胞产生很大的毒性作用.而在心肌保护机制中作为心肌细胞能量工厂和应激中枢的线粒体扮演了重要角色.以线粒体这一关键细胞器为切入点,运用蛋白质组学技术,发现在心肌损伤过程中 ALDH2的活性发生改变[4].鉴于其位于线粒体这一重要细胞器,并降解有害醛类物质,因而推断其参与心脏功能维护,而一系列体内外实验的开展揭开了ALDH2心肌保护研究的序幕,证明ALDH2活性增加可以减轻多种心肌损伤,包括缺血再灌注损伤,并在心肌保护中扮演重要角色[5-9].ALDH2是模仿缺血预适应,预防缺血再灌注损伤的新靶点,有重要的潜在临床应用价值.近年来学者们对ALDH2与心肌缺血再灌注的研究更加深入,证明其不仅通过解毒活性醛类物质,还通过调节自噬等机制减轻缺血再灌注损伤.
1 ALDH2及其对缺血再灌注心肌的保护作用
人体内有19种ALDH,其中ALDH2位于线粒体内,是活性最强的醛脱氢酶,在心脏中含量也远高于其他醛脱氢酶[10].ALDH2广泛参与了体内醛类物质的氧化,起到清除活性醛类物质的作用[11].ALDH2还是一种硝酸还原酶,参与硝酸甘油的生物转化[12].ALDH2基因位于染色体12q24.2,由13个外显子组成,其中外显子 12处可发生点突变(Glu504Lys),使正常的等位基因ALDH2*1变为突变型 ALDH2*2,导致ALDH2酶活性显著下降[13].ALDH2基因在高加索人中突变率极低,而东亚人种中,ALDH2突变率约为40%[14,15].ALDH2活性下降的人群中,由于对饮酒后乙醇代谢所产生的乙醛难以降解,将导致面红耳赤,恶心难受,所以有学者将其俗称为“脸红”(flushing face)基因.
Chen等[5]首先发现 ALDH2在心肌缺血再灌注损伤中起重要保护作用,参与缺血前适应的信号转导通路,ALDH2的活性与心肌梗死面积呈显著负相关.随后多项实验数据[16-20]也表明,ALDH2活性增加可有效减轻心肌缺血再灌注损伤,减小心肌梗死面积,改善心肌收缩功能及射血分数,降低缺血再灌注性心律失常的发生.中国[21-22]、日本[23]等国 家的流行 病学研究均表明,ALDH2的基因多态性与冠心病有密切关联,ALDH2突变型携带者有更高的冠心病发病率.独立的全基因组关联分析[24-25]和 meta分析[26-27]进一步证实了这一观点.
2 ALDH2解毒活性醛类物质
心肌缺血再灌注过程中氧化应激导致脂质过氧化,在此过程中产生大量醛类物质,尤其是4-HNE和MDA等乙醛代谢产物具有高活性和稳定性,不仅影响糖酵解,改变蛋白酶体活性,更重要的是,它们可以直接抑制线粒体呼吸链功能,促使线粒体通透性转化通道开放,直接导致线粒体功能障碍[28-31].线粒体功能障碍将进一步加重氧化应激反应,从而导致更多活性醛类物质生成,形成恶性循环.实验证明,4-HNE可导致心肌收缩功能紊乱[31].另外,4-HNE被认为是乙醛导致过度自噬的重要介质[32],并且可作为信号分子调节转录,抑制细胞周期,促进细胞凋亡[33-34].实验表明,在心肌梗死后数周内,心脏线粒体功能持续受损,线粒体H2O2的释放大量增加,伴随脂质过氧化及 4-HNE加成蛋白的形成,以及电子传递链复合物I和 V的减低[20].所以,在 I/R损伤中乙醛及其代谢物起着极其重要的作用.研究表明,ALDH2可显著抑制缺血再灌注过程中 4-HNE生成、蛋白损伤及 4-HNE导致的心功能紊乱[17].ALDH2通过催化4-HNE转为无活性的4-HNA,减轻活性醛类物质的毒性作用及其诱导的氧化应激反应,解除二者的恶性循环,并阻止4-HNE介导的自噬、细胞凋亡等不良因素,是ALDH2发挥显著心肌保护作用的重要机制.4-HNE可导致LKB1和PTEN信号传导通路的抑制[17],而LKB1和PTEN是AMPK和Akt的上游因子,所以ALDH2可以通过解毒4-HNE对AMPK与Akt发挥调控作用.但4-HNE浓度高时可以抑制ALDH2的活性,一方面,4-HNE在高浓度时可直接对ALDH产生抑制,另一方面,4-HNE可与Cys302共价结合,占据 ALDH2的活性位点,导致大于 90%的酶活 性 被 抑 制[5,20].
3 ALDH2调节细胞自噬
自噬(Autophagy)被认为是一种进化保守的机制,用以在应激时维持细胞稳态,促进细胞生存.细胞内受损或衰老的蛋白质、细胞器可在自噬过程中被运输到溶酶体进行消化降解,降解过程中可产生氨基酸等物质供细胞循环利用并释放一定能量,完成细胞自我更新[35].但自噬是一把双刃剑.有研究表明,自噬在缺血前适应中发挥重要心肌保护作用[36,37].且在轻度刺激下,如短暂的缺血或低水平的氧化应激,增强的自噬可通过清除受损细胞器,循环利用大分子物质减轻细胞损伤,促进细胞生存.相反地,持续的缺血及再灌注的发生可导致过度及持续自噬,反而使细胞器和蛋白过度降解,发生自噬性II型程序性细胞死亡[38].所以,将自噬调节在合适水平可能会有效控制缺血再灌注性心肌损伤.我们实验室最早证明ALDH2在缺血、再灌注两个阶段中对自噬起双向调节作用,改善心肌收缩功能以及减小梗死面积[17].心肌缺血时,低氧、ATP耗竭及细胞器损伤激活自噬,自噬通过清除受损细胞器,降解有害物质保护心肌.而再灌注时,氧化应激、线粒体损伤、内质网应激等进一步刺激导致自噬过度激活,最终损伤心肌.进一步的机制研究证明,心肌缺血时,AMPK被激活,而ALDH2进一步明显增强AMPK的激活,AMPK抑制自噬的反向调节因子mTOR,减弱 mTOR对自噬的抑制作用而增强自噬水平;再灌注时,AMPK活性不再,ALDH2通过增强 Akt的磷酸化,从而增加 mTOR的表达,使过度激活的自噬受到抑制[17].通过两个阶段的双重作用,ALDH2在缺血再灌注过程中有效减轻缺血再灌注损伤.
另外,在酒 精 性心 肌 病[39-41]、糖 尿 病 性 心肌病[42]、心衰[43]等心血管疾病模型中也证明了ALDH2通过调节自噬起心肌保护作用.我们实验室的结果还表明,ALDH2可通过调节自噬,减轻内质网应激(endoplasmic reticulum stress or ER stress)引起的心肌收缩功能障碍[44].自噬还与线粒体功能有重要关联,二者在心肌损伤中互为因果[45].
4 ALDH2对再灌注性心律失常的防治
心肌缺血再灌注过程中,缺血的心肌快速恢复血流灌注后易诱发再灌注性心律失常,发生率高达50%~80%,严重者可发生心室颤动甚至交感风暴.再灌注性心律失常的机制复杂.其中最常见的机制为,心肌缺血再灌注过程中肥大细胞释放肾素,造成局部肾素-血管紧张素系统的形成,使局部交感神经兴奋,从而导致心律失常[46].心脏交感神经中ALDH2的激活可减少再灌注性心律失常的发生[16,47,48],且其可 能 机 制为,ALDH2可通 过 腺 苷 A(2b)/A(3)受体-PKCε-ALDH2信号通路模仿缺血预适应,减少心脏肥大细胞因过氧化引起的脱颗粒及肾素释放,阻止局部RAS激活,减少去甲肾上腺素的释放.此外,ALDH2还可通过解毒活性醛类物质减轻氧化应激降低再灌注性心律失常的发生[47].
5 ALDH2激活剂在心肌保护治疗上的转化研究
既然 ALDH2具有保护心肌的作用,那么能否为心肌损伤的患者带来益处?能否在目前标准药物治疗的基础上,进一步拓宽心肌保护的药物治疗谱?Alda-1是ALDH2的特异性激活剂,可使野生型ALDH2活性在基础水平上成倍增加,可增强纯合子突变型(A/A)ALDH2的活性10倍,增强杂合子突变型(G/A)ALDH2的活性1倍,使杂合子突变型基本达到野生型(G/G)的水平[5],这种弥补基因型所致的功能不足的作用很罕见.Alda-1不仅可增强ALDH2的活性,还可阻止4-HNE导致的ALDH2失活[5].Alda-1可用于心脏缺血前适应预防心肌损伤[5]、缺血再灌注时减轻心肌损伤[17,49],也可用于心肌梗死后治疗心肌损伤[20],此外,有研究证明,在远端缺血前适应[50]和远端缺血后适应[51]的过程中,均有ALDH2参与.Alda-1治疗的缺血再灌注或心肌梗死心脏中,4-HNE蛋白加成物的聚积显著降低,心肌梗死面积减少,心脏功能明显改善[5,20].此外,Alda-1还可通过激活 ALDH2改善酒精性心肌病[40]、糖尿病性心肌病[52]、心力衰竭[53]、动脉粥样硬化[54]等心脏疾病,以及脑缺血与梗死[55],肝硬化[54]等疾病,有很大的临床应用前景.
中华民族有悠久的酒文化,一直以来人们在酒精与健康的关系上争论不休.从ALDH2与心脏疾病关系的角度出发,适量饮酒可使ALDH2活性增加,模仿缺血前适应,并促进NO生成,起到减少心肌梗死面积、减轻心肌损伤等保护心肌的作用[5,56-57].
此外,硫辛酸(Alpha-lipoic acid)[58-59]、异氟烷(Isoflurane)[60]、聚腺苷二磷酸核糖聚合酶-1(PARP -1)抑制剂[61]等都被证明有激活 ALDH2,保护心肌的作用.这些研究结果预示了将 ALDH2激活剂用于治疗急慢性心肌损伤的重要临床价值,为改善心肌梗死预后、保护残存心肌细胞功能带来了新的策略.
[1]Bolli R,Jeroudi MO,Patel BS,et al.Direct evidence that oxygenderived free radicals contribute to postischemic myocardial dysfunction in the intact dog[J].Proc Natl Acad Sci U S A,1989,86(12):4695-4699.
[2]Cordis GA,Maulik N,Bagchi D,et al.Estimation of the extent of lipid peroxidation in the ischemic and reperfused heart by monitoring lipid metabolic products with the aid of high-performance liquid chromatography[J].J Chromatogr,1993,632(1-2):97-103.
[3]Uchida K,Stadtman ER.Modification of histidine residues in proteins by reaction with 4-hydroxynonenal[J].Proc Natl Acad Sci U S A,1992,89(10):4544-4548.
[4]Chen L,Wright LR,Chen CH,et al.Molecular transporters for peptides:delivery of a cardioprotective epsilonPKC agonist peptide into cells and intact ischemic heart using a transport system,R(7)[J].Chem Biol,2001,8(12):1123-1129.
[5]Chen CH,Budas GR,Churchill EN,et al.Activation of aldehyde dehydrogenase-2 reduces ischemic damage to the heart[J].Science,2008,321(5895):1493-1495.
[6]Doser TA,Turdi S,Thomas DP,et al.Transgenic overexpression of aldehyde dehydrogenase-2 rescues chronic alcohol intake-induced myocardial hypertrophy and contractile dysfunction[J].Circulation,2009,119(14):1941-1949.
[7]Churchill EN,Disatnik MH,Mochly-Rosen D.Time-dependent and ethanol-induced cardiac protection from ischemia mediated by mitochondrial translocation of varepsilonPKC and activation of aldehyde dehydrogenase 2[J].J Mol Cell Cardiol,2009,46(2):278-284.
[8]Budas GR,Disatnik MH,Mochly-Rosen D.Aldehyde dehydrogenase 2 in cardiac protection:a new therapeutic target?[J].Trends Cardiovasc Med,2009,19(5):158-164.
[9]Ma H,Li J,Gao F,et al.Aldehyde dehydrogenase 2 ameliorates acute cardiac toxicity of ethanol:role of protein phosphatase and forkhead transcription factor[J].J Am Coll Cardiol,2009,54(23):2187-2196.
[10]Kato N,Takeuchi F,Tabara Y,et al.Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians[J].Nat Genet,2011,43(6):531-538.
[11]Vasiliou V,Nebert DW.Analysis and update of the human aldehyde dehydrogenase(ALDH)gene family[J].Hum Genomics,2005,2(2):138-143.
[12]Chen Z,Zhang J,Stamler JS.Identification of the enzymatic mechanism of nitroglycerin bioactivation[J].Proc Natl Acad Sci U S A,2002,99(12):8306-8311.
[13]Larson HN,Weiner H,Hurley TD.Disruption of the coenzyme binding site and dimer interface revealed in the crystal structure of mitochondrial aldehyde dehydrogenase“Asian”variant.J Biol Chem,2005.280(34):p.30550-6.
[14]Li Y,Zhang D,Jin W,et al.Mitochondrial aldehyde dehydrogenase-2(ALDH2)Glu504Lys polymorphism contributes to the variation in efficacy of sublingual nitroglycerin[J].J Clin Invest,2006,116(2):506-511.
[15]Li H,Borinskaya S,Yoshimura K,et al.Refined geographic distribution of the oriental ALDH2*504Lys(nee 487Lys)variant.Ann Hum Genet,2009,73(Pt 3):335-345.
[16]Koda K,Salazar-Rodriguez M,Corti F,et al.Aldehyde dehydrogenase activation prevents reperfusion arrhythmias by inhibiting local renin release from cardiac mast cells[J].Circulation,2010,122(8):771-781.
[17]Ma H,Guo R,Yu L,et al.Aldehyde dehydrogenase 2(ALDH2)rescues myocardial ischaemia/reperfusion injury:role of autophagy paradox and toxic aldehyde[J].Eur Heart J,2011,32(8):1025-1038.
[18]Bian Y,Chen YG,Xu F,et al.The polymorphism in aldehyde dehydrogenase-2 gene is associated with elevated plasma levels of highsensitivity C-reactive protein in the early phase of myocardial infarction[J].Tohoku J Exp Med,2010,221(2):107-112.
[19]Sun L,Ferreira JC,Mochly-Rosen D.ALDH2 activator inhibits increased myocardial infarction injury by nitroglycerin tolerance[J].Sci Transl Med,2011,3(107):107-111.
[20]Gomes KM,Bechara LR,Lima VM,et al.Aldehydic load and aldehyde dehydrogenase 2 profile during the progression of post-myocardial infarction cardiomyopathy:Benefits of Alda-1[J].Int J Cardiol,2015,179:129-138.
[21]Xu F,Chen YG,Xue L,et al.Role of aldehyde dehydrogenase 2 Glu504lys polymorphism in acute coronary syndrome[J].J Cell Mol Med,2011,15(9):1955-1962.
[22]Xu F,Chen YG,Xue L,et al.The Glu504Lys polymorphism of aldehyde dehydrogenase 2 contributes to development of coronary artery disease[J].Tohoku J Exp Med,2014,234(2):143-150.
[23]Takagi S,Iwai N,Yamauchi R,et al.Aldehyde dehydrogenase 2 gene is a risk factor for myocardial infarction in Japanese men[J].Hypertens Res,2002,25(5):677-681.
[24]Lu X,Wang L,Lin X,et al.Genome-wide association study in Chinese identifies novel loci for blood pressure and hypertension[J].Hum Mol Genet,2015,24(3):865-874.
[25]Takeuchi F,Yokota M,Yamamoto K,et al.Genome-wide association study of coronary artery disease in the Japanese[J].Eur J Hum Genet,2012,20(3):333-340.
[26]Gu JY,Li LW.ALDH2 Glu504Lys polymorphism and susceptibility to coronary artery disease and myocardial infarction in East Asians:a meta-analysis[J].Arch Med Res,2014,45(1):76-83.
[27]Wang Q,Zhou S,Wang L,et al.ALDH2 rs671 Polymorphism and coronary heart disease risk among Asian populations:a meta-analysis and meta-regression[J].DNA Cell Biol,2013,32(7):393-399.
[28]Mali VR,Palaniyandi SS.Regulation and therapeutic strategies of 4-hydroxy-2-nonenal metabolism in heart disease[J].Free Radic Res,2014,48(3):251-263.
[29]Akude E,Zherebitskaya E,Roy Chowdhury SK,et al.4-Hydroxy-2-nonenal induces mitochondrial dysfunction and aberrant axonal outgrowth in adult sensory neurons that mimics features of diabetic neuropathy[J].Neurotox Res,2010,17(1):28-38.
[30]Raza H,John A.4-hydroxynonenal induces mitochondrial oxidative stress,apoptosis and expression of glutathione S-transferase A4-4 and cytochrome P450 2E1 in PC12 cells[J].Toxicol Appl Pharmacol,2006,216(2):309-318.
[31]Aberle NS,Picklo MJ,Amarnath V,et al.Inhibition of cardiac myocyte contraction by 4-hydroxy-trans-2-nonenal[J].Cardiovasc Toxicol,2004,4(1):21-28.
[32]Hill BG,Haberzettl P,Ahmed Y,et al.Unsaturated lipid peroxidation-derived aldehydes activate autophagy in vascular smooth-muscle cells[J].Biochem J,2008,410(3):525-534.
[33]Barrera G,Pizzimenti S,Dianzani MU.4-hydroxynonenal and regulation of cell cycle:effects on the pRb/E2F pathway[J].Free Radic Biol Med,2004,37(5):597-606.
[34]Chaudhary P,Sharma R,Sharma A,et al.Mechanisms of 4-hydroxy-2-nonenal induced pro-and anti-apoptotic signaling[J].Biochemistry,2010,49(29):6263-6275.
[35]Levine B,Kroemer G.Autophagy in the pathogenesis of disease[J].Cell,2008,132(1):27-42.
[36]Huang C,Yitzhaki S,Perry CN,et al.Autophagy induced by ischemic preconditioning is essential for cardioprotection[J].J Cardiovasc Transl Res,2010,3(4):365-373.
[37]Yitzhaki S,Huang C,Liu W,et al.Autophagy is required for preconditioning by the adenosine A1 receptor-selective agonist CCPA[J].Basic Res Cardiol,2009,104(2):157-167.
[38]Zhang Y,Ren J.Autophagy in ALDH2-elicited cardioprotection against ischemic heart disease:slayer or savior?[J].Autophagy,2010,6(8):1212-1213.
[39]Ge W,Ren J.mTOR-STAT3-notch signalling contributes to ALDH2-induced protection against cardiac contractile dysfunction and autophagy under alcoholism[J].J Cell Mol Med,2012,16(3):616-626.
[40]Ge W,Guo R,Ren J.AMP-dependent kinase and autophagic flux are involved in aldehyde dehydrogenase-2-induced protection against cardiac toxicity of ethanol[J].Free Radic Biol Med,2011,51(9):1736-1748.
[41]Zhang Y,Ren J.ALDH2 in alcoholic heart diseases:molecular mechanism and clinical implications[J].Pharmacol Ther,2011,132(1):86-95.
[42]Guo Y,Yu W,Sun D,et al.A novel protective mechanism for mitochondrial aldehyde dehydrogenase(ALDH2)in type i diabetes-induced cardiac dysfunction:Role of AMPK-regulated autophagy[J].Biochim Biophys Acta,2015,1852(2):319-331.
[43]Shen C,Wang C,Fan F,et al.Acetaldehyde dehydrogenase 2(ALDH2)deficiency exacerbates pressure overload-induced cardiac dysfunction by inhibiting Beclin-1 dependent autophagy pathway[J].Biochim Biophys Acta,2015,1852(2):310-318.
[44]Zhang B,Zhang Y,La Cour KH,et al.Mitochondrial aldehyde dehydrogenase obliterates endoplasmic reticulum stress-induced cardiac contractile dysfunction via correction of autophagy[J].Biochim Biophys Acta,2013,1832(4):574-584.
[45]De Meyer GR,De Keulenaer GW,Martinet W.Role of autophagy in heart failure associated with aging[J].Heart Fail Rev,2010,15(5):423-430.
[46]Mackins CJ,Kano S,Seyedi N,et al.Cardiac mast cell-derived renin promotes local angiotensin formation,norepinephrine release,and arrhythmias in ischemia/reperfusion[J].J Clin Invest,2006,116(4):1063-1070.
[47]Robador PA,Seyedi N,Chan NY,et al.Aldehyde dehydrogenase type 2 activation by adenosine and histamine inhibits ischemic norepinephrine release in cardiac sympathetic neurons:mediation by protein kinase Cepsilon[J].J Pharmacol Exp Ther,2012,343(1):97-105.
[48]Aldi S,Takano K,Tomita K,et al.Histamine H4-receptors inhibit mast cell renin release in ischemia/reperfusion via protein kinase C epsilon-dependent aldehyde dehydrogenase type-2 activation[J].J Pharmacol Exp Ther,2014,349(3):508-517.[49]Gong D,Zhang Y,Zhang H,et al.Aldehyde dehydrogenase-2 activation during cardioplegic arrest enhances the cardioprotection against myocardial ischemia-reperfusion injury[J].Cardiovasc Toxicol,2012,12(4):350-358.
[50]Contractor H,Stottrup NB,Cunnington C,et al.Aldehyde dehydrogenase-2 inhibition blocks remote preconditioning in experimental and human models[J].Basic Res Cardiol,2013,108(3):343.
[51]Yu Y,Jia XJ,Zong QF,et al.Remote ischemic postconditioning protects the heart by upregulating ALDH2 expression levels through the PI3K/Akt signaling pathway[J].Mol Med Rep,2014,10(1):536-542.
[52]Zhang Y,Babcock SA,Hu N,et al.Mitochondrial aldehyde dehydrogenase(ALDH2)protects against streptozotocin-induced diabetic cardiomyopathy:role of GSK3beta and mitochondrial function[J].BMC Med,2012,10:40.
[53]Gomes KM,Campos JC,Bechara LR,et al.Aldehyde dehydrogenase 2 activation in heart failure restores mitochondrial function and improves ventricular function and remodelling[J].Cardiovasc Res,2014,103(4):498-508.
[54]Stachowicz A,Olszanecki R,Suski M,et al.Mitochondrial aldehyde dehydrogenase activation by Alda-1 inhibits atherosclerosis and attenuates hepatic steatosis in apolipoprotein E-knockout mice[J].J Am Heart Assoc,2014,3(6):e001329.
[55]Luo XJ,Liu B,Ma QL,et al.Mitochondrial aldehyde dehydrogenase,a potential drug target for protection of heart and brain from ischemia/reperfusion injury[J].Curr Drug Targets,2014,15(10):948-955.
[56]Xue L,Xu F,Meng L,et al.Acetylation-dependent regulation of mitochondrial ALDH2 activation by SIRT3 mediates acute ethanol-induced eNOS activation[J].FEBS Lett,2012,586(2):137-142.
[57]Mukamal KJ,Jensen MK,Gronbaek M,et al.Drinking frequency,mediating biomarkers,and risk of myocardial infarction in women and men[J].Circulation,2005,112(10):1406-1413.
[58]Li RJ,Ji WQ,Pang JJ,et al.Alpha-lipoic acid ameliorates oxidative stress by increasing aldehyde dehydrogenase-2 activity in patients with acute coronary syndrome[J].Tohoku J Exp Med,2013,229(1):45-51.
[59]He L,Liu B,Dai Z,et al.Alpha lipoic acid protects heart against myocardial ischemia-reperfusion injury through a mechanism involving aldehyde dehydrogenase 2 activation[J].Eur J Pharmacol,2012,678(1-3):32-38.
[60]Lang XE,Wang X,Zhang KR,et al.Isoflurane preconditioning confers cardioprotection by activation of ALDH2[J].PLoS One,2013,8(2):e52469.
[61]Wei SJ,Xing JH,Wang BL,et al.Poly(ADP-ribose)polymerase inhibition prevents reactive oxygen species induced inhibition of aldehyde dehydrogenase2 activity[J].Biochim Biophys Acta,2013,1833(3):479-486.
R541
A
2095-6894(2015)02-160-05
2014-12-16;接受日期:2015-01-05
庞佼佼.E-mail:pangjiaojiao2011@126.com