APP下载

miRNA—497与miRNA—195基因簇在宫颈癌组织中的表达及预测靶基因的生物信息学分析

2014-12-15张蔚等

中国医药导报 2014年31期
关键词:基因簇宫颈癌宫颈

张蔚等

[摘要] 目的 探讨miRNA-497-195基因簇在宫颈癌组织中的表达,并对其预测的靶基因进行生物信息学分析,为miRNA-497-195基因簇在宫颈癌发生中的作用机制研究提供理论基础。 方法 收集2010年3月~2012年3月在广西壮族自治区人民医院就诊患者的宫颈标本,利用miRNA芯片技术检测宫颈病变组织中miRNA表达谱,用real-time RT-PCR进行验证;采用real-time RT-PCR检测miRNA-497和miRNA-195在宫颈病变组织中的表达情况,并用Spearman法进行miRNA-497与miRNA-195相关性分析。通过生物信息学预测miRNA-497和miRNA-195的靶基因,并对其靶基因进行GO(gene ontology)功能富集分析及信号转导通路富集分析。 结果 芯片结果显示,宫颈癌及高度鳞状上皮内瘤变中miRNA-195和miRNA-497表现为下调(均P < 0.05)。real-time RT-PCR结果显示,miRNA-497和miRNA-195在宫颈癌组织中表现为下调,且表达存在显著性相关(r = 0.983,P < 0.05)。miRNA-497和miRNA-195预测靶基因大量重合,且集合功能也大量重合,并富集于细胞周期调控、生物学过程调控、转录调控、基因表达及核苷酸代谢过程等生物学过程,以及蛋白结合、核酸结合、蛋白激酶活性、连接酶活性等分子功能(P < 0.01);KEGG通路分析涉及癌症通路、p53信号通路、GnRH信号通路、细胞外因子信号通路等信号传导通路及直肠癌、前列腺癌、甲状腺癌、黑色素瘤、慢性粒细胞性白血病、非小细胞肺癌等疾病通路(P < 0.05)。 结论 miRNA-195和miRNA-497在宫颈癌组织中呈现低表达,二者表达呈显著正相关,miRNA-497-195基因簇可能是宫颈癌的抑制因子。miRNA-497和miRNA-195预测靶基因功能大量重合,并显著富集在与肿瘤发生相关的信号通路中。

[关键词] miRNA-497;miRNA-195;miRNA-497-195基因簇;宫颈癌;miRNA芯片;靶基因;生物信息学

[中图分类号] R739.8 [文献标识码] A [文章编号] 1673-7210(2014)11(a)-0004-06

The expression of miRNA-497 and miRNA-195 cluster in cervical cancer tissues and bioinformatics analysis of predicted target genes

ZHANG Wei1 LIU Zhen1 HU Xiaoxia2 ZHENG Wenjing1 ZENG Kangkang1

1.The First Department of Gynecology, Renmin Hospital of Wuhan University, Hubei Province, Wuhan 430000, China; 2.Department of Gynecology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530000, China

[Abstract] Objective To investigate the expression of miRNA-497-195 cluster in cervical cancer tissues, and bioinformatically analyze the target genes of miRNA-497-195 cluster, in order to provide theoretical basis for further studies of miRNA-497-195 cluster biological function in cervical cancer. Methods From March 2010 to March 2012,cervical specimens were collected from the People's Hospital of Guangxi Zhuang Autonomous Region. miRNA array was applied to detect miRNA expression profile in cervical lesion tissues, and real-time RT-PCR was used for validation. The relative expression level of miRNA-497 and miRNA-195 were analyzed by real-time RT-PCR, and Spearman was used for the correlation analysis. The bioinformatic analysis of the target genes of miRNA-497 and miRNA-195 involved gene ontology (GO) and signal transduction pathway enrichment. Results miRNA-497 and miRNA-195 expression decreased in cervical cancer tissues compared with normal cervical tissues (P < 0.05). A significant positive correlation between the expression levels of miRNA-195 and miRNA-497 in the clinical samples were revealed (r = 0.983, P < 0.05). The predicted target genes of miRNA-497 and miRNA-195 were a lot of overlap. The functions of predicted target genes of miRNA-497 and miRNA-195 were enriched in cell cycle, regulation of biological process, regulation of transcription, regulation of gene expression, regulation of the nucleic acid metabolic process, protein binding, nucleotide binding, kinase activity, ligase activity and other biological processes and molecular functions(P < 0.01). In KEGG pathway, the predicted target genes involved in pathway in cancer, p53 signaling pathway, GnRH signaling pathway, Wnt signaling pathway, colorectal cancer, prostate cancer, thyroid cancer, melanoma, chronic myeloid leukemia, non-small cell lung cancer, and other signal transduction pathways and human diseases pathway (P < 0.05). Conclusion miRNA-497 and miRNA-195 expression decreases and obviously correlative in cervical cancer tissues,suggesting that miRNA-497-195 cluster may function as tumor suppressors in cervical cancer. Some of the predicted target genes of miRNA-497 and miRNA-195 are significantly enriched in tumor related with signaling pathways.

[Key words] miRNA-497; miRNA-195; miRNA-497-195 cluster; Cervical cancer; miRNA array; Target gene; Bioinformatic

宫颈癌是常见的妇科恶性肿瘤之一,全球每年约有50万的新发病例,约30万的死亡病例。近年来国内外报道宫颈癌发病呈年轻化趋势。目前已知宫颈癌的发生与高危型HPV感染有关。但是研究发现,单一的高危HPV感染不足以引起宫颈癌,遗传因素和免疫因素在宫颈癌的发生中也起了重要作用[1]。研究宫颈癌的发生发展机制,更有效地诊断和治疗宫颈癌,是当今医学的研究热点。

最近许多研究表明,miRNAs在多种肿瘤如乳腺癌[2]、肝癌[3]、直肠癌[4]、食管癌[5]、卵巢癌[6]、子宫内膜癌[7]中异常表达,在宫颈癌中也出现异常表达[8],在肿瘤的发生发展和转移中作为抑癌基因或癌基因起重要的作用[1-7]。但目前对miRNA的具体作用机制认识有限,准确预测miRNA的靶基因并正确认识miRNA及其靶基因的相互作用是研究miRNA作用机制的关键。

大多数miRNA基因以单拷贝、多拷贝或基因簇的形式存在于基因组中[9-10]。miRNA-195和miRNA-497属于miRNA-15/107组群,种子序列为AGCAGC[11],pre-miRNA-195处于pre-miRNA-497 3'端下游的209 bp位置,两者均位于人类染色体17p13.1,是一个高度保守的基因簇,而在人类17号染色体上有多种肿瘤抑制基因,这些基因在癌症中常表现为缺失[12-13]。已有研究证明,miRNA-497和miRNA-195均有肿瘤抑制功能[14-24]。而目前针对miRNA-497-195簇对宫颈癌作用的研究尚少。

本文旨在研究miRNA-497-195簇在宫颈癌中的表达情况并预测其靶基因和对预测的靶基因进行生物信息学分析。为进一步研究miRNA-497-195簇在宫颈癌发生发展中的作用及可能的分子机制并寻找可预测宫颈癌前病变及宫颈癌发展的生物标志物提供理论基础。

1 资料与方法

1.1 一般资料

宫颈石蜡组织标本收集于广西壮族自治区人民医院病理科,患者入院时间为2010年3月~2012年3月。选择12份宫颈组织标本用于miRNA芯片检测,包括3份宫颈鳞状细胞癌(squamous cell carcinoma,SCC)组织、3份宫颈高度鳞状上皮内病变(high grde squmous intrepithelil lesion,HSIL)组织、3份宫颈低度鳞状上皮内病变(ligh grde squmous intrepithelil lesion LSIL)组织及3份正常宫颈组织,患者一般资料情况见表1。选择60份宫颈组织标本(20份宫颈癌组织、20份HSIL组织、10份LSIL组织和10份正常宫颈组织)用于miRNA-497和miRNA-195表达的验证及表达相关性分析,患者一般资料情况见表2。标本均由病理科医生复核,所有宫颈癌患者在术前均未接受过放化疗及其他治疗,正常宫颈组织来自因子宫良性病变切除的子宫。该研究已获得医院伦理委员会同意。

1.2 miRNA芯片检测

组织RNA抽提采用RecoverAllTM Total Nucleic Acid Isolation(Ambion,Austin,TX,US),根据生产厂商提供的标准操作流程进行,抽提所得总RNA经电泳质检合格后备用。miRNA芯片杂交所用芯片为Agilent human miRNA(8*15K)V12.0芯片(覆盖866个人类相关miRNA以及89个人类病毒相关miRNA)。芯片杂交实验及后续结果分析在上海伯豪芯片生物技术有限公司完成。实验样品RNA采用Agilent miRNA芯片配套的试剂盒(Agilent technologies,Santa Clara,CA,US),按照标准操作流程对样品中的miRNA分子进行荧光标记及样品的杂交实验。

1.3 实时定量PCR(real-time RT-PCR)

RNA抽提使用QuantoBio Total RNA Isolation Kit进行,利用QuantoBio逆转录系统采用加尾法进行cDNA第一条链的合成,反应条件为37℃、1 h(TIANGEN公司);以第一链cDNA为模板,利用SYBR Green PCR Master Mix进行PCR扩增,反应在20 μL的体系中进行。扩增条件:95℃ 15 min,1个循环;95℃ 10 s,40个循环;60℃ 32 s,40个循环(TIANGEN 公司)。U6 snRNA作为实验的内参基因。miRNA相对表达量为2-△△Ct;△Ct=(CtmiRNA-CtU6)。相关引物见表3。

表3 miRNA-195和miRNA-497逆转录及RT-PCR引物

1.4 miRNA-497和miRNA-195生物信息学分析

应用mirecords数据库(http://mirecords.biolead.org/)进行靶基因预测,此数据库集成了PicTar、miRanda、DI-ANA-microT和TargetScanS等miRNA靶标预测工具,取至少被4个软件同时预测的基因作为预测的靶基因,用DAVID数据库(http://david.abcc.ncifcrf.gov/home.jsp)对预测的靶基因进行GO(gene ontology)注释描述和分类,使用KEGG公共数据库对靶基因进行信号转导通路富集分。通过Fisher Exact Test计算P值,以P < 0.05为显著性阈值得到基因集合具有统计意义的的高频率注释、信号转导及疾病通路。

1.5 统计学方法

芯片结果采用Agilent Microarray Scanner进行扫描,用Feature Extraction software 10.7读取数据,最后采用Gene Spring Software 11.0进行归一化处理。采用Significance Analysis of Microarrays(SAM)和t检验(t-test)进行差异表达基因分析,差异倍数为2倍及以上(即≥2或≤0.5)、P < 0.05为有意义的miRNA。利用SPSS 12.0统计学软件进行数据分析,采用Spearman进行miRNA-497与miRNA-195的相关性分析,以r > 0.3,P < 0.05为存在相关性。

2 结果

2.1 miRNA-497和miRNA-195在宫颈癌组织中的表达

2.1.1 基因芯片结果 芯片分析结果显示,与正常宫颈组织比较,miRNA-497和miRNA-195在宫颈癌和HSIL中表现为下调,见表4。利用real-time RT-PCR检测60份宫颈组织标本中MicroRNA的表达,结果示miRNA-497和miRNA-195在宫颈癌组织和HISL中表现为低表达。见图1。

表4 宫颈癌组织和HSIL中差异性表达的miRNAs情况

注:HSIL:高度鳞状上皮内病变;倍数改变:与正常宫颈组织比较,各miRNAs在宫颈癌或HSIL组织中表达的倍数变化

图1 real-time RT-PCR检测结果

2.1.2 miRNA-497和miRNA-195在宫颈癌组织中的表达相关性分析 将60份宫颈癌组织标本的real-time RT-PCR用于miRNA-497和miRNA-195表达相关性分析,发现二者在宫颈组织中的表达呈显著正相关(r = 0.983,P < 0.05)。见图2。

图2 miRNA-497和miRNA-195在宫颈组织中的表达相关性

2.2 miRNA-497和miRNA-195生物信息学分析

2.2.1 miRNA-497和miRNA-195靶基因预测 利用mirecords数据库对miRNA-195靶基因进行预测,此数据库集成了PicTar、miRanda、DI-ANA-microT和TargetScanS等的miRNA靶标预测工具,结果发现同时由4个软件预测到的靶基因miRNA-497有914个,miRNA-195有1037个,两者重合的靶基因有710个。将这些预测的靶基因利用DAVID数据库进行GO及信号通路的富集分析。

2.2.2 miRNA-497和miRNA-195预测靶基因的GO注释描述及GO分类富集分析 按照基因的不同生物学功能,GO将基因的功能详细划分为以下3个方面:分子功能、生物学过程和细胞组件。通过GO注释描述得到miRNA-497和miRNA-195预测靶基因的GO分子功能注释信息和预测靶基因的GO生物学过程注释信息。选取P < 0.01的注释信息。结果发现,预测靶基因GO分子功能分析结果中miRNA-497有31项,miRNA-195有29项,两者重合的注释信息有25项。预测靶基因GO生物学过程分析结果,miRNA-497有153项,miRNA-195有188项,两者重合的有130项。可见两者预测靶基因功能大量重合,且分别富集于细胞周期调控、生物学过程调控、转录调控、基因表达、及核苷酸代谢过程等生物学过程,以及蛋白结合、核酸结合、蛋白激酶活性、连接酶活性等分子功能(P < 0.01)。见表5、6。

表5 miRNA-497和miRNA-195预测靶基因GO生物学过程分析

2.2.3 miRNA-497和miRNA-195靶基因集合的信号转导通路富集分析 通过DAVID数据库对miRNA-497和miRNA-195集合进行基于KEGG的Pathway富集分析,选取P < 0.05的信号通路。预测靶基因总信号通路miRNA-497有21个,miRNA-195有34个,两者重合的信号通路有18个,可见miRNA-497和miRNA-195靶基因集合的信号转导通路大量重合,KEGG通路分析涉及癌症通路、p53信号通路、GnRH信号通路、细胞外因子信号通路等信号传导通路及直肠癌、前列腺癌、甲状腺癌、黑色素瘤、慢性粒细胞性白血病、非小细胞肺癌等疾病通路(P < 0.05)。见表7。

表7 miRNA-497和miRNA-195靶基因集合的信号转导通路富集分析

3 讨论

MicroRNA(miRNA)是发现于真核细胞中一类长度约为22个核苷酸的内源性非编码单链小RNA分子。miRNA能通过与靶标mRNA的完全或不完全互补配对、降解靶mRNA或抑制靶mRNA翻译的机制,在转录后水平调控基因的表达,在细胞的增殖、凋亡、分化、代谢以及个体发育和病毒感染等方面都发挥着重要的作用。研究显示,miRNA在肿瘤组织中异常表达,对不同肿瘤组织特定miRNA表达水平的研究有利于阐明肿瘤的发生发展机制,更为肿瘤的诊断和治疗提供了理论依据。大多数miRNA基因以单拷贝、多拷贝或基因簇的形式存在于基因组中。研究已经显示miRNA-195在多种肿瘤组织和细胞中表现为下调并如胃癌[14]、肝癌[15]、膀胱癌[16]、食管癌[17]、胶质瘤[23]等与肿瘤的生长、侵袭和转移有关。在某些肿瘤中,miRNA-195被鉴定为肿瘤抑制因子[14-16,24]。miRNA-497也在不同的肿瘤中表现为下调,如乳腺癌[19]、肺癌[20]、宫颈癌[18]、直肠癌[21]、前列腺癌[22]等。已有学者将miRNA-497和miRNA-195作为一个基因簇进行研究,如Furuta等[3]、Li等[12]、Flavin等[13],他们分别发现miRNA-497和miRNA-195在肝癌、乳腺癌和卵巢癌中表现出肿瘤抑制功能,是潜在的肿瘤抑制基因。说明在研究miRNA-497和miRNA-195对宫颈癌发生和发展的影响时,也有必要将两者作为一个基因簇来研究。本研究通过基因芯片技术发现,与正常宫颈组织比较,宫颈癌组织中有15个miRNAs表达为上调,10个miRNAs表达为下调(<0.5倍),其中,miRNA-497和miRNA-195表现为下调。经qRT-PCR证实miRNA-497和miRNA-195在宫颈癌组织中为明显低表达,与芯片检测结果一致,并发现两者在宫颈组织中的表达水平高度相关。miRNA-497和miRNA-195均位于17号染色体,而在人类17号染色体上有多种肿瘤抑制基因,这些基因在癌症中常表现为缺失。Luo等[18]研究发现,miRNA-497的异常表达与宫颈癌的不良预后有关。miRNA-497-195基因簇与宫颈癌发生和发展的关系目前研究较少。下一步研究可通过转染技术使宫颈癌系过表达miRNA-497和miRNA-195,来观察其对宫颈癌细胞增殖、迁移和凋亡的影响[25],来证明miRNA-497-195基因簇对宫颈癌的抑制作用。

目前miRNA家族已是基因表达调控网络中重要组成部分,可能参与多条信号传导通路的调控。miRNA靶基因的确定是研究miRNA生物学功能的关键,对靶基因的功能分析有助于对miRNA作用机制的理解。生物信息学预测显示,miRNAs能调节超过30%的蛋白编码的基因[26],单个miRNA能作用于许多靶基因调节生物过程。利用生物信息学方法对miRNA-497和miRNA-195的靶基因进行预测,发现两者靶基因大量重合。对靶基因集合进行功能富集分析和信号转导通路富集分析发现,miRNA-497和miRNA-195预测靶基因的功能大量重合,并分显著富集于细胞周期调控、生物学过程调控、转录调控、基因表达及核苷酸代谢过程等生物学过程,以及蛋白结合、核酸结合、蛋白激酶活性、连接酶活性等分子功能(P < 0.01);KEGG通路分析涉及癌症通路、p53信号通路、GnRH信号通路、细胞外因子信号通路等信号传导通路及直肠癌、前列腺癌、甲状腺癌、黑色素瘤、慢性粒细胞性白血病、非小细胞肺癌等疾病通路(P < 0.05)。几个miRNA-497和miRNA-195的靶基因在某些肿瘤中已得到验证。Furuta等[3]筛选出miRNA-497-195的直接靶基因CCNE1、CDC25A、CCN3、CDK4、BTRC,发现miRNA-497-195在肝癌中的表达与CCNE1、CDC25A、CCN3、CDK4、BTRC的表达呈负相关,通过siRNA抑制肝细胞癌中这些靶基因的表达,发现肝细胞癌出现了G1期生长抑制。

本研究显示,miRNA-497和miRNA-195在宫颈癌组织中为低表达,生物信息学分析显示miRNA-497和miRNA-195靶基因功能大量重合并富集于大量的生物学功能及与癌症相关的信号通路。对miRNA-497和miRNA-195靶基因及信号传导通路的分析有助于对宫颈癌的发生机制的认识,为进一步研究miRNA-497-195基因簇在宫颈癌发生、发展过程中的机制提供理论依据和实验基础。

[参考文献]

[1] Thomison JR,Thomas LK,Shroyer KR. Human papillomavirus: molecular and cytologic/histologic aspects related to cervical intraepithelial neoplasia and carcinoma [J]. Hum Pathol,2008,39(2):154-166.

[2] Iorio MV,Ferracin M,Liu CG,et al. MicroRNA gene expression deregulation in human breast cancer [J]. Cancer Res,2005,65(16):7065-7070.

[3] Furuta M,Kozaki K,Tanimoto K,et al. The tumor-suppressive miR-497-195 cluster targets multiple cell-cycle regulators in hepatocellular carcinoma [J]. PLoS One,2013, 8(3):e60155.

[4] Suzuki H,Takatsuka S,Akashi H,et al. Genome-wide profiling of chromatin signatures reveals epigenetic regulation of MicroRNA genes in colorectal cancer [J]. Cancer Res,2011,71(17):5646-5658.

[5] Saad R,Chen Z,Zhu S,et al. Deciphering the unique microRNA signature in human esophageal adenocarcinoma [J]. PLoS One,2013,8(5):e64463.

[6] Kim YW,Kim EY,Jeon D,et al. Differential microRNA expression signatures and cell type-specific association with Taxol resistance in ovarian cancer cells [J]. Drug Des Devel Ther,2014,8:293-314.

[7] Kong X,Xu X,Yan Y,et al. Estrogen Regulates the Tumour Suppressor miRNA-30c and its Target Gene, MTA-1, in Endometrial Cancer [J]. PLoS One,2014,9(3):e90810.

[8] Wang X,Wang HK,Li Y,et al. microRNAs are biomarkers of oncogenic human papillomavirus infections [J]. Proc Natl Acad Sci USA,2014,111(11):4262-4267.

[9] Lagos R,Baeza M,Corsini G,et al. Structure, organization and characterization of the gene cluster involved in the production of microcin E492,a channel-forming bacteriocin [J]. Mol Microbiol,2001,42(1):229-243.

[10] Lau NC,Lim LP,Weinstein EG,et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans [J]. Science,2001,294(5543):858-862.

[11] Finnerty JR,Wang WX,Hebert SS,et al. The miR-15/107 group of microRNA genes: evolutionary biology, cellular functions, and roles in human diseases [J]. J Mol Biol,2010,402(3):491-509.

[12] Li D,Zhao Y,Liu C,et al. Analysis of miR-195 and miR-497 expression, regulation and role in breast cancer [J]. Clin Cancer Res,2011,17(7):1722-1730.

[13] Flavin RJ,Smyth PC,Laios A,et al. Potentially important microRNA cluster on chromosome 17p13.1 in primary peritoneal carcinoma [J]. Mod Pathol,2009,22(2):197-205.

[14] Guo J,Miao Y,Xiao B,et al. Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues [J]. J Gastroenterol Hepatol,2009,24(4):652-657.

[15] Xu T,Zhu Y,Xiong Y,et al. MicroRNA-195 suppresses tumorigenicity and regulates G1/S transition of human hepatocellular carcinoma cells [J]. Hepatology,2009,50(1):113-121.

[16] Ichimi T,Enokida H,Okuno Y,et al. Identification of novel microRNA targets based on microRNA signatures in bladder cancer [J]. Int J Cancer,2009,125(2):345-352.

[17] Fu MG,Li S,Yu TT,et al. Differential expression of miR-195 in esophageal squamous cell carcinoma and miR-195 expression inhibits tumor cell proliferation and invasion by targeting of Cdc42 [J]. FEBS Lett,2013,587(21):3471-3479.

[18] Luo M,Shen D,Zhou X,et al. MicroRNA-497 is a potential prognostic marker in human cervical cancer and functions as a tumor suppressor by targeting the insulin-like growth factor 1 receptor [J]. Surgery,2013,153(6):836-847.

[19] Wang S,Li H,Wang J,et al. Expression of microRNA-497 and its prognostic significance in human breast cancer [J]. Diagn Pathol,2013,8(1):172.

[20] Zhao WY,Wang Y,An ZJ,et al. Downregulation of miR-497 promotes tumor growth and angiogenesis by targeting HDGF in non-small cell lung cancer [J]. Biochem Biophys Res Commun,2013,435(3):466-471.

[21] Guo ST,Jiang CC,Wang GP,et al. MicroRNA-497 targets insulin-like growth factor 1 receptor and has a tumour suppressive role in human colorectal cancer [J]. Oncogene,2013,32(15):1910-1920.

[22] Wang L,Li B,Li L,et al. MicroRNA-497 suppresses proliferation and induces apoptosis in prostate cancer cells [J]. Asian Pac J Cancer Prev,2013,14(6):3499-3502.

[23] Zhang QQ,Xu H,Huang MB,et al. MicroRNA-195 plays a tumor-suppressor role in human glioblastoma cells by targeting signaling pathways involved in cellular proliferation and invasion [J]. Neuro Oncol,2012,14(3):278-287.

[24] Soon PS,Tacon LJ,Gill AJ,et al. miR-195 and miR-483-5p Identified as Predictors of Poor Prognosis in Adrenocortical Cancer [J]. Clin Cancer Res,2009,15(24):7684-7692.

[25] 林晨,陈锐,拉莱·苏祖克,等.微小RNA-101在子宫颈鳞癌组织中的表达及其意义[J].中华妇产科杂志,2011, 46(9):699-700.

[26] Bartel DP. MicroRNAs:genomics,biogenesis,mechanism,and function [J]. Cell,2004,116(2):281-297.

(收稿日期:2014-07-10 本文编辑:程 铭)

[10] Lau NC,Lim LP,Weinstein EG,et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans [J]. Science,2001,294(5543):858-862.

[11] Finnerty JR,Wang WX,Hebert SS,et al. The miR-15/107 group of microRNA genes: evolutionary biology, cellular functions, and roles in human diseases [J]. J Mol Biol,2010,402(3):491-509.

[12] Li D,Zhao Y,Liu C,et al. Analysis of miR-195 and miR-497 expression, regulation and role in breast cancer [J]. Clin Cancer Res,2011,17(7):1722-1730.

[13] Flavin RJ,Smyth PC,Laios A,et al. Potentially important microRNA cluster on chromosome 17p13.1 in primary peritoneal carcinoma [J]. Mod Pathol,2009,22(2):197-205.

[14] Guo J,Miao Y,Xiao B,et al. Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues [J]. J Gastroenterol Hepatol,2009,24(4):652-657.

[15] Xu T,Zhu Y,Xiong Y,et al. MicroRNA-195 suppresses tumorigenicity and regulates G1/S transition of human hepatocellular carcinoma cells [J]. Hepatology,2009,50(1):113-121.

[16] Ichimi T,Enokida H,Okuno Y,et al. Identification of novel microRNA targets based on microRNA signatures in bladder cancer [J]. Int J Cancer,2009,125(2):345-352.

[17] Fu MG,Li S,Yu TT,et al. Differential expression of miR-195 in esophageal squamous cell carcinoma and miR-195 expression inhibits tumor cell proliferation and invasion by targeting of Cdc42 [J]. FEBS Lett,2013,587(21):3471-3479.

[18] Luo M,Shen D,Zhou X,et al. MicroRNA-497 is a potential prognostic marker in human cervical cancer and functions as a tumor suppressor by targeting the insulin-like growth factor 1 receptor [J]. Surgery,2013,153(6):836-847.

[19] Wang S,Li H,Wang J,et al. Expression of microRNA-497 and its prognostic significance in human breast cancer [J]. Diagn Pathol,2013,8(1):172.

[20] Zhao WY,Wang Y,An ZJ,et al. Downregulation of miR-497 promotes tumor growth and angiogenesis by targeting HDGF in non-small cell lung cancer [J]. Biochem Biophys Res Commun,2013,435(3):466-471.

[21] Guo ST,Jiang CC,Wang GP,et al. MicroRNA-497 targets insulin-like growth factor 1 receptor and has a tumour suppressive role in human colorectal cancer [J]. Oncogene,2013,32(15):1910-1920.

[22] Wang L,Li B,Li L,et al. MicroRNA-497 suppresses proliferation and induces apoptosis in prostate cancer cells [J]. Asian Pac J Cancer Prev,2013,14(6):3499-3502.

[23] Zhang QQ,Xu H,Huang MB,et al. MicroRNA-195 plays a tumor-suppressor role in human glioblastoma cells by targeting signaling pathways involved in cellular proliferation and invasion [J]. Neuro Oncol,2012,14(3):278-287.

[24] Soon PS,Tacon LJ,Gill AJ,et al. miR-195 and miR-483-5p Identified as Predictors of Poor Prognosis in Adrenocortical Cancer [J]. Clin Cancer Res,2009,15(24):7684-7692.

[25] 林晨,陈锐,拉莱·苏祖克,等.微小RNA-101在子宫颈鳞癌组织中的表达及其意义[J].中华妇产科杂志,2011, 46(9):699-700.

[26] Bartel DP. MicroRNAs:genomics,biogenesis,mechanism,and function [J]. Cell,2004,116(2):281-297.

(收稿日期:2014-07-10 本文编辑:程 铭)

[10] Lau NC,Lim LP,Weinstein EG,et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans [J]. Science,2001,294(5543):858-862.

[11] Finnerty JR,Wang WX,Hebert SS,et al. The miR-15/107 group of microRNA genes: evolutionary biology, cellular functions, and roles in human diseases [J]. J Mol Biol,2010,402(3):491-509.

[12] Li D,Zhao Y,Liu C,et al. Analysis of miR-195 and miR-497 expression, regulation and role in breast cancer [J]. Clin Cancer Res,2011,17(7):1722-1730.

[13] Flavin RJ,Smyth PC,Laios A,et al. Potentially important microRNA cluster on chromosome 17p13.1 in primary peritoneal carcinoma [J]. Mod Pathol,2009,22(2):197-205.

[14] Guo J,Miao Y,Xiao B,et al. Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues [J]. J Gastroenterol Hepatol,2009,24(4):652-657.

[15] Xu T,Zhu Y,Xiong Y,et al. MicroRNA-195 suppresses tumorigenicity and regulates G1/S transition of human hepatocellular carcinoma cells [J]. Hepatology,2009,50(1):113-121.

[16] Ichimi T,Enokida H,Okuno Y,et al. Identification of novel microRNA targets based on microRNA signatures in bladder cancer [J]. Int J Cancer,2009,125(2):345-352.

[17] Fu MG,Li S,Yu TT,et al. Differential expression of miR-195 in esophageal squamous cell carcinoma and miR-195 expression inhibits tumor cell proliferation and invasion by targeting of Cdc42 [J]. FEBS Lett,2013,587(21):3471-3479.

[18] Luo M,Shen D,Zhou X,et al. MicroRNA-497 is a potential prognostic marker in human cervical cancer and functions as a tumor suppressor by targeting the insulin-like growth factor 1 receptor [J]. Surgery,2013,153(6):836-847.

[19] Wang S,Li H,Wang J,et al. Expression of microRNA-497 and its prognostic significance in human breast cancer [J]. Diagn Pathol,2013,8(1):172.

[20] Zhao WY,Wang Y,An ZJ,et al. Downregulation of miR-497 promotes tumor growth and angiogenesis by targeting HDGF in non-small cell lung cancer [J]. Biochem Biophys Res Commun,2013,435(3):466-471.

[21] Guo ST,Jiang CC,Wang GP,et al. MicroRNA-497 targets insulin-like growth factor 1 receptor and has a tumour suppressive role in human colorectal cancer [J]. Oncogene,2013,32(15):1910-1920.

[22] Wang L,Li B,Li L,et al. MicroRNA-497 suppresses proliferation and induces apoptosis in prostate cancer cells [J]. Asian Pac J Cancer Prev,2013,14(6):3499-3502.

[23] Zhang QQ,Xu H,Huang MB,et al. MicroRNA-195 plays a tumor-suppressor role in human glioblastoma cells by targeting signaling pathways involved in cellular proliferation and invasion [J]. Neuro Oncol,2012,14(3):278-287.

[24] Soon PS,Tacon LJ,Gill AJ,et al. miR-195 and miR-483-5p Identified as Predictors of Poor Prognosis in Adrenocortical Cancer [J]. Clin Cancer Res,2009,15(24):7684-7692.

[25] 林晨,陈锐,拉莱·苏祖克,等.微小RNA-101在子宫颈鳞癌组织中的表达及其意义[J].中华妇产科杂志,2011, 46(9):699-700.

[26] Bartel DP. MicroRNAs:genomics,biogenesis,mechanism,and function [J]. Cell,2004,116(2):281-297.

(收稿日期:2014-07-10 本文编辑:程 铭)

猜你喜欢

基因簇宫颈癌宫颈
中老年女性的宫颈癌预防
预防宫颈癌,筛查怎么做
冬瓜高通量转录组测序及分析
怀孕后宫颈管短怎么办
这几种“宫颈糜烂”需要治疗
HPV感染——“宫颈的感冒”
Hepsin及HMGB-1在宫颈癌组织中的表达与侵袭性相关性分析
E-cadherin、Ezrin在宫颈癌组织中的表达及临床意义
肠球菌万古霉素耐药基因簇遗传特性
海洋稀有放线菌 Salinispora arenicola CNP193 基因组新颖PKS 和NRPS基因簇的发掘