滇西含绿柱石伟晶岩锆石U-Pb年代学及其地质意义
2014-08-02李再会唐发伟林仕良邹光富
李再会, 唐发伟, 林仕良, 丛 峰, 谢 韬, 邹光富
成都地质矿产研究所,成都 610081
滇西含绿柱石伟晶岩锆石U-Pb年代学及其地质意义
李再会, 唐发伟, 林仕良, 丛 峰, 谢 韬, 邹光富
成都地质矿产研究所,成都 610081
对腾冲-梁河地区含绿柱石伟晶岩进行了锆石LA-ICP-MS U-Pb定年和地球化学分析。结果表明:含绿柱石伟晶岩的形成时代为(48.1±0.8)Ma(MSWD=4.0),锆石形态特征和微量元素特征显示,伟晶岩锆石受到热液的改造。含绿柱石伟晶岩与55~52 Ma的白云母花岗岩在主量元素、微量元素及稀土元素方面表现出极其相似的特征,为钙碱性系列,过铝质花岗岩,表现出强烈的Eu亏损,δEu为0.074~0.083,相对富集HREE,(La/Yb)N=1.61~1.92,总体表现出典型的“M”型稀土元素四分组效应。含绿柱石伟晶岩是白云母花岗岩浆高度演化的结果,伟晶岩结晶温度为581 ℃,代表了印度-欧亚板块碰撞导致地壳加厚的构造背景。
含绿柱石伟晶岩;地球化学;锆石U-Pb年代;稀土四分组效应;滇西
0 引言
西南三江地区作为青藏高原的东延部分,不仅和喜马拉雅造山带一样经历了新特提斯洋俯冲、印度板块和欧亚板块俯冲碰撞与隆升等一系列大规模的构造运动,而且以其独特的构造部位,被认为是一个吸收新生代印度-欧亚大陆碰撞变形的调节带[1]。作为一个包括元古宙至第四纪岩浆岩的火成岩省,腾冲花岗岩带包含丰富的岩石类型,其中含稀有元素伟晶岩是重要的岩石类型之一[2-3]。伟晶岩作为一种独立的矿床类型,不但在矿床学上占有不可忽视的地位,而且在示踪大地构造演化的过程中具有重要意义[4]。因此,通过对腾冲-梁河地区含绿柱石伟晶岩锆石LA-ICP-MS定年、地球化学研究,探讨伟晶岩的形成时代和成因,旨在为腾冲-梁河地块新生代构造背景研究提供一些新的证据。
1 地质背景及岩石学特征
西南三江作为典型的复合造山地区,完好地记录了超级大陆裂解→增生→碰撞的完整演化历史和大陆动力学过程[5]。其位于云南西南部的腾冲-保山地区,包括腾冲地块、保山地块和其间的高黎贡山变质带,属于缅泰马微陆块的北部[6]。在三叠纪期间,腾冲-梁河地块(简称腾-梁地块)处于东部古特提斯主洋盆,即昌宁-孟连古特提斯洋封闭时的前陆部位。在新特提斯洋扩张时期,其间又形成属于班公湖-怒江洋盆的东延分支海槽。该海槽在早侏罗世闭合,并导致腾冲地块和保山地块的碰撞,其间形成高黎贡碰撞构造带[6]。以沪水-龙陵-瑞丽大断裂为界,腾冲-保山地块出露于地表的基底岩石类型有明显的差别。东南部以公养河群为代表,时代可能是早古生代,其上为上寒武统-中生界碎屑岩、碳酸盐岩和玄武岩构成的沉积盖层[7];西北部以高黎贡山群为代表,混合岩化显著,时代可能是新元古代[8],上部主要为弱变形的石炭系-三叠系碳酸盐岩与碎屑岩沉积,古近系-第四系陆相火山岩、河湖相碎屑沉积等构成的沉积盖层。该地区出露大量的中生代-新生代花岗岩类和混合岩化花岗岩。新生代火山作用强烈(图1)。研究区位于腾-梁地块内。
高黎贡山地区伟晶岩分布广泛[2-3],宝石级的矿物(绿柱石、碧玺、锂电气石、黄玉等)主要赋存在伟晶岩中[9]。 腾冲-梁河地区含绿柱石电气石白云母伟晶岩呈脉状侵入白云母花岗岩中(图2a)。白云母花岗岩的年龄为52~56 Ma[10-11]。白云母花岗岩为中粒花岗结构,矿物组成(体积分数)石英为25%~30%,钾长石为35%~40%,斜长石为30%,黑云母为3%,白云母为1%,副矿物为磷灰石、钛铁矿、电气石、石榴子石和锆石等。电气石白云母伟晶岩脉宽十几厘米至1 m,长数百米。电气石白云母伟晶岩与白云母花岗岩围岩界线呈突变。电气石白云母伟晶岩主要矿物为石英、长石、白云母和少量电气石。伟晶岩中见绿柱石(图2b),其晶体长3~4 cm。
图1 西南三江大地构造位置图(a)及腾冲-梁河地区地质图(b)Fig. 1 Tectonic sketch map(a) and geological sketch map of Tengchong-Lianghe area(b),weastern Yunnan
图2 电气石白云母伟晶岩脉露头及伟晶岩中绿柱石晶体Fig. 2 Photographs showing field outcrop of pegmatite and beryl crystal in pegmatite from the Tengchong-Lianghe area
2 分析方法
主量元素化学分析在国土资源部西南矿产资源监督检测中心用X荧光光谱仪射线(仪器型号为AXIOS)完成,分析精度优于5%;微量元素在中国科学院地球化学研究所矿床地球化学国家重点实验室用ICP-MS(仪器型号为ELEMENT)完成,分析精度优于5%。
样品的锆石分离是在河北省区域地质调查研究所完成。锆石按常规方法分选, 最后在双目镜下挑纯锆。将锆石样品和标样一起放在玻璃板上用环氧树脂固定,抛光到暴露出锆石的中心面,用反光和透光照相,然后镀金,拍摄阴极发光(CL)图像。阴极发光照相在西北大学大陆动力学国家重点实验室的扫描电镜+Gatan阴极发光MonoCL3上完成。LA-ICP-MS锆石U-Pb测定在中国地质大学(武汉)地质过程与矿产资源国家重点实验室完成。使用的 ICP-MS 为 Elan 6100 DRC,激光剥蚀系统为德国 Lamda Physik公司的GeoLas 200 M深紫外(DUV) 193 nm ArF准分子激光剥蚀系统。激光束斑直径为 32 μm,实验中采用He作为剥蚀物质的载气。U-Th-Pb同位素组成分析以标准锆石91500作为外标,NIST610作为内标,外标校正方法为每隔4~5个样品分析点测一次标准样品,保证标准和样品的仪器条件一致。详细的仪器操作条件和数据处理方法见文献[12-14]。对分析数据的离线处理采用软件ICPMSSDataCal完成[12-13]。锆石谐和图用ISOPLOT程序[15]获得。用实测204Pb进行普通铅校正[16]。因样品年轻,故采用206Pb/238U年龄。单个点的同位素比值和年龄误差均为1σ,206Pb/238U年龄的加权平均值误差为95%的置信度。
3 锆石U-Pb年龄结果
含电气石白云母伟晶岩脉中锆石呈无色透明,为自形柱状-长柱状,颗粒长径为100~200 μm,长宽比为1∶1~2∶1,显示岩浆成因的特征。阴极发光图像(CL)显示,几乎不显示韵律环带,锆石内部呈多孔状、斑杂状,阴极射线发光弱,不均匀(图3),显示热液蚀变锆石的特点[17]。锆石稀土元素配分模式总体表现为左倾式(富集重稀土)的岩浆型特征[17](图4),δCe为弱的正异常到弱的负异常(0.61~2.70),具明显的Eu负异常(除3颗锆石具δEu弱正异常)(表1,图4)。锆石的U和Th质量分数变化范围较大,分别为(2 128~26 220)×10-6和(44.1~2 644.0)×10-6,其Th/U值为0.01~0.10(表2)。11个分析点都沿着谐和线或附近分布(图5a),可得到一致性U-Pb谐和年龄。11颗锆石给出的206Pb/238U年龄范围为46.7~53.1 Ma,加权平均年龄为(48.1±0.8)Ma(MSWD=4.0)(图5b),代表含绿柱石电气石伟晶岩锆石的结晶年龄。
表1 绿柱石电气石伟晶岩锆石LA-ICP-MS原位微量元素分析结果
注: “-”表示低于检测限。
表2 腾冲-梁河地区绿柱石电气石伟晶岩锆石LA-ICP-MS U-Pb测年结果
图3 伟晶岩(D5061)锆石的CL图像、分析点位Fig. 3 CL images of zircons with the analysed spots of pegmatite (D5061)from Tengchong-Lianghe area
图4 伟晶岩锆石的稀土元素球粒陨石标准化配分模式[18]Fig. 4 Chondrite-normalized REE patterns for the zircons of pegmatite from Tengchong-Lianghe area[18]
4 地球化学
4.1 主量元素
伟晶岩的w(SiO2)为77.21%~77.37%,w(Al2O3)为12.73%~12.80%(表3),全碱(w(K2O+Na2O))为8.01%~8.34%,w(TiO2)为0.06%~0.07%,w(P2O5)为0.005%,w(CaO)为0.41%~0.42%,在花岗岩TAS图(图6a)中,落入亚碱性系列花岗岩区。A/CNK为1.11~1.15,为过铝质花岗岩[20](图6b)。53~52 Ma的白云母花岗岩与伟晶岩化学成分极为相似,w(SiO2)为75.71%~76.96%,w(Al2O3)为12.50%~12.98%,全碱含量(w(K2O+Na2O))为8.71%~8.92%,w(TiO2)为0.04%~0.07%,w(P2O5)为0.008%~0.010%,w(CaO)为0.07%~0.40%,A/CNK为1.02~1.13,为准铝质-过铝质花岗岩。相反,58~61 Ma的钾长花岗岩与伟晶岩化学组成上有较大的差异,w(SiO2)为64.99%~72.05%,w(Al2O3)为14.17%~16.42%,全碱(w(K2O+Na2O))为5.87%~8.64%,w(TiO2)为0.24%~0.59%,w(P2O5)为0.052%~0.200%,w(CaO)为0.27%~4.06%。从主量元素组成方面,显示伟晶岩与白云母花岗岩有密切的关系。
4.2 微量元素
伟晶岩w(∑REE)为(84.5~95.0)×10-6,表现出强烈的Eu亏损,δEu为0.074~0.083,相对富集HREE,(La/Yb)N=1.61~1.92[21],总体表现出典型的“M”型稀土元素四分组效应(图7a)。白云母花岗岩的w(∑REE)为(93.9~175.9)×10-6,稀土配分模式与伟晶岩很相似,表现出强烈的Eu亏损,δEu为0.036~0.090,相对富集HREE,(La/Yb)N=1.01~1.55,表现出“M”型稀土元素四分组效应。伟晶岩经历了明显的分离结晶作用,REE总量逐渐降低;而钾长花岗岩则表现出右倾的LREE富集型模式,(La/Yb)N=6.20~22.50,δEu为0.45~0.48。微量元素原始地幔标准图(图7b)中,伟晶岩与白云母花岗岩表现出相似的特征,亏损Ba、Sr、P、Ti,富集Rb、Th、K、Nb、Ta。钾长花岗岩则表现出亏损Nb、Ta。
图5 含绿柱石伟晶岩锆石的LA-ICP-MS U-Pb年龄谐和图Fig .5 Zircon LA-ICP-MS U-Pb concordia diagram of pegmatite from Tengchong-Lianghe area
a图:Pc.苦橄玄武岩;B.玄武岩;O1.玄武安山岩;O2.安山岩;O3.英安岩;R.流纹岩;S1.粗面玄武岩;S2.玄武质粗面安山岩;S3.粗面安山岩;T.粗面岩、粗面英安岩;F.副长石岩;U1.碱玄岩、碧玄岩;U2.响岩质碱玄岩;U3.碱玄质响岩;Ph.响岩;Ir.Irvine 分界线,其上方为碱性,下方为亚碱性。b图:第1组.伟晶岩;第2组.钾长花岗岩;第3组.白云母花岗岩。图6 腾冲-梁河伟晶岩及花岗岩TAS图[19](a)及A/CNK-A/CN图解(b)Fig. 6 Total alkali vs.SiO2 variation diagram[19](a)and A/CNK-A/CN diagram(b) for the pegmatites and granites
钾长花岗岩D4160D4310D4179D4142花岗伟晶岩D4289-1D4289-2D4289-3白云母花岗岩D4289LLS8LLS10SiO268.9668.6664.9972.0577.3377.3777.2176.9676.0375.71TiO20.240.450.590.250.070.060.060.070.040.06Al2O316.4215.0315.8814.1712.7512.8012.7312.5012.9412.98
表3(续)
注:样品LLS8、LLS10数据引自文献[11];主量元素质量分数单位为%,微量元素质量分数单位为10-6。
图7 腾冲-梁河地区伟晶岩稀土元素[18](a)和微量元素(b)配分模式图[22]Fig. 7 Chondrite normalized REE patterns[18](a) and primitive normalized spider diagrams[22](b) for pegmatite from Tengchong-Lianghe area
5 讨论
5.1 伟晶岩中锆石成因
锆石可在上地幔高温高压条件到近地表热液条件的广泛范围内形成,具有高度稳定性[17]。已有的研究表明:岩浆锆石Th/U值较高,大于0.1(一般为0.5~1.5);变质锆石Th/U值低,小于0.2[23-26]。但近年来,发现在热液条件下锆石可发生蚀变作用,甚至可从热液中结晶形成热液锆石(hydrothermal zircon)[17, 27-30]。 热液改造的和热液锆石可用于确定流体加入事件及水/岩相互作用的特点,因此,其微量元素,特别是稀土元素组成特点成为探讨成岩或成矿地球化学过程的重要示踪[17]。本文花岗伟晶岩锆石具有典型的岩浆锆石形态(完整的自形柱状),具有明显的δEu正异常,锆石稀土元素球粒陨石标准化型式为左倾式(富集重稀土) 的岩浆型锆石。锆石却具有极低的Th/U值(为0.01~0.10),和多孔状构造,锆石稀土元素组成Ce正异常降低或消失,显示出热液锆石的特点。(Sm/La)N-La及Ce/Ce*-(Sm/La)N图解[29](图8)上,伟晶岩锆石分布于岩浆锆石与热液锆石的过渡区,这些特征显示了热液改造锆石的特点。
5.2 伟晶岩的成因
伟晶岩通常被认为形成于晚期岩浆和早期热液过程的过渡阶段[31]。H2O在伟晶岩的形成过程中起着关键的作用,伟晶岩浆中H2O的质量分数往往超过10%[32]。也有人认为过冷却在伟晶岩形成中起很重要的作用[33-34]。伟晶岩结晶过程中常常伴随着热液流体的阶段性演化[35],不同阶段形成的流体成分不尽相同。通过对伟晶岩中包裹体的研究,绿柱石是在早期热液阶段中结晶沉淀,温度条件是520~620 ℃,压力是3.5~5.0 kPa[35-37]。根据岩浆岩中锆石的Ti质量分数,通过公式:T(℃)zircon=(5 080±30)/[(6.01±0.03)-lg(w(Ti))]- 273,可以计算岩浆结晶温度[38]。对本文伟晶岩锆石温度计算(表1),伟晶岩平均结晶温度为581 ℃,为早期热液阶段[35-37],表明本文伟晶岩中绿柱石是在热液阶段的早期沉淀的,而且温度相当高。研究表明,在H2O饱和的酸性熔体中熔体不混溶过程对含Be矿物的形成具有重要作用[39],在演化的岩浆和熔体不混溶阶段形成的富含H2O的伟晶岩岩浆中,Be的浓集程度可达到1 000倍以上。
图8 含绿柱石伟晶岩中锆石(Sm/La)N-w(La)(a)及Ce/Ce*-(Sm/La)N(b)图解(底图据文献[29])Fig. 8 Discrimination plots for magmatic and hydrothermal zircon(base map modified after reference[29])
腾冲-梁河地区新生代岩浆作用广泛,并具有多期的特点,根据已有的年代学资料,包括66~58 Ma的钾长花岗岩[10, 40-41]、55~52 Ma的白云母花岗岩[10-11]、41~43 Ma的二长花岗岩[11, 42]和24 Ma的花岗岩[43]。显然,含绿柱石伟晶岩与41~43 Ma和24 Ma的岩浆作用无关。前文已经论述,含绿柱石伟晶岩与52~55 Ma的白云母花岗岩在主量元素、微量元素、稀土元素组成和配分模式极为相似,而与 58~61 Ma的钾长花岗岩有较大的差别,说明伟晶岩是55~52 Ma的白云母花岗岩浆高度演化的产物。白云母花岗岩的εNd(t)为-7.9~-3.7[44],εHf(t)为-12.35~-4.5[10],说明其来源于地壳的部分熔融。
5.3 伟晶岩形成的大地构造背景
Cerny等[45-46]将富含(Li、Rb、Cs 、Be、Ga、Sn)<(Nb、Ta、 B、 P、 F )等元素的伟晶岩称为LCT型伟晶岩。这种LCT型伟晶岩通常与同造山、造山晚期过铝质S型花岗岩密切相关[45, 47];与 Li-Be-Na-Cs 矿床相关的伟晶岩,以过铝质、富含B、 Be、Li、 P 、碱质(Na、K),贫Fe、 Mg、 Ca以及矿物( 如磷灰石)显示强烈的REE“四分组效应”为特征[48]。这意味着它很可能是由沉积的泥质岩深熔形成。而泥质岩,尤其是与蒸发岩有关的黏土岩类,是最富集电气石的,可提供大量的B[49-50]以及Na、 K、Li、 Cl、 F、P、Fe、 Mn等组分[51-52]。过铝质花岗岩主要位于2个大陆岩石圈汇聚使地壳加厚的部位[53],即大陆碰撞地壳加厚区。LCT型伟晶岩是典型的过铝质岩浆体系分异演化的产物,因此,可以合理地推断腾冲-梁河地区含稀有金属伟晶岩的形成与大陆碰撞构造背景有密切关系。腾冲-梁河地区伟晶岩的形成时间为48.1 Ma,与印度-欧亚板块碰撞事件相吻合。约65 Ma,印度与欧亚板块开始碰撞[54-55],引起地壳加厚。加厚地壳部分熔融形成55~52 Ma的S型白云母花岗岩。随着岩浆的不断分离结晶,残余岩浆中水和挥发分含量不断增加,岩浆黏度大大降低,岩浆流动性增大[32],伟晶岩浆沿着裂隙向上流动,形成了伟晶岩脉。伟晶岩的形成时代也间接证明了印度与欧亚板块在48 Ma以前就发生了碰撞。
6 结论
1)锆石LA-ICP-MS U-Pb同位素定年结果表明,腾冲-梁河地区含绿柱石伟晶岩的形成年龄为(48.1±0.8)Ma(MSWD=4.0),锆石形态特征及元素特征显示,这些锆石受到热液改造。
2)含绿柱石伟晶岩与白云母花岗岩在主量元素、微量元素及稀土元素方面表现出极其相似的特征,为钙碱性系列,过铝质花岗岩,表现出强烈的Eu亏损,δEu为0.074~0.083,相对富集HREE,(La/Yb)N=1.61~1.92,总体表现出典型的“M”型稀土元素四分组效应。
3)腾冲-梁河地区含绿柱石伟晶岩是白云母花岗岩浆高度演化的残余岩浆产物,伟晶岩结晶温度为581 ℃。伟晶岩代表了印度-欧亚板块碰撞导致地壳加厚的构造背景。
[1] Dewey J F,Shackleton,Robert M,et al. The Tectonic Evolution of the Tibetan Plateau[J]. Philosophical Transactions of the Royal Society of London, Series A: Mathematical and Physical Sciences,1988,327:379-413.
[2] 柏万灵.滇西高黎贡山地区宝石伟晶岩[J]. 矿产与地质, 1994, 42 (8):282-296. Bo Wanling. Gem Pegmatites in the Gaoligongshan Area[J]. Mineral Resources and Geology,1994, 42 (8):282-296.
[3] 高子英,吕伯西,段建中,等.滇西花岗伟晶岩[J].云南地质,1993:12(4):367-372. Gao Ziying,Lü Boxi,Duan Jianzhong,et al. Granitic Pegmatites in West Yunnan[J]. Yunnan Geology,1993,12(4):367-372.
[4] 王登红,邹天人,徐志刚,等.伟晶岩矿床示踪造山过程的研究进展[J].地球科学进展, 2004,19(4):614-620. Wang Denghong,Zou Tianren,Xu Zhigang,et al. Advance in the Study of Using Pegmatite Deposits as the Tracer of Orogenic Process[J]. Advance in Earth Sciences,2004,19(4):614-620.
[5] 邓军,杨立强,王长明.三江特提斯复合造山与成矿作用研究进展[J].岩石学报, 2011,27(9):2501-2509. Deng Jun,Yang Liqiang, Wang Changming.Research Advances of Superimposed Orogenesis and Metallogenesis in the Sanjiang Tethys[J]. Acta Petrologica Sinica, 2011,27(9):2501-2509.
[6] 钟大赉.川滇西部古特提斯造山带[M].北京:科学出版社, 1998:1-231. Zhong Dalai. Paleo-Tethyan Orogenic Beltin the Western Parts of the Sichuan and Yunnan Provinces[M]. Beijing:Science Press, 1998: 1-231.
[7] Chen Fukun,Li Xianghui,Wang Xiuli,et al. Zircon Age and Nd-Hf Isotopic Composition of the Yunnan Tethyan Belt, Southwestern China[J]. International Journal of Earth Sciences, 2007, 96(6): 1179-1194.
[8] 李再会, 林仕良,丛峰,等. 滇西高黎贡山群变质岩的锆石年龄及其构造意义[J]. 岩石学报, 2012,28(5):1524-1541. Li Zaihui, Lin Shiliang, Cong Feng,et al. U-Pb Ages of Zircon from Metamorphic Rocks of the Gaoligongshan Group in Western Yunnan and Its Tectonic Significance[J]. Acta Petrologica Sinica, 2012,28(5):1524-1541.
[9] 孙克祥. 赋存于云南前寒武系中的宝石伟晶岩[J]. 云南地质, 1993,12(1):92-100. Sun Kexiang .Gem-Bearing Pegmatite in Pre-Cambrian Series of Yunnan[J] .Yunnan Geology,1993,12(1):92-100.
[10] Xu Yigang,Yang Qijun,Lan Jiangbo,et al.Temporal-Spatial Distribution and Tectonic Implications of the Batholiths in the Gaoligong-Tengliang-Yingjiang Area, Western Yunnan: Constraints from Zircon U-Pb Ages and Hf Isotopes[J]. Journal of Asian Earth Sciences, 2012, 53:151-175.
[11] 董方浏, 侯增谦, 高永丰,等.滇西腾冲新生代花岗岩:成因类型与构造意义[J].岩石学报, 2006,22(4):927-937. Dong Fangliu, Hou Zengqian, Gao Yongfeng,et al.Cenozoic Granitoid in Tengchong,Western Yunnan:Genesis Type and Implication for Tectonics[J]. Acta Petrologica Sinica, 2006,22(4):927-937.
[12] Liu Yongsheng,Hu Zhaochu, Gao Shan, et al. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS Without Applying an Internal Standard[J].Chemical Geology, 2008,257(1/2): 34-43.
[13] Liu Yongsheng, Gao Shan, Hu Zhaochu, et al. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths[J]. Journal of Petrology, 2010, 51(1/2): 537-571.
[14] Yuan Honglin, Gao Shan, Liu Xiaoming, et al.Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J]. Geostandards and Geoanalytical Research, 2004,28(3): 353-370.
[15] Ludwig K. User’s Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel[J]. Berkeley Geochronology Center Special Publication, 2003,4(9): 1-71.
[16] Andersen T. Correction of Common Lead in U-Pb Analyses that Do Not Report204Pb[J]. Chemical Geology, 2002,192(1/2): 59-79.
[17] Zhao Zhenhua, Bao Zhiwei, Qiao Yulou. A Peculiar Composite M- and W-Type REE Tetrad Effect: Evidence from the Shuiquangou Alkaline Syenite Complex, Hebei Province, China[J]. Chinese Science Bulletin,2010,55(24):2684-2696.
[18] Sun S S,McDonough W F. Chemical and Isotopic Systematics of Oceanic Basalts; Implications for Mantle Composition and Processes[J]. Geological Society Special Publications, 1989,42: 313-345.
[19] Le Maitre R W, Streckeisen A, Zanettin B,et al. Igneous Rocks:A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks[M]. Cambridge: Cambridge University Press,2002.
[20] Maniar P D,Piccoli P M. Tectonic Discrimination of Granitoids[J]. Geological Society of America Bulletin, 1989,101(5): 635-643.
[21] McDonough W F,Sun S S. The Composition of the Earth[J]. Chemical Geology, 1995,120(3/4): 223-253.
[22] McDonough W F, Sun S S, Ringwood A E,et al. Potassium, Rubidium, and Cesium in the Earth and Moon and the Evolution of the Mantle of the Earth[J]. Geochimica et Cosmochimica Acta, 1992,56(3): 1001-1012.
[23] Hacker B R , Ratschbacher L,Webb L,et al. U/Pb Zircon Ages Constrain the Architecture of the Ultrahigh-Pressure Qinling-Dabie Orogen, China[J]. Earth and Planetary Science Letters, 1998,161(1/2/3/4): 215-230.
[24] Keay S,Steele D, Compston W. Identifying Granite Sources by SHRIMP U-Pb Zircon Geochronology: An Application to the Lachlan Foldbelt[J]. Contributions to Mineralogy and Petrology, 1999,137(4): 323-341.
[25] Robb L J, Armstrong R A , Waters D J. The History of Granulite-Facies Metamorphism and Crustal Growth from Single Zircon U-Pb Geochronology: Namaqualand, South Africa[J]. Journal of Petrology, 1999,40(12): 1747-1770.
[26] 陈道公, 李彬贤,夏群科,等.变质岩中锆石U-Pb计时问题评述:兼论大别造山带锆石定年[J]. 岩石学报, 2001,17(1):129-138. Chen Daogong, Li Binxian,Xia Qunke,et al. An Evaluation of Zircon U-Pb Dating for Metamorphic Rocks and Comments on Zircon Ages of Dabie Orogen[J]. Acta Petrologica Sinica,2001, 17(1):129-138.
[27] Fu Bin, Mernagh T P, Kita N T,et al. Distinguishing Magmatic Zircon from Hydrothermal Zircon: A Case Study from the Gidginbung Sigh-Sulphidation Au-Ag-(Cu) Deposit, SE Australia[J]. Chemical Geology, 2009, 259(3/4): 131-142.
[28] Geisler T, Schaltegger U, Tomaschek F. Re-Quilibration of Zircon in Aqueous Fluids and Melts[J]. Elements, 2007,3(1): 43-50.
[29] Hoskin P W O. Trace-Element Composition of Hydrothermal Zircon and the Alteration of Hadean Zircon from the Jack Hills, Australia[J]. Geochimica et Cosmochimica Acta, 2005,69(3): 63-648.
[30] Kerrich R, King R. Hydrothermal Zircon and Baddedeleyyite in Val d’Or Archean Mesothermal Gold Deposits: Characteristics, Compositions and Fluid-inclusion Properties, with Implications for Timing of Primary Gold Mineralization[J]. Can J Earth Sci, 1993, 30: 2334-352.
[31] Lottermoser B G,Lu J. Petrogenesis of Rare-Element Pegmatites in the Olary Block, South Australia:Part 1:Mineralogy and Chemical Evolution[J]. Mineralogy and Petrology, 1997,59(1): 1-19.
[32] Thomas R, Davidson P. Water in Granite and Pegmatite-Forming Melts[J]. Ore Geology Reviews, 2012,46: 32-46.
[33] Nabelek P I , Whittington A G , Sirbescu M L C. The Role of H2O in Rapid Emplacement and Crystallization of Granite Pegmatites: Resolving the Paradox of Large Crystals in Highly Undercooled Melts[J]. Contributions to Mineralogy and Petrology, 2009,160(3): 313-325.
[34] Sirbescu M L, Hartwick E, Student J. Rapid Crys-tallization of the Animikie Red Ace Pegmatite, Florence County, Northeastern Wisconsin: Inclusion Microthermometry and Conductive-Cooling Modeling[J]. Contributions to Mineralogy and Petrology, 2008,156(3): 289-305.
[35] Lu J,Lottermoser B G. Petrogenesis of Rare-Element Pegmatites in the Olary Block, South Australia:Part 2:Fluid Inclusion Study[J]. Mineralogy and Petrology, 1997,59(1): 21-41.
[36] Peretyazhko I. Conditions of Pocket Formation in the Oktyabrskaya Tourmaline-Rich Gem Pegmatite (the Malkhan Field, Central Transbaikalia, Russia)[J]. Chemical Geology, 2004,210(1/2/3/4): 91-111.
[37] Beurlen H , da Silva M R R , de Castro C. Fluid Inclusion Microthermometry in Be-Ta-(Li-Sn)-Bearing Pegmatites from the Borborema Province, Northeast Brazil[J]. Chemical Geology, 2001,173(1/2/3): 107-123.
[38] Watson E, Wark D, Thomas J. Crystallization Thermometers for Zircon and Rutile[J].Contributions to Mineralogy and Petrology,2006, 15(14): 413-433.
[39] Thomas R, Webster J D, Davidson P. Be-Daughter Minerals in Fluid and Melt Inclusions: Implications for the Enrichment of Be in Granite-Pegmatite Systems[J]. Contributions to Mineralogy and Petrology, 2010,161(3): 483-495.
[40] 丛峰, 林仕良,唐红峰,等. 滇西腾冲-梁河地区花岗岩锆石稀土元素组成和U-Pb同位素年龄[J]. 吉林大学学报:地球科学版, 2010,40(3): 573-580. Cong Feng, Lin Shiliang, Tang Hongfeng,et al. Rare Earth Element Geochemistry and U-Pb Age of Zircons from Granites in Tengchong-Lianghe Area, Western Yunnan[J]. Journal of Jilin University:Earth Science Edition, 2010,40(3): 573-580.
[41] 谢韬,林仕良,丛峰,等. 滇西梁河地区钾长花岗岩锆石LA-ICP-MS U-Pb定年及其地质意义[J]. 大地构造与成矿学, 2010,34(3): 419-428. Xie Tao, Lin Shiliang, Cong Feng,et al. LA-ICP-MS Zircon U-Pb Dating for K-Feldspar Granites in Lianghe Region, Western Yunnan and Its Geological Significance[J]. Geotectonica et Metallogenia, 2010,34(3): 419-428.
[42] 李再会, 王立全, 林仕良,等. 滇西高黎贡剪切带内花岗质糜棱岩的锆石U-Pb年龄及构造意义[J] .地质通报, 2012,31(8):1287-1295. Li Zaihui, Wang Liquan, Lin Shiliang, et al. Zircon U-Pb Age and Its Tectonic Significance of Granitic Mylonite from the Gaoligong Shear Zone, Western Yunnan Province[J]. Geological Bulletin of China, 2012,31(8):1287-1295.
[43] 尹福光,张虎,黄勇,等. 泛亚铁路滇西大理至瑞丽段基础地质综合调查进展[J]. 地质通报, 2012,31(2/3):218-226. Yin Fuguang, Zhang Hu,Huang Yong ,et al.Advances in the Basic Geological Survey Along Dali-Ruili Section of Fanya Railway,West Yunnan Province[J]. Geological Bulletin of China, 2012,31(2/3):218-226.
[44] 杨启军, 徐义刚,黄小龙,等. 滇西腾冲-梁河地区花岗岩的年代学、地球化学及其构造意义[J]. 岩石学报, 2009,25(5):1092-1104. Yang Qijun, Xu Yigang, Huang Xiaolong,et al. Geochronology and Geochemistry of Granites in the Tengliang Area, Western Yunnan:Tectonic Implication[J] .Acta Petrologica Sinica,2009,25(5):1092-1104.
[45] Cerny P, Goad B E,Hawthorne F C,et al. Fractionation Trends of the Nb- and Ta-Bearing Oxide Minerals in the Greer Lake Pegmatitic Granite and Its Pegmatite Aureole, Southeastern Manitoba[J]. American Mineralogist, 1986,71(3/4): 501-517.
[46] Cerny P, Ercit T S. The Classification of Granitic Pegmatites Revisited[J]. The Canadian Mineralogist, 2005,43(6): 2005-2026.
[47] Williams A E,McKibben M A. A Brine Interface in the Salton Sea Geothermal System, California: Fluid Geochemical and Isotopic Characteristics[J]. Geochimica et Cosmochimica Acta, 1989,53(8): 1905-1920.
[48] 张辉, 刘丛强. 新疆阿尔泰可可托海3号伟晶岩脉磷灰石矿物中稀土元素“四分组效应”及其意义[J]. 地球化学, 2001,30(4):323-334. Zhang Hui,Liu Congqiang. Tetrad Effect of REE in Apatites from Pegmatite No 3,Altay,Xinjiang and Its Implications[J] .Geochimica,2001,30(4):323-334.
[49] Wu Y, Zheng Y. Genesis of Zircon and Its Con-straints on Interpretation of U-Pb Age[J]. Chinese Science Bulletin, 2004,49(15): 1554-1569.
[50] Grew E S. Borosilicates (Exclusive of Tourmaline) and Boron in Rock-Forming Minerals in Metamorphic Environments[J]. Reviews in Mineralogy and Geochemistry, 1996,33(1):387-502.
[51] Leeman W P,Sisson V B. Geochemistry of Boron and Its Implications for Crustal and Mantle Processes[J]. Reviews in Mineralogy and Geochemistry, 1996,33(1): 645-707.
[52] Slack J F , Palmer M R, Stevens B P J. Boron Isotope Evidence for the Involvement of Non-Marine Evaporites in the Origin of the Broken Hill Ore Deposit[J]. Nature, 1989, 342: 913-916.
[53] Barbarin B. A Review of the Relationships Between Granitoid Types, Their Origins and Their Geodynamic Environments[J]. Lithos, 1999,46(3): 605-626.
[54] Mo Xuanxue,Niu Yaoling,Dong Guochen ,et al. Contribution of Syncollisional Felsic Magmatism to Continental Crust Growth: A Case Study of the Paleogene Linzizong Volcanic Succession in Southern Tibet[J]. Chemical Geology, 2008, 250(1/2/3/4): 49-67.
[55] Rowley D B. Age of Initiation of Collision Between India and Asia: A Review of Stratigraphic Data[J]. Earth and Planetary Science Letters, 1996,145(1/2/3/4): 1-13.
Zircon LA-ICPMS U-Pb Geochronology of the Beryl-Bearing Pegmatite and Its Geological Significance,Western Yunnan,Southwest China
Li Zaihui,Tang Fawei,Lin Shiliang,Cong Feng,Xie Tao,Zou Guangfu
ChengduInstituteofGeologyandMineralResources,Chengdu610081,China
Zircon LA-ICP-MS U-Pb dating and geochemical analyses were carried out for the beryl-bearing pegmatite of Tengchong-Lianghe area, western Yunnan. Dating results revealed that the beryl-bearing pegmatite were formed at (48.1±0.8) Ma (MSWD=4.0). Zircon morphology and trace element feature indicate that the zircons suffered from hydrothermal alteration. The beryl-bearing pegmatite shows similar characteristics with respect to major elements, trace elements and rare elements with muscovite granite which formed during 55-52 Ma. They are sub-alkaline series, peraluminous granite with strongly Eu depletion, relatively enriched HREE with (La/Yb)N=1.61-1.92 and showing typical M-type of REE tetrad effect. The genesis of beryl-bearing pegmatite is related to the evolution of muscovite granitoids and the crystallization temperature of beryl-bearing pegmatite is 581 ℃. It indicates the overthickened crust tectonic setting caused by India-Asia continental collision.
beryl-bearing pegmatite;geochemistry;zircon U-Pb dating;REE tetrad effect;western Yunnan
10.13278/j.cnki.jjuese.201402113.
2013-07-28
中国地质调查局地质大调查项目(1212010784007)
李再会(1967-),男,高级工程师,主要从事岩石学与区域地质研究,E-mail:lizaihui00@163.com
唐发伟(1979-),男,工程师,主要从事地球化学研究,E-mail:37205958@qq.com。
10.13278/j.cnki.jjuese.201402113
P597
A
李再会, 唐发伟, 林仕良,等.滇西含绿柱石伟晶岩锆石U-Pb年代学及其地质意义.吉林大学学报:地球科学版,2014,44(2):554-565.
Li Zaihui,Tang Fawei,Lin Shiliang,et al.Zircon LA-ICPMS U-Pb Geochronology of the Beryl-Bearing Pegmatite and Its Geological Significance,Western Yunnan,Southwest China.Journal of Jilin University:Earth Science Edition,2014,44(2):554-565.doi:10.13278/j.cnki.jjuese.201402113.