APP下载

基底核中腺苷A2A受体和多巴胺D2受体调节睡眠-觉醒作用机制

2014-04-04汪慧菁曲卫敏黄志力

世界睡眠医学杂志 2014年1期
关键词:腹侧苍白球纹状体

汪慧菁 曲卫敏 黄志力

·基础研究·

基底核中腺苷A2A受体和多巴胺D2受体调节睡眠-觉醒作用机制

汪慧菁 曲卫敏 黄志力

越来越多的研究关注基底核(basal ganglia,BG)对睡眠-觉醒的调节作用,其中纹状体和苍白球可能是控制睡眠和觉醒的关键结构。腺苷A2A受体与多巴胺D2受体在基底核中均高度共表达,特别是在纹状体。腺苷是目前为止发现的最强的内源性促眠物质之一,可通过激活A1和A2A受体诱导睡眠。而多巴胺D2受体对于觉醒的维持有着重要作用。这些研究成果均提示基底核中A2A受体和D2受体调节睡眠-觉醒,腺苷作用于兴奋性的A2A受体,增加伏隔核中抑制性GABA能神经元活性,抑制主要觉醒系统,促进睡眠;抑制性多巴胺D2受体系统则发挥了相反的作用。本文综述基底核中腺苷A2A受体和多巴胺D2受体调节睡眠-觉醒机制。

基底核;睡眠-觉醒;腺苷A2A受体;多巴胺D2受体

人们对睡眠的认识是一个漫长的过程。研究发现哺乳动物脑内存在着睡眠和觉醒二大调节系统。睡眠调节系统包括:下丘脑腹外侧视前区(Ventrolateral preoptic area,VLPO)神经丛、基底前脑及视前区GABA能神经元、基底神经节-大脑皮层-边缘系统、脑干和丘脑的GABA能神经元、以及中脑控制快动眼(Rapid eye movement,REM)睡眠发生和维持的神经元等。主要觉醒神经元则有:脑干网状结构、中缝核(Raphe nucleus,RN)的5-羟色胺能、蓝斑(Locus coeruleus,LC)的去甲肾上腺素能、导水管周围灰质的多巴胺能、脑桥-中脑乙酰胆碱能、基底前脑胆碱能和非胆碱能、下丘脑外侧Orexin 能及后部结节乳头核(Tuberomammillary nucleus,TMN)的组胺能神经元等。睡眠和觉醒是通过脑内多种神经递质和内源性睡眠促进物质共同作用、相互影响而实现,受昼夜节律和内环境稳态的调控。

近年来,越来越多的研究表明,基底核(Basal ganglia,BG)在整合睡眠-觉醒行为中发挥重要作用。基底核是前脑中最大的结构,由4个主要核团组成,包括纹状体、苍白球(Globus pallidus,GP)、丘脑底核(Subthalamic nucleus,STN)和黑质(Substantia nigra,SN),与皮层、丘脑、杏仁核,以及中脑多巴胺能神经元都有着密集的纤维连接。其中,腹侧纹状体的组成部分—伏隔核,参与了运动、习惯养成、以及奖赏成瘾行为。这些高级行为都依赖于觉醒,对我们生活有重大影响。因此,越来越多研究关注基底核在各种神经网络功能整合中的作用。

1 基底核神经元在睡眠-觉醒周期中的电生理特征及调节作用

尽管基底核神经元的电生理活动模式已经得到了广泛研究,但只有少数实验尝试在清醒动物上记录睡眠-觉醒状态时神经元的放电特征。研究提示:基底核中不同核团的神经元具有完全不同的放电模式。如纹状体的主要细胞类型中有棘神经元(Medium spiny neurons,MSN),觉醒时表现为不规则放电,伴有短暂的无规律去极化反应。在慢波睡眠时,MSN放电活跃,膜电位在超极化静止状态和去极化状态之间规律地波动变化[1]。与此相反,单细胞记录显示:苍白球神经元在觉醒以及快动眼睡眠时的活性最大,这些神经元在觉醒和快动眼睡眠时比在慢波睡眠时放电更快[2]。传统观点认为,多巴胺并未直接参与睡眠的生理调节。因为人们在自由活动的猫上,发现黑质和腹侧背盖区的多巴胺能神经元平均放电频率并不随着睡眠-觉醒周期变化而改变[3-4]。但是,最近的研究改变了这一观点。使用头部固定的未麻醉大鼠的单神经元记录发现,腹侧背盖区中的多巴胺能神经元在REM睡眠中表现出明显的簇放电[5]。多巴胺受体激动剂则能改变丘脑底核的神经元放电[6]。

参与构成基底核的 4个主要核团在睡眠-觉醒的调节中有着不同的作用。例如,特异性损毁外侧苍白球细胞胞体可导致大鼠失眠,总觉醒量急剧增加(45%),Non-REM(NREM)睡眠和觉醒呈现明显的片段化,包括睡眠时相转换增多,睡眠时相持续时间变短等[7]。外侧苍白球含有直接皮层投射神经元,因此有假说认为背侧纹状体-苍白球-皮层是背侧纹状体以及外侧苍白球调节睡眠-觉醒行为的可能通路,参与了调节睡眠-觉醒行为和皮层激活[8],其中尾状核神经投射至外侧苍白球,继而通过直接投射至大脑皮层。尾状核、伏隔核和苍白球

的损伤可导致大脑皮层脑电波普遍减慢,且在觉醒、REM睡眠和 NREM睡眠时,theta波减少,delta波增多。黑质神经元损失,也可使觉醒增加[7,9]。这些发现提示,从黑质到背侧纹状体的多巴胺能神经输入的缺失,可能是导致帕金森病人失眠的原因之一。

2 基底核腺苷受体与多巴胺受体对睡眠-觉醒的整合调节

基底核可能在睡眠-觉醒周期的调节上发挥着重要作用。腺苷A1受体或A2A受体分别与多巴胺D1受体或D2受体在基底核中呈现高表达。多巴胺D1受体在纹状体黑质神经元中与腺苷A1受体共存,A2A受体在基底核纹状体苍白球神经元中与 D2受体共表达。腺苷是目前发现的最强内源性促眠物质,可通过激活A1和A2A受体发挥促进睡眠[10-13]。腺苷通过作用于 A1受体,抑制纹状体周围觉醒相关细胞群,如布若卡氏区斜纹带的水平支、无名质[14-15]和下丘脑外侧的orexin神经元[16],从而诱导睡眠。A1受体介导的对睡眠觉醒调节作用呈现区域特异性。如激活结节乳头核的A1受体,可抑制组胺能系统,促进NREM睡眠[17]。相反,激活下丘脑外侧视前区的A1受体则促进觉醒[8]。大鼠全身给药或脑室内给予A1受体激动剂N6-Cyclopentyladenosine(CPA)可剂量依赖地增加 NREM睡眠时的脑电图慢波活动[19]。但如果仅将 A1受体激动剂 CPA灌流到小鼠的侧脑室则并不改变NREM和REM睡眠量[20]。这些结果均提示脑内不同区域对睡眠和觉醒的作用可能是相反的。A1受体在尾状核和苍白球中大量表达[21],解剖学和药理学证据显示激活 A1受体可抑制多巴胺与 D1受体的结合[22-23]。但纹状体中A1受体和D1受体对纹状体黑质神经元调节睡眠-觉醒周期的相互作用仍未阐明。如将A2A受体高选择性激动剂CGS21680,灌流到大鼠与基底前脑腹侧区域下方的蛛网膜下腔,可增加NREM和 REM 睡眠[20,24],同时引起伏隔核壳区和腹外侧视前区中c-Fos表达显著增加[25-26]。若向伏隔核壳区直接灌流A2A受体激动剂,可诱导NREM和REM睡眠,睡眠量相当于向蛛网膜下腔灌流 A2A受体激动剂时的3/4[26]。这些结果说明激活伏隔核内或附近的A2A受体,可以促进睡眠。

咖啡因是人们常用饮料咖啡和茶中含有的活性物质,能提神醒脑。研究发现,咖啡因与A1和A2A受体结合亲和力极为相近,且对这两种受体亚型有拮抗作用[27]。用A1和A2A受体基因敲除小鼠的实验揭示:咖啡因的觉醒作用是由A2A受体介导的,而不是A1受体[28]。

利用位点特异性基因操控技术,我们对基底核A2A受体的特殊作用进行了研究。用Cre-Lox技术条件性敲除小鼠的 A2A受体或大鼠脑部局部感染带有A2A受体的短发夹RNA结构的腺病毒,对该受体基因表达,发现选择性敲除伏隔核壳内的A2A受体导致咖啡因促觉醒作用消失,而选择性敲除伏隔核核区或基底核其他区域的 A2A受体则对咖啡因的促觉醒作用没有显著影响。此结果提示咖啡因的促觉醒作用部位在伏隔核壳区内的A2A受体[29]。A2A受体在整个纹状体大量表达,包括伏隔核壳区和核心区[30-31],因此,伏隔核壳区神经元上的A2A受体激动有助于抑制觉醒系统,促进睡眠。而咖啡因可对抗腺苷对觉醒系统的抑制作用,从而促进觉醒。研究发现,敲除多巴胺转运体可减少 NREM睡眠、增加觉醒,促进对咖啡因促觉醒作用超敏[32]。尽管A2A受体的激活可通过减少膜内Gi蛋白耦联来降低多巴胺对D2受体的亲和力并抑制cAMP生成[33],腺苷及其拮抗剂,如咖啡因,能在纹状体中通过A2A受体调节MSN活性,但并不依赖于D2受体[]。

长期以来,研究人员一直致力于阐明多巴胺在调节睡眠和觉醒中的作用。基于电解损伤猫中脑神经元的实验发现,黑质和腹侧背盖区中含多巴胺的神经元仅和行为觉醒与反应的维持有关,而与大脑皮层电觉醒无关[36]。在体微透析实验结合EEG记录的研究提示:内侧额叶前皮层和伏隔核中的胞外多巴胺水平在觉醒和 REM 睡眠时升高,而在NREM睡眠时则显著降低[37]。伏隔核中REM睡眠时的高水平多巴胺,提示多巴胺可引起觉醒而不依赖于运动。相反,有证据表明在 REM 睡眠时,运动被脑干产生的脊髓肌肉弛缓机制所抑制,且脑桥损伤的动物可在REM睡眠时表现出更活跃的行为[38]。因此,在REM睡眠时伏隔核神经元可能被激活,但他们对运动的影响却被脑桥的弛缓作用所减弱。

动物整体敲除D2受体可导致觉醒的显著减少,同时伴有NREM和REM睡眠量增加,NREM睡眠时delta波显著减弱[39],夜间活动期动物,通常

在很短暂的觉醒后即进入睡眠。这些研究清楚表明:D2受体在维持觉醒上发挥关键作用。之前的一项研究,神经毒性损毁室侧中央导水管周围灰质,减少觉醒,但这一效应在整个睡眠-觉醒周期都可被观察到[40]。因此,在整体敲除D2受体小鼠中发现的夜间觉醒减少效应可能并非仅由室侧中央导水管周围灰质调控。D2受体激动剂quinelorane伏隔核给药可增加觉醒的事实支持了这一假设[41]。利用正电子发射断层扫描技术发现人类睡眠剥夺后,可引起D2受体下调[42]。另一方面,用于帕金森综合征、不宁腿的D2受体激动剂piribedil、pramipexole可在患者中引起发作性睡病或嗜睡[43-44]。D2受体激动剂是一把双刃剑,激动纹状体神经元突触前 D2受体,也可减少中脑边缘系统和中脑皮层系统多巴胺能神经元多巴胺的释放[45-46]。

莫达菲尼是一种强效促觉醒药物,可用于治疗帕金森病人的过度睡眠和其他睡眠障碍,如发作性睡病,轮班工作的睡眠紊乱和阻塞性睡眠呼吸暂停综合征[47-48]。莫达菲尼可增加伏隔核和内侧额叶前皮层中的胞外多巴胺水平[49]。敲除小鼠多巴胺转运体,可取消莫达菲尼的促觉醒作用[32]。D2受体敲除小鼠,同时给予D1受体拮抗剂,莫达菲尼的促觉醒作用消失,相对于D1受体,D2受体更为重要[50]。

3 基底核调节睡眠-觉醒的机制

伏隔核是腹侧纹状体特有的结构,其传入纤维涉及杏仁核的情感,海马的信息处理,多巴胺能神经元的奖赏作用,以及前脑皮层的认知和执行信息的关键部位。整合基底核传统的运动和奖赏行为通路与睡眠觉醒调节通路,可增强对睡眠-觉醒调节的理解。伏隔核中表达对咖啡因促觉醒作用极为重要的A2A受体表达在GABA能神经元,其纤维广泛投射,包括腹侧苍白球,下丘脑外侧,臂旁核和腹侧背盖区,可能有助于觉醒。因此,伏隔核的激活可能对觉醒系统产生抑制效应,促进睡眠。根据以上研究成果,我们提出了一个以伏隔核为核心的睡眠-觉醒调节机制新模型。

伏隔核可通过腹侧苍白球和丘脑到达内侧额叶前皮层,这是一个认知和情绪间的关键通路,且也对睡眠和睡眠需求格外敏感[51-53],可能促进睡眠[54]。内侧额叶前皮层能通过它向下丘脑睡眠-觉醒调节系统,如结节乳头核、下丘脑外侧和脑干核包括蓝斑的直接下行投射发挥双向调节作用[55-57]。例如损毁下边缘皮质(一个额叶前皮层的亚区),能减少蓝斑和结节乳头核中的c-Fos表达,恢复大鼠应激引起的失眠模型中的NREM睡眠[58]。此外,伏隔核直接支配穹窿周围外侧下丘脑中的 orexin神经元和外侧下丘脑后部表达谷氨酸转运体 2的神经元[59-61]。脑内的Orexin神经元是整合感受性和稳态信号,增加觉醒、抑制REM睡眠的关键位点。选择性损伤orexin神经元可导致发作性睡病[62]。尽管咖啡因全身给药能使orexin神经元c-Fos表达增强[63],但咖啡因的促觉醒作用并不需要这些神经元参与[64]。相反,下丘脑后部的有向大脑皮层和基底核投射的谷胺酸能神经元能加强觉醒,但在睡眠-觉醒调节中的确切作用仍未确[65]。

此外,伏隔核壳内的神经元向脑桥臂旁核发出投射[66-67]。最近研究证明臂旁核是上行觉醒系统的关键组分,臂旁核损毁可引起昏迷[68]。臂旁核是脑干向基底核输入的最大来源,同时还有大量的向外侧下丘脑的投射。在中脑,伏隔核和腹侧背盖区之间的相互联系可促进行为觉醒[69],但需要注意的是,伏隔核仅向内侧部的腹侧背盖区投射,这一部位也是已知的皮层投射神经元来源,含有神经递质谷氨酸[70]。在内侧部的腹侧背盖区,咖啡因仅引起非多巴胺能神经元 c-Fos的表达[63],因此很可能是内侧部的腹侧背盖区通过向大脑皮层的兴奋性投射导致大脑皮层觉醒。

4 结语

睡眠受到了稳态(即睡眠压),昼夜节律(即日常节奏)以及应变稳态如食物供应或应激等因素的调节[12,60,67,71-75]。腹侧纹状体拥有整合行为和情绪的功能,且很可能含有调节睡眠和觉醒的传出纤维。我们认为,这是一个通过整合行为促进觉醒的重要位点,需要意识参与。而行为和觉醒在睡眠时均被抑制。现有的研究也提示,行为动机也可能是除稳态、昼夜节律和应变稳态因素之外的第四种调节睡眠和觉醒的重要机制。

多数睡眠异常疾病都被证实有基底核的功能障碍如帕金森综合征、亨廷顿氏病[76-77],但其病因学基础仍未知。由于行动障碍,心理问题、和/或药物滥用干扰睡眠,引起睡眠异常使基底核功能障碍进一步恶化。因此,对调节睡眠-觉醒行为基底核环路的研究,有助于理解睡眠-觉醒调节机制,以有效治疗基底核功能紊乱相关的睡眠障碍。

[1] Mahon S,Vautrelle N,Pezard L,et al. Distinct patterns of striatal medium spiny neuron activity during the natural sleep-wake cycle[J]. J Neurosci,2006,26(48):12587-12595.

[2] Urbain N,Gervasoni D,Soulière F,et al. Unrelated course of subthalamic nucleus and globus pallidusneuronal activities across vigilance states in the rat[J]. Eur J Neurosci,2000,12(9):3361-3374.

[3] Trulson,ME and Preussler DW. Dopamine-containing ventral tegmental area neurons in freely moving cats: activity during the sleep-waking cycle and effects of stress[J]. Exp Neurol,1984,83(2):367-377.

[4] Trulson ME,Preussler DW,Howell GA. Activity of substantia nigra units across the sleep-waking cycle in freely moving cats[J]. Neurosci Lett,1981,26(2):183-188.

[5] Dahan L,Astier B,Vautrelle N,et al. Prominent burst firing of dopaminergic neurons in the ventral tegmental area during paradoxical sleep[J]. Neuropsychopharmacology,2007,32(6):1232-1241.

[6] Baufreton J,Zhu ZT,Garret M,et al. Dopamine receptors set the pattern of activity generated in subthalamic neurons[J]. FASEB J,2005,19(13):1771-1777.

[7] Qiu MH,Vetrivelan R,Fuller PM,et al. Basal ganglia control of sleep-wake behavior and cortical activation[J]. Eur J Neurosci,2010,31(3):499-507.

[8] Vetrivelan R,Qiu MH,Chang C,et al. Role of Basal Ganglia in sleep-wake regulation: neural circuitry and clinical significance[J]. Front Neuroanat,2010:145.

[9] Gerashchenko D,Blanco-Centurion CA,Miller JD,et al. Insomnia following hypocretin2-saporin lesions of the substantia nigra[J]. Neuroscience,2006,137(1):29-36.

[10] Basheer R,Strecker RE,Thakkar MM,et al. Adenosine and sleep-wake regulation[J]. Prog Neurobiol,2004,73(6):379-396.

[11] Huang ZL,Urade Y,Hayaishi O. Prostaglandins and adenosine in the regulation of sleep and wakefulness[J].CurrOpinPharmacol. 2007, 7(1):33-38.

[12] Huang ZL,Urade Y,Hayaishi O. The role of adenosine in the regulation of sleep[J]. Curr Top Med Chem,2011,11(8):1047-1057.

[13] Porkka-Heiskanen T,Strecker RE,Thakkar M,et al. Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulnes[J]. Science,1997,276(5316):1265-1268.

[14] Alam MN,Szymusiak R,Gong H,et al. Adenosinergic modulation of rat basal forebrain neurons during sleep and waking: neuronal recording with microdialysis[J]. J Physiol,1999,521(3):679-690.

[15] Strecker RE,Morairty S,Thakkar MM,et al. Adenosinergic modulation of basal forebrain and preoptic/anterior hypothalamic neuronal activity in the control of behavioral state[J]. Behav Brain Res, 2000, 115(2):183-204.

[16] Thakkar MM,Engemann SC,Walsh KM,et al. Adenosine and the homeostatic control of sleep: effects of A1 receptor blockade in the perifornical lateral hypothalamus on sleep-wakefulness[J]. Neuroscience,2008,153(4):875-880.

[17] Oishi Y,Huang ZL,Fredholm BB,et al. Adenosine in the tuberomammillary nucleus inhibits the histaminergic system via A1 receptors and promotes non-rapid eye movement sleep[J]. Proc Natl Acad Sci U S A,2008,105(50):19992-19997.

[18] Methippara MM,Kumar S,Alam MN,t al. Effects on sleep of microdialysis of adenosine A1 and A2a receptor analogs into the lateral preoptic area of rat[J]. Am J Physiol Regul Integr Comp Physiol,2005,289(6):1715-1723.

[19] Benington JH,Kodali SK,Heller HC. Stimulation of A1 adenosine receptors mimics the electroencephalographic effects of sleep deprivation[J]. Brain Res,199,692(1-2):79-85.

[20] Urade Y,Eguchi N,Qu WM,et al. Sleep regulation in adenosine A2A receptor-deficient mice[J]. Neurology,2003,61(11 Suppl 6):94-96.

[21] Ochiishi T,Chen L,Yukawa A,et al. Cellular localization of adenosine A1 receptors in rat forebrain: immunohistochemical analysis using adenosine A1 receptor-specific monoclonal antibody[J]. J Comp Neurol,1999,411(2):301-316.

[22] Franco R,Lluis C,Canela EI,et al. Receptor-receptor interactions involving adenosine A1 or dopamine D1 receptors and accessory proteins[J]. J Neural Transm,2007,114(1):93-104.

[23] O'Neill C,Nolan BJ,Macari A,et al. Adenosine A1 receptor-mediated inhibition of dopamine release from rat striatal slices is modulated by D1 dopamine receptors[J]. Eur J Neurosci,2007,26(12):3421-3418.

[24] Satoh S,Matsumura H,Suzuki F,et al. Promotion of sleep mediated by the A2a-adenosine receptor and possible involvement of this receptor in the sleep induced by prostaglandin D2 in rats[J]. Proc Natl Acad Sci USA,1996,93(12):5980-5984.

[25] Satoh S, Matsumura H, Koike N, et al. Region-dependent difference in the sleep-promoting potency of an adenosine A2A receptor agonist[J]. Eur J Neurosci,1999,11(5):1587-1597.

[26] Scammell TE, Gerashchenko DY, Mochizuki T, et al., An adenosine A2a agonist increases sleep and induces Fos in ventrolateral preoptic neurons[J]. Neuroscience,2001,107(4):653-663.

[27] Fredholm BB,Bättig K,Holmén J,et al. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use[J]. Pharmacol Rev,1999,51(1):83-133.

[28] Huang ZL,Qu WM,Eguchi N,et al. Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine[J]. Nat Neurosci,2005,8(7):858-859.

[29] Lazarus M,Shen HY,Cherasse Y,et al. Arousal effect of caffeine depends on adenosine A2Areceptors in the shell of the nucleus accumbens[J]. J Neurosci,2011,31(27):10067-10075.

[30] Rosin DL,Robeva A,Woodard RL,et al. Immunohistochemical localization of adenosine A2Areceptors in the rat central nervous system[J]. Comp Neurol,1998,401(2):163-186.

[31] Svenningsson P,Fourreau L,Bloch B,et al. Opposite tonic modulation of dopamine and adenosine on c-fos gene expression in striatopallidal neurons[J]. Neuroscience,1999,89(3):827-837.

[32] Wisor JP,Nishino S,Sora I,et al.Dopaminergic role in stimulant-induced wakefulness[J]. J Neurosci,2001,21(5):1787-1794.

[33] Fuxe K,Agnati LF,Jacobsen K,et al. Receptor heteromerization in adenosine A2A receptor signaling: relevance for striatal function and Parkinson's disease[J]. Neurology,2003,61(11 Suppl 6):19-23.

[34] Aoyama S,Kase H,Borrelli E. Rescue of locomotor impairment in dopamine D2 receptor-deficient mice by an adenosine A2A receptor antagonist[J]. J Neurosci,2000,20(15):5848-5852.

[35] Chen JF,Moratalla R,mpagnatiello F,et al. The role of the D(2) dopamine receptorD(2)Rin A(2A) adenosine receptorA(2A)R-mediated behavioral and cellular responses as revealed by A(2A) and D(2) receptor knockout mice[J]. Proc Natl Acad Sci USA,2001,98(4):1970-1975.

[36] Jones BE,Bobillier P,Pin C,et al. The effect of lesions of catecholamine-containing neurons upon monoamine content of the brain and EEG and behavioral waking in the cat[J]. Brain Res,1973,58(1):157-177.

[37] Léna I,Parrot S,Deschaux O,et al. Variations in extracellular levels of dopamine, noradrenaline, glutamate, and aspartate across the sleep--wake cycle in the medial prefrontal cortex and nucleus accumbens of freely moving rats[J]. J Neurosci Res,2005,81(6):891-899.

[38] Vetrivelan R,Fuller PM,Tong Q,et al. Medullary circuitry regulating rapid eye movement sleep and motor atonia[J]. J Neurosci,2009,29(29):9361-9369.

[39] Qu WM,Xu XH,Yan MM,et al. Essential role of dopamine D2 receptor in the maintenance of wakefulness, but not in homeostatic regulation of sleep, in mice[J]. J Neurosci,2010,30(12):4382-4389.

[40] Lu J,Jhou TC,Saper CB. Identification of wake-active dopaminergic neurons in the ventral periaqueductal gray matter[J]. J Neurosci,2006,26(1):193-202.

[41] Barik S,de Beaurepaire R. Dopamine D3 modulation of locomotor activity and sleep in the nucleus accumbens and in lobules 9 and 10 of the cerebellum in the rat[J]. Prog Neuropsychopharmacol Biol Psychiatry,2005,29(5):718-726.

[42] Volkow ND,Tomasi D,Wang GJ,et al. Evidence that sleep deprivation downregulates dopamine D2R in ventral striatum in the human brain[J]. J Neurosci,2012,32(19):6711-6717.

[43] Tan EK. Piribedil-induced sleep attacks in Parkinson's disease[J]. Fundam Clin Pharmacol,2003,17(1):117-911.

[44] Lipford MC, Silber MH. Long-term use of pramipexole in the management of restless legs syndrome[J]. Sleep Med,2012,13(10):1280-1285.

[45] Monti JM,Hawkins M,Jantos H,et al. Biphasic effects of dopamine D-2 receptor agonists on sleep and wakefulness in the rat[J]. Psychopharmacology (Berl),1988,95(3):395-400.

[46] Sebban C,Zhang XQ,Tesolin-Decros B,et al. Changes in EEG spectral power in the prefrontal cortex of conscious rats elicited by drugs interacting with dopaminergic and noradrenergic transmission[J]. Br J Pharmacol,1999,128(5):1045-1054.

[47] Högl B,Saletu M,Brandauer E,et al. Modafinil for the treatment of daytime sleepiness in Parkinson's disease: a double-blind, randomized, crossover, placebo-controlled polygraphic trial[J]. Sleep,2002,25(8):905-909.

[48] Minzenberg MJ,Carter CS. Modafinil: a review of neurochemical actions and effects on cognition[J]. Neuropsychopharmacology,2008,33(7):1477-1502.

[49] Murillo-Rodríguez E,Haro R,Palomero-Rivero M,et al. Modafinil enhances extracellular levels of dopamine in the nucleus accumbens and increases wakefulness in rats[J]. Behav Brain Res,2007,176(2):353-357.

[50] Qu WM,Huang ZL,Xu XH,et al. Dopaminergic D1 and D2 receptors are essential for the arousal effect of modafinil[J]. J Neurosci,2008,2(34):8462-8469.

[51] Chee MW,Choo WC. Functional imaging of working memory after 24 hr of total sleep deprivation[J]. JNeurosci,2004,24(19):4560-4567.

[52] Chuah YM,Venkatraman V,Dinges DF,et al. The neural basis of interindividual variability in inhibitory efficiency after sleep deprivation[J]. J Neurosci,2006,26(27):7156-7162.

[53] Muzur A,Pace-Schott EF,Hobson JA. The prefrontal cortex in sleep[J]. Trends Cogn Sci,2002,6(11):475-481.

[54] Koenigs M,Holliday J,Solomon J,et al. Left dorsomedial frontal brain damage is associated with insomnia[J]. J Neurosci,2010,30(47):16041-16043.

[55] Chou TC,Bjorkum AA,Gaus SE,et al. Afferents to the ventrolateral preoptic nucleus[J]. J Neurosci,2002,22(3):977-990.

[56] Hurley KM,Herbert H,Moga MM,et al. Efferent projections of the infralimbic cortex of the rat[J]. J Comp Neurol,1991,308(2):249-276.

[57] Saper CB,Scammell TE,Lu J. Hypothalamic regulation of sleep and circadian rhythms[J]. Nature,2005,437(7063):1257-1263.

[58] Cano G, Mochizuki T, and Saper CB, Neural circuitry of stress-induced insomnia in rats[J]. J Neurosci, 2008, 28(40):10167-10184.

[59] Hur EE,Zaborszky L. Vglut2 afferents to the medial prefrontal and primary somatosensory cortices: a combined retrograde tracing in situ hybridization study[corrected] [J]. J Comp Neuro,2005,483(3):351-373.

[60] Sano H,Yokoi M. Striatal medium spiny neurons terminate in a distinct region in the lateral hypothalamic area and do not directly innervate orexin/hypocretin- or melanin-concentrating hormone-containing neurons[J]. J Neurosci,2007,27(26):6948-6955.

[61] Yoshida K,McCormack S,España RA,et al. Afferents to the orexin neurons of the rat brain[J]. J Comp Neurol,2006,494(5):845-861.

[62] Hara J,Beuckmann CT,Nambu T,et al. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity[J]. Neuron,2001,30(2):345-354.

[63] Deurveilher S,LoH,Murphy JA,et al. Differential c-Fos immunoreactivity in arousal-promoting cell groups following systemic administration of caffeine in rats[J]. J Comp Neurol,2006,498(5):667-689.

[64] Okuro M,Fujiki N,Kotorii N,et al. Effects of paraxanthine and caffeine on sleep, locomotor activity, and body temperature in orexin/ataxin-3 transgenic narcoleptic mice[J]. Sleep,2010,33(7):930-942.

[65] Saper CB,Fuller PM,Pedersen NP,et al. Sleep state switching[J]. Neuron,2010,68(6):1023-1042.

[66] Li CS,Chung S,Lu DP,et al. Descending projections from the nucleus accumbens shell suppress activity of taste-responsive neurons in the hamster parabrachial nuclei[J]. J Neurophysiol,2012,108(5):1288-1298.

[67] Usuda I,Tanaka K,Chiba T. Efferent projections of the nucleus accumbens in the rat with special reference to subdivision of the nucleus: biotinylated dextran amine study[J]. Brain Res,1998,797(1):73-93.

[68] Fuller PM,Sherman D,Pedersen NP,et al. Reassessment of the structural basis of the ascending arousal system[J]. J Comp Neurol,2011,519(5):933-956.

[69] Ikemoto S. Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex[J]. Brain Res Rev,2007,56(1):27-78.

[70] Heimer L,Zahm DS,Churchill L,et al. Specificity in the projection patterns of accumbal core and shell in the rat[J]. Neuroscience,1991,41(1):89-125.

[71] Krueger JM,Clinton JM,Winters BD,et al. Involvement of cytokines in slow wave sleep[J]. Prog Brain Res,2011,193:39-47.

[72] Urade Y, Hayaishi O. Prostaglandin D2 and sleep/wake regulation[J].Sleep Med Rev,2011,15(6):411-418.

[73] Achermann P,Borbely AA. Mathematical models of sleep regulation[J]. Front Biosci,2003,8:s683-693.

[74] Yamanaka A,Beuckmann CT,Willie JT,et al. Hypothalamic orexin neurons regulate arousal according to energy balance in mice[J]. Neuron,2003,38(5):701-713.

[75] Borbely AA. A two process model of sleep regulation[J]. Hum Neurobiol,1982,1(3):195-204.

[76] Adler CH,Thorpy MJ. Sleep issues in Parkinson's disease[J]. Neurology,2005,64(12 Suppl 3):S12-20.

[77] Goodman AO, Barker RA. How vital is sleep in Huntington's disease[J]. J Neurol,2010,257(6):882-897.

The Sleep-wake Regulation of A2AReceptor and D2Receptor in the Basal Ganglia

Wang Huijing, Qu Weimin, Huang Zhili*.*Department of Pharmacology, Fudan University Shanghai Medical College, Shanghai 241001 China

Huang Zhili,Email:huangzl@fudan.edu.cn

More and more studies began to pay attentions to the role of basal ganglia (BG) on sleep–wake regulation, among which striatum and globus pallidus might be the key structures in control of sleep and wakefulness. Adenosine A2Areceptor and dopamine D2receptors are highly co-expressed in the BG, particularly in the neurons of globus pallidus and the striatum. Adenosine is one of the strongest sleep-promoting endogenous substances so far discovered. It induces sleep via activating A1and A2Areceptors. While the dopamine D2receptor plays an important role in the maintenance of wakefulness. These results strongly suggest the regulating role of the A2Aand D2receptors in the BG in the regulation of sleep-wake. The excitatory adenosine A2Areceptors can activate the inhibitory GABA neurons in the nucleus accumbens thereby inhibit major arousal systems and promote sleep; while the inhibitory dopamine and D2receptor system play the opposite effects. The review will summarize the progress in the sleep-wake regulation of A2Areceptor and D2 receptor in the BG.

Basal ganglia;Sleep–wake;Adenosine A2Areceptor;Dopamine D2receptors

国家基础研究规划科研补助金:2011CB711000、2009ZX09303-006;国家自然科学基金:30901797、31171010、31121061、31271164;上海市重点学科建设项目:B119;国家教育部博士点基金资助项目:20110071110033

241001 复旦大学上海医学院药理学系

黄志力,E-mail:huangzl@fudan.edu.cn

猜你喜欢

腹侧苍白球纹状体
苍白球T1WI信号强度联合MRS图像在新生儿HB病情诊断中的应用
刷短视频成瘾,是大脑的事儿吗
肾周筋膜悬吊装置在后腹腔镜肾部分切除术中的应用
不同手术方式治疗重度老年性直肠脱垂的效果
MRI在新生儿胆红素脑病中的应用价值
大脑深处发现暴饮暴食触发点
纹状体A2AR和D2DR对大鼠力竭运动过程中苍白球GABA和Glu释放的调控研究
纹状体内移植胚胎干细胞来源的神经前体细胞可升高帕金森病小鼠纹状体内多巴胺含量
1H-MRS检测早期帕金森病纹状体、黑质的功能代谢
苍白球外侧部生理功能及其对运动调控作用研究进展