APP下载

一类非线性四阶积分边值问题正解的存在性

2014-07-19

关键词:边值南京航空航天大学充分条件

王 翔

(南京航空航天大学理学院,江苏南京 211100)

一类非线性四阶积分边值问题正解的存在性

王 翔

(南京航空航天大学理学院,江苏南京 211100)

研究了一类四阶积分边值问题正解的存在性问题,利用锥上不动点定理,建立了该问题在超线性和次线性条件下存在一个及两个正解的充分条件。

锥;积分边值问题;正解;不动点

带积分边值条件的常微分方程边值问题产生于应用数学和物理学等领域,例如,热传导、机械工程、地下水流、热弹性力学、等离子物理等问题可化为带积分边值条件的非局部边值问题。由于带积分边值条件的边值问题有其重要的研究背景与价值,关于带积分边值条件的边值问题解的存在性和多解性引起了众多的关注[1-6],并取得了不少成果。

文献[7]研究了如下四阶边值问题

正解的存在性,其中φ(t)∈C([0,1],[0,∞)),f(u,v)∈C([0,∞)×(-∞,0],[0,∞))。利用锥压缩与锥拉伸不动点定理,给出了该问题正解存在与多个正解存在的充分条件。

受到以上文献的启发,本文研究一类四阶积分边值问题

正解存在性。利用锥上不动点定理,建立该问题在超线性和次线性条件下存在一个及两个正解的充分条件。

1 预备知识与引理

假定:

(H1)f(t,x,y)∈C([0,1]×[0,∞)×(-∞,0],[0,∞)),φ(t)∈C([0,1],[0,∞))在[0,1]的任何子区间上φ(t)不恒等于0。

设X是Banach空间,K⊂X非空,并且满足:(1)对任意u,v≥0,任意x,y∈K,有ux+vy∈K;(2)若x∈K,-x∈K,有x=0,那么称K为X中的一个锥。

设K是E中的一个锥,记Kr={x∈K∶

2 主要结果

注 本文得到了不同与文献[5]中定理3存在多个正解的充分条件,是对其结论的完善(体现在定理1、推论1以及推论3中)。

3 应用举例

成立。根据推论1得问题至少有两个正解。

致谢感谢导师陈芳启教授的悉心指导和热情鼓励。

[1]B.Abdelkader.Second-Order boundary value problems with integral boundary conditions[J].Nonlinear Analysis,2009,70:365 -371.

[2]M.Q.Feng,D.H.Ji,W.G.Ge.Positive solutions for a class of boundary-value problem with integral boundary conditions in banach spaces[J].J.Comput.Appl.Math.,2008,222:351-363.

[3]陈东晓,陈应生.二阶微分方程积分边值问题正解的存在性[J].华侨大学学报,2013,34(5):586-590.

[4]宋文晶,高文杰.具积分边值条件四阶微分方程解的存在性[J].吉林大学学报,2013,51(4):545-550.

[5]邹黄辉,王全义.一类四阶微分方程积分边值问题正解的存在性[J].华侨大学学报,2011,32(6):699-704.

[6]陈应生,汪东树.非线性四阶两点积分边值问题正解的存在性[J].集美大学学报,2012,17(5):379-384.

[7]李永祥.四阶边值问题正解的存在性与多解性[J].应用数学学报,2003,26(1):109-116.

[8]郭大钧.非线性泛函分析[M].(第二版).济南:山东科学技术出版社,2003.

Existence of Positive Solutions for a Class of Nonlinear Fourth-Order Integral Boundary Value Problems

WANG Xiang
(College of Science,Nanjing University of Aeronautics and Astronautics,Nanjing 211100,China)

The existence of positive solutions for a classof nonlinear fourth-order integralboundary value problems is investigated in this paper.By using the fixed point theorem in cones,some sufficient conditions for theexistence of one and two positive solutions are obtained for this class of problems under the superlinear and sublinear cases.

cone,integral boundary value problem,positive solutions,fixed point theorem

O175

A

1007-4260(2014)03-0017-05

时间:2014-9-15 16:07 网络出版地址:http://www.cnki.net/kcms/doi/10.13757/j.cnki.cn34-1150/n.2014.03.006.html

2014-03-18

国家自然科学基金(11172125)和高等学校博士学科专项科研基金(20133218110025)资助。

王翔,男,安徽凤阳人,南京航空航天大学理学院硕士研究生,研究方向为非线性分析。

猜你喜欢

边值南京航空航天大学充分条件
南京航空航天大学机电学院
南京航空航天大学机电学院
一类带有Slit-strips型积分边值条件的分数阶微分方程及微分包含解的存在性
集合、充分条件与必要条件、量词
南京航空航天大学生物医学光子学实验室
振荡Robin混合边值齐次化问题
带有积分边值条件的两项分数阶微分方程正解的存在性
有限μM,D-正交指数函数系的一个充分条件
Neumann边值齐次化问题:W1,p强收敛估计
浅谈充分条件与必要条件