APP下载

ABCG2的基因多态性与痛风危险性的关系

2014-09-02李向宇周丹秋关明

上海医药 2014年15期
关键词:高尿酸血症痛风

李向宇 周丹秋 关明

摘 要 近年来,高尿酸血症和痛风的发病率呈逐年升高趋势,已引起人们的广泛重视。最近研究发现,尿酸盐转运体的基因变异与高尿酸血症和痛风的发生高度相关,在疾病的发病机制中起着重要的作用。本文介绍ABCG2的2个单核苷酸多态性Q141K和Q126X的功能以及与高尿酸血症和痛风发生的关系。

关键词 痛风 高尿酸血症 ABCG2

中图分类号:R589.7; R363.25 文献标识码:A 文章编号:1006-1533(2014)15-0040-04

Relationship between ABCG2 genetic polymorphism and risk of gout*

Li Xiangyu1**, Zhou Danqiu2, Guan Ming3

(1. Department of Laboratory Medicine, Huashan Hospital North, Fudan University, Shanghai 201907, China;

2. Department of Laboratory Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China;

3. Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China)

Abstract Hyperuricemia and gout incidence have been steadily increased year by year, which has attracted widespread attention. Recent studies have shown that the variation of the gene responsible for urate transporter is highly correlated with hyperuricemia and gout and plays a very important role in the pathogenesis of the diseases. This article focuses on the function of two single nucleotide polymorphism Q141K and Q126X in ABCG2 and their relationship with hyperuricemia and gout.

Key words gout; hyperuricemia; ABCG2

痛风是由嘌呤代谢紊乱造成血尿酸水平过高或(和)尿酸排泄减少所致尿酸盐结晶沉着于关节及其周围结缔组织而引起病损和炎症反应的一种疾病,其特征性的病理改变是尿酸盐沉积,病变主要发生在关节软骨、骨骺、滑膜、肌腱、血管较稀少的胶原纤维组织和肾脏等部位。随着饮食结构的变化、摄入动物蛋白及脂肪的增多,高尿酸血症和痛风的发病率有升高趋势。尤其是近年来我国人民由于生活水平提高和生活习惯改变,痛风发病率急剧升高并呈低龄化趋势[1]。一般认为10% ~ 35%的痛风患者有家族史。在痛风患者的家族成员中,无症状的高尿酸血症发生率为25% ~ 70%[2]。

尿酸在血液中的水平取决于2个因素。一是尿酸在肝脏中合成的速度。尿酸是嘌呤的代谢产物,尿酸水平既受控于机体的嘌呤合成量,也受控于从饮食中吸收的嘌呤量。二是尿酸自肾脏排泄的速度。尿酸排泄对血尿酸水平的影响最大,约有90%的高尿酸血症患者是由于尿酸排泄减少引起的。尿酸排泄障碍的最常见原因是尿酸盐转运体在肾脏的表达异常。尿酸盐转运体控制尿酸通过肾脏近曲小管,目前对原发性高尿酸血症和痛风相关的基因研究主要集中于肾脏尿酸盐转运系统[3]。尿酸的排泄是一组表达在肾近曲小管上的尿酸盐转运分子协同运作的结果。最近,数个独立的全基因组关联研究都显示,尿酸盐转运体的基因多态性与血尿酸水平升高和痛风相关 [4-6]。

三磷酸腺苷结合盒G超家族成员2(ATP-binding cassette subfamily G member 2, ABCG2)是一种三磷酸腺苷结合转运蛋白[7],在人的正常细胞和肿瘤组织中均有表达,具有抑制消化道吸收某些外源性物质以及参与形成血-脑、胎-血屏障等生理功能。ABCG2也是一种药物排出泵,是导致肿瘤多药耐药的重要机制之一[8]。最近的研究还显示,ABCG2也大量表达于肾近曲小管刷状缘膜上,负责尿酸的排泄,与高尿酸血症和痛风的发生也密切相关[3,9-10]。

目前认为,相比其他尿酸盐转运体(URAT1和GLUT9),ABCG2的基因变异种类最多,对血尿酸水平的影响最大[3,11-14]。除肾脏外,ABCG2同样也是尿酸排泄的肾脏外调节器,其除表达于肾近曲小管刷状缘膜上外,还大量表达于小肠上皮细胞的顶端膜和肝脏细胞中,负责尿酸在肾脏外的代谢[15]。

通过对ABCG2的基因序列分析发现,它有超过80个不同的单核苷酸多态性(single nucleotide polymorphism, SNP)位点。其中,421位点的C>A的SNP位于5号外显子,易导致谷氨酰胺残基被带正电荷的赖氨酸残基取代。这种SNP变异几乎在所有接受试验的人群中都能检测到,等位基因频率为0% ~ 35%(其中撒哈拉沙漠以北和以南地区的非洲人群以及非洲裔美洲人群的等位基因频率较低,而日本和中国人的等位基因频率较高)[16-20]。

对ABCG2的功能研究发现,纯合子Q141K变异的个体,其转运蛋白的表达明显较低,而杂合子则呈中等程度的表达[20]。基于此发现可以推测,Q141K变异的ABCG2的稳定性显著下降,而mRNA水平未显示有明显的变化。现有证据表明,ABCG2的Q141K变异体的降解是通过泛素为媒介的蛋白酶体介导的[21-25]。在体外试验中,当蛋白酶体介导的降解被MG132抑制时,Q141K变异体的水平可以恢复。Q141K变异并不干扰核苷酸结合区域和细胞内环的相互作用,但会在很大程度上影响蛋白和蛋白间的相互作用,而这种相互作用是ABCG2二聚化所不可或缺的。ABCG2中的2个氨基酸残基赖氨酸473和苯丙氨酸142在ABCG2的二聚化中起着关键性的作用[26]。Woodward等[9]进行了一项纳入14 783人的人群调查,将421位点C>A的SNP作为一个偶发的变异进行检测,结果发现与高血尿酸水平和痛风发生间存在着高度相关性(校准后的OR=1.68),且资料提示所有白种人痛风患者发病原因中至少有10%可归于421位点出现的C>A的SNP(Q141K变异)。

除Q141K变异外,4号外显子存在一个376位点的C>T的SNP,它以1个终止密码子替代了126位的谷氨酰胺,被命名为Q126X变异。Q126X变异是首先在日本人群中发现的,其等位基因频率为2.4%[27]。研究显示,Q126X变异可能对ABCG2的表达有较大影响,因为无法从变异的等位基因合成有活性的ABCG2。Q126X变异虽在日本人群中已被发现,但在白种人群和非洲裔美洲人群中却不存在[17,19,28]。

Matsuo等[29]报道,对Q141K和Q126X进行联合基因分型可作为重要的临床生物标志物。他们对705名日本男性痛风患者的发病年龄与基因分型进行统计和分析,同时以1 887名健康男性作对照。在对Q141K和Q126X进行联合基因分型的基础上再对ABCG2的功能进行检测,结果发现ABCG2功能严重失活者的痛风发病年龄较ABCG2功能正常者早6.5年。ABCG2功能严重失活者占痛风早期发病患者(<20岁)的88.2%。ABCG2功能严重失活会大大增加痛风早期发病的危险(OR=22.2)。基于这些发现,研究者得出这样的结论:ABCG2功能失活是痛风早期发病的主要原因。

目前,药物基因学被广泛用于预测药物治疗的疗效和副作用[30]。个体化医疗可以提高药物的疗效,同时提高治疗的安全性。事实上,一些涉及药物代谢的酶基因和转运体基因的数个基因多态性已被列入了个体化医疗的基因测试项目。痛风早期发病会给患者的生活质量带来负面影响并需终生服药,而早期筛查ABCG2的基因功能、早期介入干预有利于及时控制和管理疾病。ABCG2基因中Q141K和Q126X的SNP可用作高尿酸血症和痛风发生的临床生物标志物。

参考文献

阎胜利. 痛风的流行病学资料特点[J]. 山东医药, 2010, 50(43): 107.

Wilk JB, Djousse L, Boreeki I, et al. Segregation analysis of uric acid in the NHLBI family heart study [J]. Hum Genet, 2000, 106(3): 355-359.

Matsuo H, Takada T, Ichida K, et al. Common defects of ABCG2, a high-capacity urate exporter, cause gout. A function-based genetic analysis in a Japanese population [J]. Sci Transl Med, 2009, 1(5): 5-11.

Deghan A, K?ttgen A, Yang Q, et al. Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study [J]. Lancet, 2008, 372(9654): 1953-1961.

Kolz M, Johnson T, Sanna S, et al. Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations [J/OL]. PLoS Genet, 2009, 5(6): e1000504 [2013-07-25]. http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1000504.

Stark K, Reinhard W, Grassi M, et al. Common polymorphisms influencing serum uric acid levels contribute to susceptibility to gout, but not to coronary artery disease [J/OL]. PLoS One, 2009, 4(11): e7729 [2013-07-25]. http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0007729.

Giacomini KM, Huang SM, Tweedie DJ, et al. Membrane transporters in drug development: report from the FDA critical path initiative-sponsored workshop [J]. Nat Rev Drug Discov, 2010, 9(3): 215-236.

Doyle LA, Yang W, Abruzzo LV, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells [J]. Proc Natl Acad Sci USA, 1998, 95(26): 15665-15670.

Woodward O, K?ttgen A, Coresh J, et al. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout [J]. Proc Natl Acad Sci USA, 2009, 106(25): 10338-10342.

Zhang L, Spencer KL, Voruganti VS, et al. Association of functional polymorphism rs2231142 (Q141K) in the ABCG2 gene with serum uric acid and gout in 4 US populations: the PAGE study [J]. Am J Epidemiol, 2013, 177(9): 923-932.

Rizwan AN, Burckhardt G. Organic anion transporters of the SLC22 family: biopharmaceutical, physiological, and pathological roles [J]. Pharm Res, 2007, 24(3): 450-470.

van Aubel RA, Smeets PH, van den Heuvel JJ, et al. Human organic anion transporter MRP4 (ABCC4) is an efflux pump for the purine end metabolite urate with multiple allosteric substrate binding sites [J]. Am J Physio Renal Physiol, 2005, 288(2): F327-F333.

Huls M, Brown CD, Windass AS, et al. The breast cancer resistance protein transporter ABCG2 is expressed in the human kidney proximal tubule apical membrane [J]. Kidney Int, 2008, 73(2): 220-225.

Krishnamurthy P, Schuetz JD. Role of ABCG2/BCRP in biology and medicine [J]. Annu Rev Pharmacol Toxicol, 2006, 46: 381-410.

Woodward OM, K?ttgen A, K?ttgen M. ABCG transporters and disease [J]. FEBS J, 2011, 278(18): 3215-3225.

Ishikawa T, Tamura A, Saito H, et al. Pharmacogenomics of the human ABC transporter ABCG2: from functional evaluation to drug molecular design [J]. Naturwissenschaften, 2005, 92(10): 451-463.

Imai Y, Nakane M, Kage K, et al. C421A polymorphism in the human breast cancer resistance protein gene is associated with low expression of Q141K protein and low-level drug resistance [J]. Mol Cancer Ther, 2002, 1(8): 611-616.

Zamber CP, Lamba JK, Yasuda K, et al. Natural allelic variants of breast cancer resistance protein (BCRP) and their relationship to BCRP expression in human intestine [J]. Pharmacogenetics, 2003, 13(1): 19-28.

de Jong FA, Marsh S, Mathijssen RH, et al. ABCG2 pharmacogenetics: ethnic differences in allele frequency and assessment of influence on irinotecan disposition [J]. Clin Cancer Res, 2004, 10(17): 5889-5894.

Kobayashi D, Ieiri I, Hirota T, et al. Functional assessment of ABCG2 (BCRP) gene polymorphisms to protein expression in human placenta [J]. Drug Metab Dispos, 2005, 33(1): 94-101.

Tamura A, Wakabayashi K, Onishi Y, et al. Re-evaluation and functional classification of nonsynonymous single nucleotide polymorphisms of human ABC transporter ABCG2 [J]. Cancer Sci, 2007, 98(2): 231-239.

Nakagawa H, Tamura A, Wakabayashi K, et al. Ubiquitin-mediated proteasomal degradation of non-synonymous SNP variants of human ABC transporter ABCG2 [J]. Biochem J, 2008, 411(3): 623-631.

Furukawa T, Wakabayashi K, Tamura A, et al. Major SNP (Q141K) variant of human ABC transporter ABCG2 undergoes lysosomal and proteosomal degradations [J]. Pharm Res, 2009, 26(2): 469-479.

Wakabayashi-Nakao K, Tamura A, Furukawa T, et al. Quality control of human ABCG2 protein in the endoplasmeic reticulm: ubiquitination and proteasomal degradation [J]. Adv Drug Deliv Rev, 2009, 61(1): 66-72.

Nakagawa H, Toyoda Y, Wakabayashi-Nakao K, et al. Ubiquitin-mediated proteasomal degradation of ABC transporters: a new aspect of genetic polymorphisms and clinical impacts [J]. J Parm Sci, 2011, 100(9): 3602-3619.

Woodward OM, Tukaye DN, Cui J, et al. Gout-causing Q141K mutation in ABCG2 leads to instability of the nucleotide-binding domain and can be corrected with small molecules [J]. Proc Natl Acad Sci USA, 2013, 110(13): 5223-5228.

Honjo Y, Morisaki K, Huff LM, et al. Single-nucleotide polymorphism (SNP) analysis in the ABC half-transporter ABCG2 (MXR/BCRP/ABCP1) [J]. Cancer Biol Ther, 2002, 1(6): 696-702.

Itoda M, Saito Y, Shirao K, et al. Eight novel single nucleotide polymorphisms in ABCG2/BCRP in Japanese cancer patients administered irinotecan [J]. Drug Metab Pharmacokin, 2003, 18(3): 212-217.

Matsuo H, Ichida K, Takada T, et al. Common dysfunctional variants in ABCG2 are a major cause of early-onset gout [J/OL]. Sci Rep, 2013, 3: 2014 [2013-09-30]. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3684804/pdf/srep02014.pdf.

Ishikawa T, Ware J. Future Perspectives [M]//Ishikawa T, Kim RB, K?nig J. Pharmacogenomics of human drug transporters: clinical impacts. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013: 401-416.

(收稿日期:2014-01-23)

猜你喜欢

高尿酸血症痛风
痛风的治疗
痛风了,怎么办?
雏鹅痛风“三步五防”更有效
痛风:改善生活方式防复发
夏天,从第一次痛风开始预防
厄贝沙坦等治疗老年糖尿病高血压合并高尿酸血症患者的效果
中医药治疗高尿酸血症的作用机制研究进展
寇秋爱教授治疗痛风经验撷菁
高尿酸血症与缺血性脑卒中的相关性研究
非布司他治疗痛风及高尿酸血症的疗效及不良反应观察