APP下载

矩阵方程的约束Hermitian最小二乘解

2014-08-28王方圆许洲慧查秀秀

河北科技大学学报 2014年6期
关键词:教学部方圆聊城市

王方圆,李 莹,许洲慧,查秀秀

(1.聊城大学数学科学学院,山东聊城 252000;2.聊城市技师学院基础教学部,山东聊城 252000)

王方圆1,李 莹1,许洲慧2,查秀秀1

(1.聊城大学数学科学学院,山东聊城 252000;2.聊城市技师学院基础教学部,山东聊城 252000)

矩阵函数;矩阵方程;秩;惯性指数;最小二乘解

1 预备知识

引理2[10]设A∈Cm×n,B∈Cm×k,C∈Cl×n。则:

由引理2可得到以下秩公式:

引理3[11]设A∈Cm×n,B∈Cm×k,C∈Cl×n。则有:

引理4[12]设A∈Cm×n,B∈Cm×k,C∈Cl×n。若R(AQ)=R(A),R((PA)*)=R(A*)。则:

b)[12]设A,B,C,D,P与Q使得矩阵表达式D-CP+AQ+B有意义。则有:

引理7[13]给定A∈Cm×n,B∈Cn×p与C∈Cm×p,设X∈Cn×n为变量矩阵,假设矩阵方程AXB=C相容,则下列各项等价。

a)矩阵方程AXB=C存在Hermitian解;

c)矩阵方程AYB=C与B*YA*=C*有公共解Y。

X=A+B(A+)*+FAV+V*FA,

其中V∈Cn×n为任意矩阵。

2 约束Hermitian最小二乘解

由文献[6]知A1XB1=C1的Hermitian最小二乘解的通解表达式为

(1)

(2)

式(2)是一个关于3个变量U1,U2与U3的线性Hermitian矩阵函数,将其表示为

(3)

(4)

对式(3)应用引理9可得:

(5)

(6)

(7)

证明在式(4)的条件下,对式(3)应用引理9得:

(8)

利用矩阵的初等变换可得:

(9)

(10)

利用引理2—引理6及引理9计算得:

(11)

r(A1)-r(B1)=r(M2)-2r(A1)-2r(B1),

(12)

2r(A1)-r(B1)=r(N1)-3r(A1)-r(B1),

(13)

r(A1)-2r(B1)=r(N2)-2r(A1)-3r(B1),

(14)

(15)

将式(9)—式(15)分别代入式(8)即得式(5)—式(7)。

利用以上秩与惯性指数极值与引理1即得如下结论。

定理2矩阵A1,B1,C1,A2,C2如定理1所述,记M1,M2,N1,N2,M,G,N为定理1所定义。则

i+(N)=2r(A1)+2r(B1)+m2。

i-(N)=2r(A1)+2r(B1)+m2。

特别的,在定理2中,当A2=Im2时有如下推论。

推论1矩阵A1,B1,C1如定理1所述。M3,N3如下定义:

则: a)A1XB1=C1存在满足X

b)A1XB1=C1存在满足X>C2的Hermitian最小二乘解当且仅当i-(N3)=2r(A1)+2r(B1)+m2;

c)A1XB1=C1存在满足X≤C2的Hermitian最小二乘解当且仅当r(M3)=i+(N3)-m2;

d)A1XB1=C1存在满足X≥C2的Hermitian最小二乘解当且仅当r(M3)=i-(N3)-m2。

如果在定理1中有A2=Im2,C2=0,则可得到矩阵方程A1XB1=C1存在(半)正(负)定Hermitian最小二乘解的等价条件如下。

推论2矩阵A1,B1,C1如定理1所述。M4,N4如下定义:

则: a)方程A1XB1=C1存在负定Hermitian最小二乘解当且仅当i+(N4)=2r(A1)+2r(B1)+m2;

b)方程A1XB1=C1存在正定Hermitian最小二乘解当且仅当i-(N4)=2r(A1)+2r(B1)+m2;

c)方程A1XB1=C1存在半负定Hermitian最小二乘解当且仅当r(M4)=i+(N4)-m2;

d)方程A1XB1=C1存在半正定Hermitian最小二乘解当且仅当r(M4)=i-(N4)-m2。

/

[1] XIE X.A new matrix in control theory[A].IEEE CDC[C].[S.l.]:[s.n.],1985.539-541.

[2] 张国山,张庆灵,赵植武.矩阵束A+BKC的最小秩及其应用[J].控制与决策,1998,13(sup):508-511. ZHANG Guoshan,ZHANG Qingling,ZHAO Zhiwu.The minimum rank of the matrix pencilA+BKCand its applications[J].Control and Decision,1998,13(sup):508-511.

[3] 朱建栋.通过输出反馈使广义系统变为无脉冲模系统的一种新方法[J].山东大学学报(自然科学版),2001,36(3):247-250. ZHU Jiandong.A new method to make descriptor systems regular and impulsive-free by output feedback[J].Journal of Shandong University (Natural Sciences),2001,36(3):247-250.

[4] WANG D H,XIE Xukai.Elimination of impulsive modes by output feedback in descriptor systems[J].Control Theory and Applications,1995,12(3):371-376.

[5] HUA D,LANCASTER P.Linear matrix equations from an inverse problem of vibration theory[J].Linear Algebra and Its Applications,1996,246:31-47.

[6] LI Ying, GAO Yan,GUO Wenbin.A Hermitian least squares solution of the matrix equationAXB=Csubject to inequality restrictions[J].Computers and Mathematics with Applications,2012,64(6):1752-1760.

[7] TIAN Yongge,WANG Hongxing.Relations between least-squares and least-rank solutions of the matrix equationAXB=C[J].Applied Mathematics and Computation,2013,219(20):10293-10301.

[8] LIU Yonghui,TIAN Yongge,TAKANE Y.Ranks of Hermitian and skew-Hermition solutions to the matrix equationAXA*=B[J].Linear Algebra and Its Applications,2009,431(12):2359-2372.

[9] TIAN Y.Equalities and inequalities for inertias of Hermitian matrices with applications[J].Linear Algebra Apple,2010,433(1):263-296.

[10] MARSAGLIA G,STYAN G P H.Equalities and inequalities for ranks of matrices[J].Linear and Multilinear Algebra,1974(2):269-292.

[11] KHATSKEVICH V A,OSTROVSKII M I ,SHULMAN V S.Quadratic inequalities for Hilbert space operators[J].Integral Equations and Operator Theory,2007,59(1):19-34.

[12] TIAN Yongge.Rank equalities related to generalized inverses of matrices and their applications[J].Master Thesis,2000,30(3):245-256.

[13] TIAN Yongge.Maximization and minimization of the rank and inertia of the Hermitian matrix expressionA-BX-(BX)*with applications[J].Linear Algebra and Its Applications,2011,434(10):2109-2139.

[14] BJERHAMMAR A.Rectangular reciprocal matrices with special reference to geodetic calculations[J]. Bulletin Geodesique,1951,20(1):188-220.

[15] GROB J.Nonnegative-definite and positive-definite solution to matrix equationAXA*=B-revisited[J].Linear Algebra and Its Applications,2000,321(1/2/3):123-129.

WANG Fangyuan1, LI Ying1, XU Zhouhui2, CHA Xiuxiu1

(1.School of Mathematical Sciences,Liaocheng University,Liaocheng Shandong 252000,China;2.Department of Foundation Education,Technician College of Liaocheng City,Liaocheng Shandong 252000,China)

matrix function; matrix equation; rank; inertia; least-squares solution

2014-03-28;

2014-04-24;责任编辑:张 军

国家自然科学基金(11301247)

王方圆(1987-),女,河南许昌人,硕士研究生,主要从事线性系统理论方面的研究。

李 莹副教授。 E-mail:liyingld@163.com

1008-1542(2014)06-0529-09

10.7535/hbkd.2014yx06007

O151.21MSC(2010)主题分类15A60

A

猜你喜欢

教学部方圆聊城市
十月打了霜
大禹治水
撞不周山
聊城市召开2021年度部门联合“双随机、一公开”监管联席会议
山东省聊城市老年大学校歌
聊城市夏秋季大气VOCs特征及OFP分析
公共教学部
Factors Affecting Memory Efficiency in EFL
On the Importance of English Vocabulary
On Memory Theory in English Vocabulary Learning