0≤u(t)≤a, |u′(t)|≤d,t∈[0,1]。
由假设A3)得:
这样定理1的条件C3)满足。
/
[1] 张立新,葛渭高.带p-Laplacian算子的三阶微分方程边值问题三个正解的存在性[J].系统科学与数学,2011,31(7):837-844. ZHANG Lixin,GE Weigao.Existence of three positive solutions for third-order differential equations of boundary value problem withp-Laplacian[J].Journal of Systems Science and Mathematical Sciences,2011,31(7):837-844.
[2] 郭少聪,郭彦平,陈悦荣.带p-Laplacian算子三点边值问题拟对称正解的存在性[J].数学的实践与认识,2012,42(16):236-240. GUO Shaocong,GUO Yanping,CHEN Yuerong.The existence of pseudo-symmetric positive solutions for three-point boundary value problems withp-Laplacian[J].Mathematics in Practice and Theory,2012,42(16):236-240.
[3] FENG Hanying,GE Weigao.Existence of positions for m-point boundary-value problem with one-dimensionalp-Laplacian[J].Nonlinear Anal,2008,68:2017-2026.
[4] SUN Yongping.Existence of triple positive solutions for third-order three-point boundary value problem[J].J Comput Math Appl,2008,221:194-201.
[5] AVERY R I,PETERSON A C.Three positive fixed points of nonlinear operators on ordered Banach spaces[J].J Comput Math Appl,2001,42:313-322.
[6] AVERY R I.A generalization of the Leggett-Willims fixed pint theorem[J].Math Sci Res Hot-line,1998,2:9-14.
[7] ANDERSON D R.Multiple positive solutions for a three-point boundary value problem[J].Math Comput Modelling,1998,27(6):49-57.
[8] ANDERSON D R.Green's function for a third generalized right focal problem[J].J Math Anal Appl,2003,288(1):1-14.
[9] ANDERSON D R,AVERY R I.Multiple positive solutions to a third-order discrete focal boundary value problem[J].Comput Math Appl,2001,42(3/4/5):333-340.
[10] BAI Zhanbing,GUI Zhanji,GE Weigao.Multiple positive solutions for somep-Laplacian boundary value problems[J].Journal of Systems Science and Mathematical Sciences,2004,300:477-490.
[11] 许晓婕,费祥历.三阶非线性奇异边值问题正解的存在唯一性[J].系统科学与数学,2009,29(6):779-785. XU Xiaojie,FEI Xiangli.Existence and uniqueness of positive solutions for third-order nonlinear singular boundary value problem[J].J Sys Sci & Math Scis,2009,29(6):779-785.
[12] 孙忠民,赵增勤.三阶微分方程组边值问题常号解的存在性[J].系统科学与数学,2007,27(6):811-819 SUN Zhongmin,ZHAO Zengqin.The existence of constant-sing solutions of BVPs for third order differential systems[J].J Sys Sci & Math Scis,2007,21(6):811-819.
[13] 田元生,刘春根.三阶p-Laplacian方程三点奇异边值问题三个正解的存在性[J].应用数学学报,2008,31(6):1118-1127. TIAN Yuansheng,LIU Chungen.Three positive solutions of three-point singular boundary value problem for a class of third orderp-Laplacian equations[J].Acta Mathematicae Applicatae Sinica,2008,31(6):1118-1127.
[14] DU Zengji,GE Weigao,LIN Xiaojie.Existence of solutions for a class of third-order nonlinear boundary value problems[J].Journal of Mathematical Analysis and Applications,2004,294(1):104-112.
[15] YAO Qingliu,FENG Yuqiang.The existence of solutions for a third order two-point boundary value problem[J].Appl Math Lett,2002,15:227-232.
Existence of positive solutions for boundary value problem of third-order differential equations of withp-Laplacian
GUO Yanping, LI Chunjing, HAN Yingying
(School of Science,Hebei University of Science and Technology,Shijiazhuang Hebei 050018,China)
Many researches on the fields of different applied mathematics and physics can be attributed to the boundary value problem withp-Laplacian.So the research on this issue has important theoretical significance and application value.In this paper,we consider the existence of triple positive solutions for third-order differential equation boundary value problems withp-Laplacian
whereφp(s)=|s|p-2s,p>1.By using Avery-peterson's fixed point theorem,underfsatisfies cevtain growth conditions,we study the existence of at least three positive solutions for the above boundary value problem.
p-Laplacian; boundary value problem; Avery-Peterson's fixed point theorem
2014-04-16;
2014-09-02;责任编辑:张 军
国家自然科学基金(111371120);河北省自然科学基金(A2013208147)
郭彦平(1965-),男,河北张家口人,教授,博士,主要从事微分方程边值问题方面的研究。
E-mail:guoyanping65@sohu.com
1008-1542(2014)06-0524-05
10.7535/hbkd.2014yx05001
O175.8MSC(2010)主题分类34B05
A
郭彦平,李春景,韩迎迎.带p-Laplacian算子的三阶微分方程边值问题正解的存在性[J].河北科技大学学报,2014,35(6):524-528.
GUO Yanping,LI Chunjing,HAN Yingying.Existence of positive solutions for boundary value problem of third-order differential equations of withp-Laplacian[J].Journal of Hebei University of Science and Technology,2014,35(6):524-528.