APP下载

课堂探究,让学生多点“慢思考”

2014-04-02丁学峰

数学教学通讯·小学版 2014年3期
关键词:课堂探究学生主体性小学数学

丁学峰

[摘 要] 教学是一个思维建构的过程,需要慢思、慢行,但在当前课改理念下,小学数学课堂教学呈现急匆匆的架势. 笔者认为,在小学数学课堂探究中,教师要真正将学生的主体性这一理念落实到位,从学生的认知需求入手,给予学生充分的尊重,开放空间和时间,让学生多点“慢思考”.

[关键词] 小学数学;课堂探究;学生主体性

教学是一个思维建构的过程,需要慢思、慢行,但在当前课改理念下,小学数学课堂教学呈现急匆匆的架势,尤其是公开课上,在学生探究的环节中,教师往往急于达到预期的效果,卡时间和进度,随意中断学生的思考,阻断了学生思维自然生长的过程,导致课堂效果看似热闹,却是内伤巨大的“伪探究”. 笔者认为,在小学数学课堂探究中,教师要真正将学生的主体性这一理念落实到位,从学生的认知需求入手,给予学生充分的尊重,开放空间和时间,让学生多点“慢思考”. 现根据自己的教学实践,谈谈体会.

■ 放慢思考,多点猜想验证

新课标提出,要培养学生的数学基本思想方法和基本的活动经验,数学猜想便是其中一个重要的思想,也是基本的数学活动经验之一. 但在数学课堂教学中,往往有教师忽略学生自主猜想这一环节,要么越俎代庖,要么一笔带过,课堂教学看似是学生在自主探究,实质上却是教师在唱独角戏. 那么,该怎么做才能发挥学生自主猜想的主体性呢?笔者认为,教师要精心设计,一方面要提供足够的时间让学生参与实践、敢于猜想,另一方面,要创设开放性与思考性较强的问题情境,激发学生的探究热情,使其跳一跳就能摘到桃子,学会深刻猜想并验证猜想.

如在教学“圆锥体的体积”时,我从已有的知识入手,带领学生对圆柱体体积进行复习巩固,一方面与圆锥体建立联系,另一方面则丰富学生数学表象的积累,从对圆柱体体积的推导开始,一步步正向迁移到圆锥体的体积. 为此,我根据教材进行了以下操作实践,激发学生的猜想:我让学生将圆锥中装满的沙子倒入圆柱体中,直到装满为止. 在教学中我发现,只是简单地模仿操作并不能发展学生的猜想能力,为此我让学生大胆猜想,有学生提出:圆锥的体积可能是圆柱体积的二分之一. 如何验证?学生将空圆锥中装满的沙子倒入空圆柱体中,倒了两次. 这一猜想验证的过程,激发了其他学生,有人提出:圆锥的体积也可能是圆柱体积的四分之一,随后,将空圆锥中装满的沙子倒入空圆柱体中,倒了四次. 既然这样的猜想都获得验证,那为什么教材中得到的结论却是圆锥的体积是圆柱体积的■?学生根据这个猜想继续探索实践,然后得到一个发现:要想使圆锥体积是圆柱体积的■,必须符合一个条件——圆锥和圆柱必须等底等高. 只有等底等高的圆锥体和圆柱体才有这样的关系. 据此,学生的猜想有了深入的思考,思维也被拓展开来,提高了学生的数学猜想能力.

■ 放慢思考,多点思想方法

在小学数学课堂教学中,学生学到的并不是单纯的解题技巧和方法,而是数学化的思考,数学化的思维模式. 对于数学教师而言,与其教给学生知识,不如交给学生获得知识的思维. 为此,在教学中要关注过程,要让学生经历过程,体验探究和推理,建立基本的数学思想模型. 如在教学“圆锥体体积”时,学生已经通过猜想验证并掌握了圆锥体的体积公式,此时我拿出一个圆锥体要学生自行测量数据并算出圆锥体的体积. 学生拿出工具进行测量后,我设问:你依据什么测量出了圆锥体的高?学生深入思考后发现,圆锥体的高并不能直接测量,而需通过转化为和圆锥体平行的一根小棒来进行测量,其依据来自“平行线间距离相等”这一几何理论;我又继续设问:能否依据这个理论测量圆柱体的底面半径呢?学生讨论后认为,表示圆锥体高的小棒和圆锥体本身的高之间的距离(如图1)与底面半径相等. 只要测量出这一段距离,就能得到底面半径.

通过思考,学生从知其然到知其所以然,经历了一个探究的过程,学会了从已知入手求未知,并能将未知转化为已知来解决,深刻领会并运用了数学转化的思想方法,大大提高了分析问题、解决问题的能力.

■ 放慢思考,多点概念建构

建构主义理论认为,数学概念的建立,是学生已有经验和知识被激活的过程,也是一个旧知重构的过程. 这个过程需要学生的自主思考,通过表象的积累,而后建立抽象的理性,直至上升为概念,这个过程离不开教师的步步指引. 如在教学“反比例的意义”时,我从梳理数量关系入手:路程和哪些量有关系?学生的生活经验中对路程、时间、速度非常熟悉,因此对路程与时间的关系有直观概念,我能很快切入变量的引导:路程÷时间=速度,这两种量之间的关系,叫做相关联的量. 你还能举出哪些类似的量?学生举出的例子有数量、单价、总价,收入、支出和节余等,以此唤醒数量之间特定关系的探讨意识,让学生自主积累数学关系的表象,为下一步抽象的概念建构提供支撑.

接下来我设置了对比建构的课堂教学环节,通过三种数量关系中表格数据的展示,让学生展开交流和探究. 如下面的三个表格.

学生通过对比发现,同样都是路程和时间两种数量,但因为存在不同的表现形式,两种变量的本质差异使得数量主体有了区别. 根据表格中两种变量有规律的变化,学生开始逐步接近正比例的概念本质,我进一步引导学生进行计算,确立了正比例关系中的定量变化这一主体特征,而后让学生探究用代数式表示正比例的意义:用字母x和y分别表示正比例的两种相关联的量,用R表示比值,怎么表示?学生经过探讨后确定,■=R(定量),这样,学生从表象一步步积累探究,步步逼近数学概念的本质,逐渐建构起正比例意义的本质属性,为数学思考的拓展延伸提供了基本保证.

■ 放慢思考,多点主体反思

数学课堂教学离不开总结和拓展,对学生而言,称之为反思. 反思是提高学生素养的一个重要指标,那如何让学生养成主体反思的习惯呢?

如在教学“小数乘整数”时,我出示题目:夏天,1千克西瓜是0.8元,买3千克西瓜需要多少钱?你怎么列式?怎么计算更简便?学生列式0.8×3,有学生先算8×3=24,再点上小数点;也有学生通过元与角的换算来口算,3个8角就是2.4元;还有学生根据乘法的意义来推算,0.8×3就是24个0.1,结果就得到2.4. 我设疑:观察一下,2.4与因数0.8有没有关系?有什么关系?

我出示了第二个问题:冬天,1千克西瓜是2.35元,买3千克西瓜,你认为怎么算?你算一下,带10元够吗?20元呢?学生在探究中发现,解决的方法有四种:一种是加法,另一种是估算,第三种是利用竖式进行计算,第四种可以先确定积的小数点的位置. 其中,难点在于如何确定积的小数点的位置. 那如何确定呢?

学生通过估算这样算:西瓜1千克是2元多,那么3千克只能是7元左右. 根据探究和交流,有学生提出猜想:因数的小数位数是两位,那么积的小数位数也是两位. 这种猜想是否正确呢?学生通过例子来验证,如4.21×12,3.22×2,4.35×6,先估算结果再进行竖式计算验证,结果发现猜想是正确的,据此,学生得到结论:积的小数位数的确定,要先看因数中的小数位数,因数有几位小数,积就有几位小数,从积的右边起数几位点上小数点. 最后,我提出问题让学生思考:小数和整数相乘,你认为怎么计算?先做什么,再做什么?

学生对整个教学环节进行了回顾、整理和总结. 在以上的教学环节中,我根据学生已有的知识储备提出了0.8×3如何算的问题,学生很快得到了答案,并采用多种方法,沟通了算理和算法,还对小数乘整数的积的小数位置与因数的小数位置有了注意,接着,我一步步引导学生对算理和算法进行深入探究,最后通过学生的主体反思,自然而然得到小数乘整数的计算策略. 学生自我发现、自我探究、自我验证的过程,使得主体反思有了自然而然的落脚点.

总之,在小学数学课堂探究中,只有给予学生充分的尊重,敢于放手,善于引导,让学生多点“慢思考”,才能让学生一步步绽放思维的火花.

猜你喜欢

课堂探究学生主体性小学数学
浅议大学生的主体性学习策略
高中数学教学中探究性学习探究
发挥学生的主体地位
农村学校数学生活化教学探析
培养学生自主探究能力的策略研究
体验式学习在数学教学中的应用研究
培养数学意识发展思维能力的研究
有效教学浸润体育课堂探究
初中数学教师课堂有效教学行为研究
多媒体在初中音乐教学中的作用