胆汁中胆固醇升高通过影响CCK- 1R再分布抑制胆囊收缩
2014-11-27徐协群何小东
杨 阳,曲 强,刘 卫,洪 涛,徐协群,何小东
(中国医学科学院 北京协和医学院 北京协和医院 基本外科, 北京 100730)
胆汁中胆固醇升高通过影响CCK- 1R再分布抑制胆囊收缩
杨 阳,曲 强*,刘 卫,洪 涛,徐协群,何小东
(中国医学科学院 北京协和医学院 北京协和医院 基本外科, 北京 100730)
目的分析胆汁总胆固醇含量与胆囊收缩功能的关系,并探讨其可能的机制。方法从2013年3月至2014年1月收集73例在北京协和医院基本外科行胆系手术的胆囊结石患者(结石组)和非胆囊结石患者(非结石组)胆汁,测定胆汁中总胆固醇(TC)和总胆汁酸(TBA)含量。对胆囊结石患者术前行胆囊功能试验。用免疫组化方法测定胆囊黏膜和肌层中I型胆囊收缩素受体(CCK- 1R)和细胞膜结构蛋白小窝蛋白- 3(Cav- 3)的表达。用免疫荧光法定位二者在胆囊黏膜和肌层中的共表达。结果胆囊结石患者胆汁中TC及TBA含量显著高于非结石患者(Plt;0.05)。胆囊收缩功能较差的患者胆汁中TC含量明显高于收缩功能较好的患者(Plt;0.05)。结石组胆囊黏膜中Cav- 3的表达量明显高于非结石组(Plt;0.05)。在结石组中CCK- 1R和Cav- 3在胆囊黏膜和肌层中均有明显共表达,而在非结石组则无明显的共表达现象。结论胆汁中TC含量升高可抑制胆囊收缩功能,其机制与胆囊黏膜和肌层中过多的Cav- 3和CCK- 1R结合进而影响CCK功能有关。
胆囊;胆固醇;胆囊收缩素受体;小窝蛋白- 3;胆汁
胆囊结石目前已成为影响人类健康的多发病。胆囊结石中约85%为胆固醇结石,其形成机制目前仍不清楚[1]。近年来发现,胆囊收缩功能的减弱以及紊乱可能在胆囊结石的形成过程中起着重要作用[2],而胆囊结石胆汁成分的改变可能是影响胆囊收缩功能的直接因素。
I型胆囊收缩素受体(cholecystokinin- 1 receptor, CCK- 1R)广泛分布于胆囊平滑肌和黏膜细胞,通过与其配体胆囊收缩素(cholecystokinin, CCK)结合,引起胆囊收缩[3- 4]。小窝(caveolae)是细胞膜上的陷窝样结构,是众多信号分子传导的部位。小窝蛋白- 3(caveolin- 3, Cav- 3)是小窝内的重要骨架蛋白,在G蛋白信号传导中发挥着重要的作用[5]。分离胆囊结石患者胆囊平滑肌细胞,检测发现细胞膜上胆固醇含量升高,Cav- 3蛋白表达升高,同时CCK与CCK- 1R亲和力下降,导致平滑肌收缩功能减弱[6]。将胆汁总胆固醇(total cholesterol, TC)测定与胆囊收缩功能结合进行分析,同时在组织及细胞水平观察其对CCK- 1R与Cav- 3表达影响,目前尚无报道。
本研究测定胆囊结石患者和非结石患者胆汁中TC含量,分析其与胆囊收缩功能的关系,进一步探讨影响胆囊收缩的机制。
1 材料与方法
1.1 临床资料
从2013年3月至2014年1月,选择57例在北京协和医院基本外科接受治疗的胆囊结石患者作为结石组(男14例,女43例,平均年龄为48.9±12.6岁),其中48例行腹腔镜胆囊切除术,9例行腹腔镜下胆囊切开取石术。所有结石均为胆固醇结石。同期连续选择16例行胆囊切除术的非胆囊结石患者(男6例,女10例,平均年龄为55.3±16.6岁,包括6例胆管囊肿、6例胆管癌及4例胆囊癌患者)作为非结石组。
所有入选病例近1个月内无胆系感染及其他急性炎性反应,无迷走神经切断手术史,近期无服用胆酸、非甾体抗炎药和降低胆固醇药物,术前凝血功能及肝肾功能正常。
本研究由北京协和医院伦理委员会批准实施。所有患者均已签署知情同意书。
1.2 胆汁采集及成分的测定
胆囊切除15 min内,抽取胆囊中胆汁5~10 mL,立即放置于冰盒中送至实验室。将胆汁3 000 r/min离心10 min。吸取1 mL上清液,用蒸馏水按照1∶10,1∶100,和1∶500比例依次稀释。20瓦特日光灯照射12 h。次日清晨于1∶10和1∶500稀释的胆汁中各取2 mL,应用自动生化仪(AU5821, Beckman Coulter Company, Germany)检测胆汁中TC和总胆汁酸(total bile acid, TBA)浓度[7]。
1.3 胆囊收缩功能的测定
根据中华医学会胆道学组推荐的胆囊体积测定方法,患者于清晨空腹应用B型超声仪(Philips Company, Netherland)测定空腹胆囊体积(V=0.52×长×宽×高),之后,立即进食55 g巧克力(含脂肪13.2 g),1 h之后再测定胆囊体积。胆囊收缩分数(ejection fraction, EF)=(空腹胆囊体积-脂餐1 h后胆囊体积)/空腹胆囊体积×100%[8]。以EF=30%为分界,EF≥30%时认为胆囊收缩功能良好,EFlt;30%时胆囊收缩减弱[9]。
1.4 免疫组化方法测定CCK- 1R和Cav- 3的表达
购买兔抗人CCK- 1R多克隆抗体(Abcam公司),小鼠Cav- 3单克隆抗体(BD Biosciences公司)和山羊抗兔/小鼠二抗工作液(中杉金桥公司)。对62例行胆囊切除石蜡标本(包括结石组48例和非结石组14例)切片,常规二甲苯脱蜡,乙醇水化,3% H2O2阻断内源性过氧化物酶。磷酸盐缓冲液(phosphate buffered saline, PBS)漂洗后置于pH 6.0枸橼酸钠溶液中,微波95 ℃修复5 min,降至室温后加1%胰蛋白酶修复10 min。PBS漂洗后分别滴加一抗(CCK- 1R,1∶1 000;Cav- 3,1∶300),室温下孵育2 h。PBS漂洗后滴加HRP标记的山羊抗兔/小鼠二抗工作液,室温下孵育1 h。PBS漂洗后应用DAB显色,并予以苏木素衬染,常规树脂封片。同时用PBS代替一抗作为空白对照。光学显微镜镜下观察并对每一标本的阳性染色强度和染色面积比例分别进行评分[10],其中染色强度按0分(阴性),1分(弱阳性),2分(中度阳性),3分(强阳性)记分,染色面积比例按0分(无),1分(lt;1%),2分(1%~10%),3分(11%~33%),4分(34%~66%),5分(gt;66%)记分。总分以二者相加,表示为0(阴性),+(1~5分),2+(6~8分)。
1.5免疫荧光标记方法观察CCK-1R和Cav-3的分布
对切片常规脱蜡、水化至抗原修复步骤同免疫组化操作。对同一标本同时滴加CCK- 1R和Cav- 3特异性抗体(均为1∶100),采用PBS代替一抗作为阴性对照。4 ℃孵育过夜。PBS漂洗后,分别滴加1∶100 TRITC标记的山羊抗兔IgG和1∶100 FITC标记的山羊抗小鼠IgG,室温避光孵育2 h。应用DAPI染核,抗淬灭封片剂封片。共聚焦荧光显微镜下观察。
1.6 统计学分析
2 结果
2.1 胆汁TC的含量
结石组患者胆汁TC含量显著高于非结石组(Plt;0.001)(图1A)。结石组中胆汁TBA含量显著高于非结石组(Plt;0.001)(图1B)。
*Plt;0.001 compared with non-gallstone group图1 结石组和非结石组胆汁中TC(A)和TBA(B)含量比较Fig 1 Comparison of the bile TC (A) and TBA (B) content between gallstone and non-gall-
2.2 胆汁TC含量对胆囊收缩功能的影响
在23例手术前行胆囊功能试验的胆囊结石患者中,收缩功能较好者(EF≥30%)共12例,其胆汁TC含量为9.36±5.43 mmol/L,显著低于收缩功能较差者(EFlt;30%)的15.27±4.74 mmol/L(Plt;0.05)。
2.3 CCK- 1R和Cav- 3在胆囊中的表达
2.3.1 在结石组和非结石组患者胆囊的黏膜上皮细胞和肌层平滑肌细胞中均有CCK- 1R和Cav- 3表达(图 2)。
2.3.2 Cav- 3在结石组黏膜上皮细胞中的表达量明显高于其在非结石组中的表达量(Plt;0.05)(表1)。
2.4 CCK- 1R和Cav- 3在胆囊中的分布
Cav- 3在结石组黏膜和肌层中均有较强表达,而在非结石组肌层中表达较弱,在黏膜中几乎无表达。CCK- 1R在两组胆囊黏膜和平滑肌中均有表达。在结石组中可见CCK- 1R和Cav- 3共分布于胆囊黏膜和肌层组织,而在非结石组中则较少见到二者的共分布情况(图3)。
表1 CCK- 1R和Cav- 3在结石组和非结石组中的表达Table 1 The expression of CCK- 1R and Cav- 3 in gallstone and non-gallstone group
*Plt;0.05 compared with non-gallstone group.
A.positive staining of CCK- 1R in the mucosa; B.positive staining of CCK- 1R in the smooth muscle; D.positive staining of Cav- 3 in the mucosa; E.positive staining of Cav- 3 in the smooth muscle; Camp;F.negative control(n=62,×400,×800, respectively)
图2CCK-1R和Cav-3在胆囊黏膜和肌层中的表达
Fig2TheexpressionofCCK-1RandCav-3ingallbladdermucosaandthesmoothmuscle
Aamp;C.obvious co-localization in both gallbladder mucosa and the smooth muscle in gallstone group was observed; E.no obvious co-localization in gallbladder mucosa in non-gallstone group was observed; G.less co-localization in the smooth muscle in non-gallstone group was observed; B,D,F,H.the respective image under optical microscope; blue,cell nucleus(×600,×1200, respectively)
图3共聚焦显微镜观察CCK-1R(红色)和Cav-3(绿色)在胆囊黏膜和肌层中的共分布情况
Fig3Theco-localizationofCCK-1R(red)andCav-3(green)ingallbladdermucosaandthesmoothmuscleobservedusingconfocalmicroscope
3 讨论
胆汁中胆固醇过饱和进而形成结晶析出是胆固醇结石形成的基础。目前发现肝细胞胆固醇过量分泌,胆汁中胆固醇成核结晶加速,胆囊收缩功能受损等多种因素可以促进胆囊结石形成[11]。胆囊内胆汁主要由水,胆固醇,胆酸和磷脂组成,其中胆固醇的可溶性决定于其与胆酸和磷脂浓度的平衡[12]。在这三者构成的浓度三角范围内,即使在高浓度胆酸和较低浓度磷脂的三角左侧和上部区域,高胆固醇浓度仍是结晶析出的主要因素。本研究中,笔者发现结石患者胆汁中胆固醇和总胆汁酸含量均明显高于非结石患者,提示结石胆囊胆汁中高浓度胆汁酸的存在可能是机体平衡高浓度胆固醇的需要。此发现进一步验证了体外关于胆汁中脂质平衡的三角理论,对胆囊结石患者胆囊胆汁各成分含量构成有了新的认识。
高浓度胆固醇抑制胆囊平滑肌收缩,胆囊收缩功能的下降也是胆囊结石形成的重要因素[13]。本研究发现,在胆囊收缩功能较差胆囊结石患者胆汁中,胆固醇含量显著高于胆囊收缩功能较好的患者,提示胆汁内高浓度胆固醇有可能直接或通过影响胆囊收缩间接促进了胆囊结石的形成。
有研究表明,CCK通过激活细胞膜上与G蛋白相耦联的CCK- 1R,促使CCK- 1R-G蛋白复合体移位至细胞膜特定的小窝区域内进行信号传导[14]。CCK- 1R-G蛋白复合体与小窝区域的细胞骨架蛋白Cav- 3结合后可导致Cav- 3的磷酸化,促进CCK- 1R的再循环,使更多的CCK- 1R从小窝内重新分布到细胞膜上,从而参与信号传导并维持CCK- 1R在细胞内的再循环[15]。在过量的胆固醇环境中,小窝区域Cav- 3的表达升高[6]。细胞膜胆固醇升高抑制Cav- 3的磷酸化,使CCK- 1R再循环至细胞膜上的过程受阻,胆囊平滑肌细胞收缩减弱[14]。本研究发现胆囊黏膜细胞中Cav- 3在结石组中的表达量明显高于其在非结石组中的表达量,提示胆汁中高胆固醇促进Cav- 3的表达。免疫荧光定位发现CCK- 1R和Cav- 3在黏膜和肌层细胞中均有表达,但在结石组中二者明显共表达于细胞膜同一区域,而在非结石组中仅见二者的分散表达。这一发现在细胞水平提示Cav- 3和CCK- 1R在高胆固醇环境下结合增加,从形态学角度证实了过量Cav- 3和CCK- 1R结合在胆囊收缩功能通路上发挥重要作用。
[1] Stinton LM, Myers RP, Shaffer EA. Epidemiology of gallstones [J]. Gastroenterol Clin North Am, 2010, 39: 157- 169.
[2] Venneman NG, van Erpecum KJ. Pathogenesis of gallstones [J]. Gastroenterol Clin North Am, 2010, 39: 171- 183.
[3] Dufresne M, Seva C, Fourmy D. Cholecystokinin and gastrin receptors [J]. Physiol Rev, 2006, 86: 805- 847.
[4] Berna MJ, Jensen RT. Role of CCK/gastrin receptors in gastrointestinal/metabolic diseases and results of human studies using gastrin/CCK receptor agonists/antagonists in these diseases [J]. Curr Top Med Chem, 2007, 7: 1211- 1231.
[5] Krajewska WM, Maslowska I. Caveolins: structure and function in signal transduction [J]. Cell MolBiolLett, 2004, 9: 195- 220.
[6] Xiao ZL, Schmitz F, Pricolo VE,etal. Role of caveolae in the pathogenesis of cholesterol-induced gallbladder muscle hypomotility [J]. Am J Physiol Gastrointest Liver Physiol, 2007, 292: 1641- 1649.
[7] 张慧力, 张同琳. 胆囊胆固醇息肉与胆固醇结石的胆汁成分比较 [J]. 中国微创外科杂志, 2008, 8: 746- 751.
[8] Portincasa P, Colecchia A, Di Ciaula A,etal. Standards for diagnosis of gastrointestinal motility disorders [J]. Dig Liver Dis, 2000, 32: 160- 172.
[9] 许建平, 刘衍民, 简锋, 等. 腹腔镜与开腹保胆取石术治疗胆囊结石的对比研究 [J]. 中国微创外科杂志, 2009, 9: 148- 150.
[10] Rai R, Tewari M, Kumar M,etal. Expression profile of cholecystokinin type-A receptor in gallbladder cancer and gallstone disease [J]. Hepatobiliary Pancreat Dis Int, 2011, 10:408- 414.
[11] Di Ciaula A, Wang DQ, Bonfrate L,etal. Current views on genetics and epigenetics of cholesterol gallstone disease [J]. Cholesterol, 2013, 2013: Article ID 298421, 1- 10.
[12] Portincasa P, Moschetta A, Palasciano G. Cholesterol gallstone disease [J]. The Lancet, 2006, 368: 230- 239.
[13] Lavoie B, Nausch B, Zane EA,etal. Disruption of gallbladder smooth muscle function is an early feature in the development of cholesterol gallstone disease [J]. Neurogastroenterol Motil, 2012, 24: 313- 324.
[14] Cong P, Pricolo VE, Biancani P,etal. Effects of cholesterol on CCK- 1 receptors and caveolin- 3 proteins recycling in human gallbladder muscle [J]. Am J Physiol Gastrointest Liver Physiol, 2010, 299: 742- 750.
[15] Reddy MA, Li SL, Sahar S,etal. Key role of Src kinase in S100B-induced activation of the receptor for advanced glycation end products in vascular smooth muscle cells [J]. J Biol Chem, 2006, 281: 13685- 13693.
Increased bile cholesterol content inhibits gallbladder contraction by affecting the re-distribution of CCK- 1R
YANG Yang, QU Qiang*, LIU Wei, HONG Tao, XU Xie-qun, HE Xiao-dong
(Dept. of General Surgery, PUMC Hospital, PUMC amp; CAMS, Beijing 100730, China)
ObjectiveTo analyze the relationship between bile total cholesterol (TC) content and the contraction of the gallbladder, and to explore its possible mechanism.MethodsA total of 73 patients with or without gallstones, who underwent biliary surgery in the Department of General Surgery in PUMCH from March 2013 to January 2014, were selected and divided into gallstone group and non-gallstone group. The bile of all these patients was collected during the operation, and the content of the bile TC and total bile acid (TBA) was detected. The gallbladder contraction test in patients with gallstones was performed before the surgery. The expression of cholecystokinin-1 receptor (CCK- 1R) and caveolin- 3 (Cav- 3) in gallbladder mucosa and the smooth muscle in two groups was detected using immunohistochemistry staining method. The co-localization of CCK- 1R and Cav- 3 in gallbladder mucosa and the smooth muscle in two groups was also observed using immunofluorescence method.ResultsThe content of bile TC and TBA in patients with gallstones was significantly higher than that in patients without gallstones (Plt;0.05). The bile TC content in patients with a worse contraction of the gallbladder was significantly higher than that in patients with a better contraction of the gallbladder (Plt;0.05). The immunohistochemistry staining revealed that the expression of Cav- 3 in the gallbladder mucosa in gallstone group was significantly higher than that in non-gallstone group (Plt;0.05). The co-localization of CCK- 1R and Cav- 3 in gallstone groups was obvious in both gallbladder mucosa and the smooth muscle, while no obvious co- localization was observed in non-gallstone group.ConclusionsThe increased bile TC content can inhibit the contraction of the gallbladder, and the mechanism may be related to excess Cav- 3 binding with CCK- 1R, thus affecting the function of CCK.
gallbladder; cholesterol; cholecystokinin receptor; caveolin- 3; bile
2014- 04- 18
2014- 05- 16
*通信作者(correspondingauthor):qiangqu@hotmail.com
1001-6325(2014)07-0984-06
研究论文
R657.4+2
A