维生素D对老龄小鼠脾部分切除术后认知功能的影响及其作用机制研究
2014-12-15张荣伟刘文静张珣
张荣伟++刘文静++张珣
[摘要] 目的 探讨维生素D对老龄小鼠术后认知功能的影响及作用机制。 方法 将老龄C57BL/6小鼠(18~20月龄)随机分为对照组、手术组和维生素D治疗组。对照组不做特殊处理,手术组在麻醉下行脾部分切除术,维生素D治疗组为术前3 d开始每天腹腔注射维生素D。T迷宫实验检测实验小鼠的学习和记忆能力;HE染色光镜及透射电镜观察实验小鼠海马组织结构病理改变;术后第3天处死实验小鼠,迅速获取海马组织,利用实时定量聚合酶链反应(real time-PCR)检测海马组织Th17细胞亚群特异性细胞因子及其分化相关的细胞因子白细胞介素(IL)-17、IL-6、转化生长因子-β(TGF-β)的mRNA表达;利用酶联免疫吸附测定(ELISA)检测海马组织IL-17、IL-6、TGF-β的蛋白表达。 结果 与对照组比较,手术组小鼠认知功能于术后3 d明显下降(P < 0.05);维生素D治疗组小鼠认知功能改变同手术组比较差异有统计学意义(P < 0.05)。术后3 d光镜下维生素D治疗组小鼠海马组织炎症细胞浸润较手术组明显减轻;透射电镜下手术组可见海马神经元胞质内空泡形成明显,部分出现裸核,线粒体肿胀,峭大部分消失,基质呈空泡状;突触间隙增宽,电子密度降低,维生素D治疗组海马组织的超微结构改变明显减轻。术后3 d手术组小鼠海马组织IL-17、IL-6、TGF-β的mRNA和蛋白表达增加,与对照组比较差异均有高度统计学意义(均P < 0.01);维生素D治疗可明显抑制术后海马组织IL-17、IL-6、TGF-β的表达(P < 0.01)。 结论 维生素D可通过调控Th17细胞亚群的分化而改善老龄小鼠的术后认知功能。
[关键词] 维生素D;老龄;认知;Th17
[中图分类号] R657.62 [文献标识码] A [文章编号] 1673-7210(2014)11(a)-0010-05
Influence and mechanism of Vitamin D against postoperative cognitive function in old partial splenectomy mice
ZHANG Rongwei LIU Wenjing ZHANG Xun
Department of Gerontology and Neurology, the First Affiliated Hospital of China Medical University, Liaoning Province, Shenyang 110001, China
[Abstract] Objective To investigate the efficacy and mechanism of Vitamin D against postoperative cognitive dysfunction (POCD) in old mice. Methods C57BL/6 (18-20 months old) female mice were randomly divided into control group, surgery group and Vitamin D group. Control group received no intervention. The surgery group underwent partial splenectomy under general anesthesia. The Vitamin D group was treated with administration of Vitamin D, qd, injection started at day 3 before operation. T maze was used to test the cognition of mice; the cellular ultrastructure of the hippocampus was observed through light microscope and transmission electronic microscope. Mice were sacrificed on postoperative day 3 after spatial working tests. Hippocampus tissues of mice in each group were quickly dissected and were assayed for Th17 cell subsets related cytokine mRNA of IL-17, IL-6, TGF-β by real time-PCR; the protein expression of IL-17, IL-6, TGF-β from hippocampus were detected by ELISA. Results The surgery group induced a significant cognitive impairment on day 3 after operation compared with control group (P < 0.05). The cognitive function of Vitamin D showed significant difference to those in the surgery group (P < 0.05). Compared with surgery group, the Vitamin D group showed mild inflammatory cells infiltration in hippocampus at day 3 after surgery by light microscope. Conspicuous intracytoplasmic vacuole formation was present in neurons and astrocytes of surgery mice and obvious chromosome aberrations, dilatate, widened synaptic as well as disappeared mitoehondriales crista were also observed in the surgery mice' hippocampus by TEM, conversely Vitamin D treated mice developed mild injury of hippocampus ultrastructure. At day 3 after surgery, the mRNA or protein expression of IL-17, IL-6, TGF-β from hippocampus tissues showed increase in surgery mice, and there were statistical differences compared with the control group (P < 0.01). Vitamin D treatment inhibited a prominent expression of IL-17, IL-6, TGF-β in hippocampus tissues at 3 days after surgery (P < 0.01). Conclusion Vitamin D can improve cognitive function by modulating Th17 cell differentiation after partial splenectomy in old mice.
[Key words] Vitamin D; Aged; Cognition; Th17
维生素D是人体所必需的营养素,也是一种激素前体,在体内被转化成1,25二羟维生素D[1,25(OH)2D3]而发挥作用。1,25二羟维生素D3的生物学效应是由1,25二羟维生素D受体(VDR)介导的,VDR除对钙、磷代谢有调节作用外,还具有多种重要的生物作用,如免疫调节、促进细胞的增殖与分化、影响中枢神经功能等。世界范围内维生素D不足和缺乏的发生较常见,与其相关的疾病由以往传统的骨骼畸形、骨质疏松等与骨相关的单一系统疾病延伸至肿瘤、自身免疫性疾病、炎症性疾病、心血管疾病等多系统疾病。Duygu Oezen等[1]在VDR与阿尔茨海默病的关系一文中,证明了VDR多态性与后期阿尔茨海默病的发病具有关联性。活性维生素D能够减轻6-羟基多巴引起的大鼠中脑腹侧多巴胺神经元毒性损伤及运动减少[2]。另外,多巴胺神经元受纹状体神经营养因子的支持[3],而维生素D能上调神经营养因子的分泌,说明维生素D对多巴胺神经元有保护作用,可预防神经变性疾病。
术后认知功能障碍(postoperative cognitive dysfunction,POCD)为术后中枢神经系统并发症,对大多数患者来说是可逆的,但仍有少数患者存在长期甚至永久的认知功能障碍,会影响患者术后生活质量,甚至发展为痴呆[4]。POCD的病理机制不清,炎症机制是近年来研究的热点。本文通过检测维生素D对老龄小鼠术后海马区Th17相关的炎症细胞因子表达水平的影响,旨在探讨维生素D对老龄小鼠术后认知功能的影响机制。
1 材料与方法
1.1 实验动物与分组
选择健康18~20月龄的雌性C57BL/6小鼠,购自北京维通利华公司,许可证号为XC-XK(京)2012-0001。实验过程符合《中华人民共和国实验动物管理条例》及伦理要求。将36只小鼠随机分为三组(n = 12):对照组(C组)、手术组(S组)和维生素D治疗组(D组)。C组小鼠不做特殊处理,S组小鼠在麻醉下行脾部分切除术,D组小鼠手术同S组,同时自术前3 d开始腹腔注射1,25(OH)2D3(Sigma公司)50 ng/d,S组小鼠腹腔注射等量生理盐水。
1.2 实验动物认知功能检测
T迷宫是在T字型的迷宫里寻找食物以检测动物对食物的空间工作记忆情况。T迷宫两臂长总长80 cm,开始臂长57 cm包括10 cm长的一个起始位置,高为10 cm,宽为10 cm。实验过程中,小鼠控制饮食,但可自由饮水。实验前2 d为适应阶段,每天抚摸小鼠5 min以消除紧张感。随后使其在T迷宫中自由探究,至获得目标臂两端食物奖励为止。术后第3天开始实验,每只鼠训练5个实验,每个实验包括一个预备实验和一个正式实验。预备实验中,将其中一臂关闭,允许小鼠进臂获取食物。取食结束,将小鼠放回起始区,停留约10 s后,进行正式实验测试。在正式实验中起始臂和目标臂同时打开。若小鼠选择未曾进入的臂,为正确选择,并获得食物奖励。若小鼠重复进入相同的臂,则为错误选择,不予奖励。实验之间间隔为10 min。延长预备实验和正式实验间的时间间隔至1、3 min进行测试,以检测小鼠的空间工作记忆能力。
1.3 形态学观察
于术后第3天心脏灌注固定后处死动物,各组动物摘取双侧海马,4%多聚甲醛及2.5%戊二醛固定后,常规方法制备石蜡及电镜切片,进行HE染色,分别进行光镜及电镜观察。
1.4 Real time PCR检测细胞因子mRNA表达
采用Trizol法抽提各组海马总RNA,将经过稀释后的RNA样本进行逆转录反应。Real time PCR引物委托TaKaRa公司合成(表1),按照说明书用蒸馏水配成0.2 mol/L浓度,将制备好的cDNA进行PCR扩增。以标准品梯度的测量结果绘制标准曲线,以计算各样品所测基因的含量,mRNA的量由特异性基因的mRNA和甘油醛-3-磷酸脱氢酶GAPDH(一种看家基因)mRNA的比值来表示。实验引物见表1。
1.5 酶联免疫吸附测定(ELISA)检测细胞因子蛋白表达
采用ELISA双抗体夹心ABC法,加入酶标板检测。检测程序按照试剂盒说明书进行。洗板后加入TBM显色,置反应板于酶标仪上读取OD值,制备标准曲线,求出各组小鼠海马IL-17、IL-6、TGF-β蛋白含量。
1.6 统计学方法
采用SPSS 15.0统计学软件进行分析,计量资料以均数±标准差(x±s)表示,采用两独立样本t检验,以P < 0.05为差异有统计学意义。
2 结果
2.1 维生素D对手术小鼠认知功能的影响(T maze)
分别检测了10 s、90 s、3 min的延缓间隔,结果发现S组小鼠的正确率比C组小鼠低,而D组小鼠的正确率比S组小鼠高(均P < 0.05)(图1),该实验表明维生素D治疗小鼠的空间工作记忆能力得到了明显改善。
C:对照组;S:手术组;D:维生素D治疗组;与C组比较,*P < 0.05;与S组比较,#P < 0.05
图1 各组实验动物的空间记忆能力变化
2.2 维生素D对手术小鼠海马形态学的影响
术后第3天光镜下可见S组小鼠海马区炎症细胞浸润明显(图2A),D组可明显减轻手术小鼠的海马区炎症反应(图2B);透射电镜下发现S组小鼠海马神经元及胶质细胞核固缩、核内染色质边集、线粒体肿胀及电子密度减低等(图3A),D组可见神经元及胶质细胞形态较完整,线粒体肿胀减轻(图3B)。
A:手术组;B:维生素D治疗组
图2 手术组与维生素D治疗组海马的形态学变化(HE染色,200×)
2.3 维生素D对手术小鼠海马区细胞因子mRNA表达的影响
与C组比较,术后第3天S组小鼠海马区细胞因子IL-17、IL-6及TGF-β mRNA表达增加,而D组可明显降低IL-17、IL-6及TGF-β mRNA表达(P < 0.01)(图4)。
C:对照组;S:手术组;D:维生素D治疗组;与C组比较,**P < 0.01;与S组比较,##P < 0.01
图4 各组实验动物海马区炎症细胞因子mRNA表达变化
2.4 维生素D对手术小鼠海马区细胞因子蛋白表达的影响
与对照组比较,术后第3天S组小鼠海马区细胞因子IL-17、IL-6及TGF-β蛋白表达增加,而D组可明显降低IL-17、IL-6及TGF-β蛋白表达(P < 0.01)(图5)。
C:对照组,S:手术组,D:维生素D治疗组;与C组比较,**P < 0.01;与S组比较,##P < 0.01
图5 各组实验动物海马区炎症细胞因子蛋白表达变化
3 讨论
POCD是老年患者常见的术后并发症之一,主要表现为认知受损,包括学习记忆能力的下降、意识及信息处理障碍等中枢神经系统功能障碍,严重的可出现痴呆[5-8]。有研究显示25%~50%的住院患者在术后发生认知功能的改变[7-8],同时将近40%在术后5年仍有认知受损的表现[9]。
POCD确切的发病机制尚不明确,文献报道手术可激活外周免疫系统,导致炎性因子的释放,破坏认知功能[10]。也有文献报道随着年龄的增加,炎性因子IL-1β、IL-6和TNF-α表达也增加[11]。研究表明炎性因子的增加,特别在海马区会导致LTP损伤,即海马介导的认知功能破坏[12]。
本实验探讨了手术创伤对老年鼠海马区Th17细胞亚群相关细胞因子表达的影响以及维生素D治疗对老龄术后小鼠认知功能的影响与机制。结果表明,手术创伤引起了老年鼠海马区IL-17、IL-6和TGF-β表达的增加,手术组小鼠在给予维生素D治疗后,小鼠的空间工作记忆能力明显改善,同时伴海马区IL-17、IL-6和TGF-β表达的下降。因此,本实验发现Th17细胞亚群相关细胞因子可能介导了实验鼠POCD,而维生素D可能通过抑制CD4+T细胞向具有致炎性的Th17细胞亚群的分化从而减少致炎细胞因子的表达。文献提示IL-6和TGF-β共同作用会促使CD4+T细胞向Th17细胞亚群分化,而缺乏IL-6时则会向具有免疫抑制作用的Treg细胞亚群分化[13-14]。本研究发现维生素D治疗可能通过抑制Th17细胞亚群分化的关键细胞因子IL-6、TGF-β而抑制手术小鼠CD4+T细胞向Th17细胞亚群的分化,从而改善手术小鼠的认知功能。
维生素D缺乏与认知功能障碍在老年人中普遍存在,近年来国外开始研究老年人维生素D缺乏与认知功能障碍的关系,大部分研究提出了两者存在相关关系的结论[15],更有研究提出两者存在因果关系[16]。近几年越来越多的研究集中在维生素D受体基因多态性与认知功能的关系以及补充维生素D是否可以预防认知功能下降这两方面[17-18]。此外,文献证实维生素D还可治疗各种炎症性疾病包括发生在中枢神经系统的疾病,研究发现维生素D可通过调控Th17细胞的分化及IL-17的表达而治疗多发性硬化及改善实验性变应性脑脊髓炎病情[19-20]。Eva Losem等[21]证明活性维生素D和雌二醇的联合使用可降低脑缺血所带来的热休克蛋白的表达。维生素D是通过与其受体结合而发挥神经保护作用,VDR在中枢神经系统神经元及胶质细胞的表达是维生素D的中枢作用的解剖学基础[22-23]。
本研究结果丰富了维生素D的生物学作用,为其干预IL-17相关的炎症性疾病提供了理论依据。
[参考文献]
[1] Duygu Oezen-AK,Dursun E,Ertan T,et al. Association between vitamin D receptor gene polymorphism and Alzheimer's disease [J]. Tohoku J Exp Med,2007,212(3):275-282.
[2] Wang JY,Wu JN,Cherng TL,et al. Vitamin D3 attenuates 6-hydroxydopamine-jnduced neurotoxicity in rats [J]. Brain Res,2001,904(1):67-75.
[3] Mufson EJ,Kroin JS,Sendera TJ,et al. Distribution and,retrograde transport of trophic factors in the central nervous system:functional implications for the treatment of neurodegenerative diseases [J]. J Prog Nurdoic,1999,57(4):451-484.
[4] Bekker AY,Weeks EJ. Cognitive function after anaesthesia in the elderly [J]. Best Pratt Res Clin Anaestheyiol,2003, 17(2):259-272.
[5] Jeanine P,Wiener-Kronish MD. Miller's Anesthesia [M]. 7th. London:Churchill Livingstone,2009:89.
[6] Silbert B,Evered L,Scott DA. Cognitive decline in the elderly:Is anaesthesia implicated [J]. Best Practice & Research Clinical Anaesthesiology,2011,25(3):379-393.
[7] Newman S,Stygall J,Hirani S,et al. Postoperative cognitive dysfunction afternoncardiac surgery;a systematic review [J]. Anesthesiology,2007,106(3):572-590.
[8] Krenk L,Rasmussen LS,Kehlet H. New insights into the pathophysiology of postoperative cognitive dysfunction [J]. Acta anaesthesiologica Scandinavica,2010,54(8):951-956.
[9] Steinmetz J,Christensen KB,Lund T,et al. Long-term consequences of postoperative cognitive dysfunction [J]. Anesthesiology,2009,110(3):548-555.
[10] Asmussen LS. Postoperative cognitive dysfunction:incidence and prevention [J]. Best Pract Res Clin Anaesthesiol,2006,(20):315-330.
[11] Liu YH,Wang DX,Li H,et al. The effect of cardiopulmonary bypass on the number of cerebral microemboli and the incidence of cognitive function after artery bypass graft surgery [J]. Anesth Analg,2009,(109):1013-1022.
[12] Buchanan JB,Sparkman NL,Johnson RW. Cognitive and neuroinflammmatory consequence of mild repeated sreess are exacerbated in aged mice [J]. Psychoneuroendocrinology,2008,(33):755-765.
[13] Yang L,Anderson DE,Baecher-Allan C,et al. IL-21 and TGFbeta are required for differentiation of human T(H)17 cells [J]. Nature,2008,(454):350-352.
[14] Nurieva R,Yang XO,Martinez G,et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells [J]. Nature,2007,(448):480-483.
[15] Menant J,Close JC,Delbare K,et al. Relationships between serum vitamin D levels,neuromuscular and neuropsychological function and falls in older man and women [J]. Osteoporos Int,2012,23(3):981-989.
[16] Annmeiler C,Fantino B,Schott AM,et al. Vitamin D insufficiency and mild cognitive impairment:Cross-sectional association [J]. Eur J Neuro,2012,19(7):1023-1029.
[17] Van der Schaft J,Koek HL,Dijkstra E,et al. The association between Vitamin D and cognitive:A systematic review [J]. Ageing Res Rev,2013,12(4):1013-1023.
[18] Etgen T,Sander D,Bickel H,et al. Vitamin D deficiency,cognitive impairment and dementia:A systematic review and meta analysis [J]. Dement Geriatr Cogn Disord,2012,33(5):297-305.
[19] Manel N,Unutmaz D,Littman DR. The differentiation of human T(H)-17 cellsrequires transforming growth factor-beta and induction of the nuclear receptor RORgammat [J]. Nat Immunol,2008,(9):641-649.
[20] Zhou L,Lopes JE,Chong MM,et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function [J]. Nature,2008,453:236-240.
[21] Eva Losem-H,Boris G,Axel S,et al. Bidmon:a combined treatment with 1α,25-djhydroxy-vitamin D3 and 17β-estradiol reduces the expression of heat shock proteim-32(HSP-32)following cerebral cortical ischemia [J]. Steroid Biochem Mol Biol,2004,(89-90):371-574.
[22] Zehnder D,Bland R,William MS,et al. Extrarenal expression of 25-hydroxy vitamin d(3)-1 alpha-hydroxylase [J]. J Clin Endocrinol Metab,2001,86(2):888-894.
[23] Burne T,McGrath JJ,Eyles DW,et al. Behavioural characterization of vitamin D receptor knockout mice [J]. Behavioural Brain Research,2005,57(2):299-308.
(收稿日期:2014-07-18 本文编辑:张瑜杰)
[7] Newman S,Stygall J,Hirani S,et al. Postoperative cognitive dysfunction afternoncardiac surgery;a systematic review [J]. Anesthesiology,2007,106(3):572-590.
[8] Krenk L,Rasmussen LS,Kehlet H. New insights into the pathophysiology of postoperative cognitive dysfunction [J]. Acta anaesthesiologica Scandinavica,2010,54(8):951-956.
[9] Steinmetz J,Christensen KB,Lund T,et al. Long-term consequences of postoperative cognitive dysfunction [J]. Anesthesiology,2009,110(3):548-555.
[10] Asmussen LS. Postoperative cognitive dysfunction:incidence and prevention [J]. Best Pract Res Clin Anaesthesiol,2006,(20):315-330.
[11] Liu YH,Wang DX,Li H,et al. The effect of cardiopulmonary bypass on the number of cerebral microemboli and the incidence of cognitive function after artery bypass graft surgery [J]. Anesth Analg,2009,(109):1013-1022.
[12] Buchanan JB,Sparkman NL,Johnson RW. Cognitive and neuroinflammmatory consequence of mild repeated sreess are exacerbated in aged mice [J]. Psychoneuroendocrinology,2008,(33):755-765.
[13] Yang L,Anderson DE,Baecher-Allan C,et al. IL-21 and TGFbeta are required for differentiation of human T(H)17 cells [J]. Nature,2008,(454):350-352.
[14] Nurieva R,Yang XO,Martinez G,et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells [J]. Nature,2007,(448):480-483.
[15] Menant J,Close JC,Delbare K,et al. Relationships between serum vitamin D levels,neuromuscular and neuropsychological function and falls in older man and women [J]. Osteoporos Int,2012,23(3):981-989.
[16] Annmeiler C,Fantino B,Schott AM,et al. Vitamin D insufficiency and mild cognitive impairment:Cross-sectional association [J]. Eur J Neuro,2012,19(7):1023-1029.
[17] Van der Schaft J,Koek HL,Dijkstra E,et al. The association between Vitamin D and cognitive:A systematic review [J]. Ageing Res Rev,2013,12(4):1013-1023.
[18] Etgen T,Sander D,Bickel H,et al. Vitamin D deficiency,cognitive impairment and dementia:A systematic review and meta analysis [J]. Dement Geriatr Cogn Disord,2012,33(5):297-305.
[19] Manel N,Unutmaz D,Littman DR. The differentiation of human T(H)-17 cellsrequires transforming growth factor-beta and induction of the nuclear receptor RORgammat [J]. Nat Immunol,2008,(9):641-649.
[20] Zhou L,Lopes JE,Chong MM,et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function [J]. Nature,2008,453:236-240.
[21] Eva Losem-H,Boris G,Axel S,et al. Bidmon:a combined treatment with 1α,25-djhydroxy-vitamin D3 and 17β-estradiol reduces the expression of heat shock proteim-32(HSP-32)following cerebral cortical ischemia [J]. Steroid Biochem Mol Biol,2004,(89-90):371-574.
[22] Zehnder D,Bland R,William MS,et al. Extrarenal expression of 25-hydroxy vitamin d(3)-1 alpha-hydroxylase [J]. J Clin Endocrinol Metab,2001,86(2):888-894.
[23] Burne T,McGrath JJ,Eyles DW,et al. Behavioural characterization of vitamin D receptor knockout mice [J]. Behavioural Brain Research,2005,57(2):299-308.
(收稿日期:2014-07-18 本文编辑:张瑜杰)
[7] Newman S,Stygall J,Hirani S,et al. Postoperative cognitive dysfunction afternoncardiac surgery;a systematic review [J]. Anesthesiology,2007,106(3):572-590.
[8] Krenk L,Rasmussen LS,Kehlet H. New insights into the pathophysiology of postoperative cognitive dysfunction [J]. Acta anaesthesiologica Scandinavica,2010,54(8):951-956.
[9] Steinmetz J,Christensen KB,Lund T,et al. Long-term consequences of postoperative cognitive dysfunction [J]. Anesthesiology,2009,110(3):548-555.
[10] Asmussen LS. Postoperative cognitive dysfunction:incidence and prevention [J]. Best Pract Res Clin Anaesthesiol,2006,(20):315-330.
[11] Liu YH,Wang DX,Li H,et al. The effect of cardiopulmonary bypass on the number of cerebral microemboli and the incidence of cognitive function after artery bypass graft surgery [J]. Anesth Analg,2009,(109):1013-1022.
[12] Buchanan JB,Sparkman NL,Johnson RW. Cognitive and neuroinflammmatory consequence of mild repeated sreess are exacerbated in aged mice [J]. Psychoneuroendocrinology,2008,(33):755-765.
[13] Yang L,Anderson DE,Baecher-Allan C,et al. IL-21 and TGFbeta are required for differentiation of human T(H)17 cells [J]. Nature,2008,(454):350-352.
[14] Nurieva R,Yang XO,Martinez G,et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells [J]. Nature,2007,(448):480-483.
[15] Menant J,Close JC,Delbare K,et al. Relationships between serum vitamin D levels,neuromuscular and neuropsychological function and falls in older man and women [J]. Osteoporos Int,2012,23(3):981-989.
[16] Annmeiler C,Fantino B,Schott AM,et al. Vitamin D insufficiency and mild cognitive impairment:Cross-sectional association [J]. Eur J Neuro,2012,19(7):1023-1029.
[17] Van der Schaft J,Koek HL,Dijkstra E,et al. The association between Vitamin D and cognitive:A systematic review [J]. Ageing Res Rev,2013,12(4):1013-1023.
[18] Etgen T,Sander D,Bickel H,et al. Vitamin D deficiency,cognitive impairment and dementia:A systematic review and meta analysis [J]. Dement Geriatr Cogn Disord,2012,33(5):297-305.
[19] Manel N,Unutmaz D,Littman DR. The differentiation of human T(H)-17 cellsrequires transforming growth factor-beta and induction of the nuclear receptor RORgammat [J]. Nat Immunol,2008,(9):641-649.
[20] Zhou L,Lopes JE,Chong MM,et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function [J]. Nature,2008,453:236-240.
[21] Eva Losem-H,Boris G,Axel S,et al. Bidmon:a combined treatment with 1α,25-djhydroxy-vitamin D3 and 17β-estradiol reduces the expression of heat shock proteim-32(HSP-32)following cerebral cortical ischemia [J]. Steroid Biochem Mol Biol,2004,(89-90):371-574.
[22] Zehnder D,Bland R,William MS,et al. Extrarenal expression of 25-hydroxy vitamin d(3)-1 alpha-hydroxylase [J]. J Clin Endocrinol Metab,2001,86(2):888-894.
[23] Burne T,McGrath JJ,Eyles DW,et al. Behavioural characterization of vitamin D receptor knockout mice [J]. Behavioural Brain Research,2005,57(2):299-308.
(收稿日期:2014-07-18 本文编辑:张瑜杰)