高中数学变式探究教学案例
2014-08-15韩翠翠
韩翠翠
摘 要: 直线和圆锥曲线位置关系的相关问题是考查学生数学综合能力的主要载体,对相关问题的变式探究也是培养学生数学基本思想方法、强化数学能力的重要途径.2013年全国高中数学联赛的一道关于抛物线的试题是研究与直线与抛物线位置关系有关的度量问题及轨迹问题的好素材.
关键词: 高中数学 抛物线 变式探究 基本不等式
在我国传统的数学教学中十分重视变式教学,正是因为应用了变式教学,我国中学生在基础知识和基本技能方面远远超过了西方学生,可以说变式教学是具有中国特色的教学方法,但是我国学生在解答开放性问题及动手能力方面逊于西方学生.我国的专家学者对变式教学的理论研究比较多,实践研究比较相对较少,对理论的研究大都停留在感性知识上,甚至在有些理论的认识上还模棱两可,还有就是很少有高中教师能在教学实践中深层次地剖析变式教学,因此,对变式教学的实践探究就有非常重要的理论和实践意义.下面笔者列举数学教学案例就对变式教学的实践谈谈体会.例如,与直线和圆锥曲线位置关系有关的问题是各级竞赛及高考的热点问题,同时也是考查学生数学综合能力的主要载体,对相关问题的变式、探究是培养学生数学基本思想方法、形成数学能力的重要途径.本文主要结合2013年全国数学联赛的一道试题重点研究与直线和抛物线位置关系有关的度量问题及轨迹问题,其基本的思想方法可以类比到直线与其他二次曲线的问题中.
【评析】本题是2013年全国高中数学联赛一试的一道填空题,题目内容简洁清晰,以学生比较熟悉的抛物线及向量的数量积运算为背景,主要考查学生综合运用坐标法和函数与方程的思想进行分析问题、解决问题的能力,题目本身容易上手,解题思路自然流畅.通过深入思考发现,本题内涵丰富,对相关问题的变式分析更是培养学生探究能力的一个很好的素材.
变式3:求坐标原点在直线AB上的投影的轨迹.
总之,变式探究学习模式在课堂教学实施中,就是在科学的教育理论指导下,借鉴科学家发明创造的思想方法和数学问题,通过创设一定的情境帮助学生主动投入多角度的解题教学中,对数学问题作多层面探究.首先,引导学生运用数学基本策略和方法发现和提出问题,并解决问题.其次,引导学生合作交流,开发学生潜能;让学生在教师的指导下,理清知识结构,寻找科学有效的方法,对数学问题进行独立探究和合作探究,归纳综合,拓展创新,深层探究,发展学生的创新能力.
参考文献:
[1]钱正艳.引导学生创新思维,拓宽学生的思维空间[J].湖南教育,2010(12).
[2]喻德生.数学课堂教学方法因素的分析[J].数学通报,2011(11).
[3]陶维林编著.现代化的教学手段优化课堂教学[M].北京:清华大学出版社,2009.