木质素降解酶及相关基因研究进展
2014-03-21董秀芹袁红莉高同国
董秀芹袁红莉高同国
(1.北京吉利学院,北京 102202;2. 中国农业大学生物学院 农业生物技术国家重点实验室,北京 100193;3.河北农业大学生命科学学院,保定 071000)
木质素降解酶及相关基因研究进展
董秀芹1袁红莉2高同国3
(1.北京吉利学院,北京 102202;2. 中国农业大学生物学院 农业生物技术国家重点实验室,北京 100193;3.河北农业大学生命科学学院,保定 071000)
生物质的高效综合利用已成为全球关注的热点问题。生物质的主要成分是木质素、纤维素和半纤维素,其利用的关键是如何去除木质素,从而提高纤维素和半纤维素的得率。其中利用真菌的生物预处理方法因条件温和、无二次污染等优点符合全球经济可持续发展需要,受到研究者的普遍关注。综述了近年国内外真菌分泌的主要木质素降解酶,包括木质素过氧化物酶(LiP)、锰过氧化物酶(MnP)、漆酶(laccase)和多功能过氧化物酶(VP)的主要特点,总结了木质素降解相关酶的基因工程、基因组学的研究成果,并对其发展前景进行了展望。
木质素 生物降解 过氧化物酶 漆酶 基因组学
近几年可持续发展技术已成为社会日益关注的焦点,充分利用自然资源实现其经济最大化和环境可持续发展已成为经济发展必须考虑的问题。木质纤维素是所有陆生植物细胞壁的主要成分,也是地球上最丰富的生物质资源,其组分主要由纤维素、半纤维素和木质素构成,其中木质素对于植物生长和生存起着重要作用,是细胞壁强度的支持成分,保护植物细胞免受微生物攻击和各种氧化作用[1]。从化学结构来看,木质素是由对羟苯基、愈创木基和紫丁香基三者所组成的异聚物,这三种单体通过β-O-4、β-5、β-β、5-5、4-O-5和 β-1共价键连接形成了自然界中各种各样的木质素。这些无规律的异聚物不透水,也没有旋光性,所有这些特性使木质素的降解非常困难[2];同时木质素包裹在纤维素的外层,阻碍纤维素和半纤维素的降解,因此在工业生产中,如在纸浆的漂白、纤维素发酵生产乙醇和饲料的发酵过程中,皆因木质素的存在而增加了工业生产的成本。
近几十年来,对于木质素的预处理技术已经进行了广泛的研究,主要分为非生物处理(物理方法、化学方法、物理-化学联用方法)和生物处理方法,科学家期望利用这些方法能够打断或破坏木质素网
络结构,使人类能够充分利用生物质中的纤维素和半纤维素。非生物预处理方法虽然有许多优点,但是总体而言效益低,污染重,而且形成对于后续发酵或酶解过程有抑制作用的副产物,不符合当代社会发展的需要。生物预处理主要利用真菌分泌的多种木质素降解酶降解生物质中的木质素,具有无污染、选择性好等优点。
国内外已有关于真菌漆酶性质和应用[3]、锰过氧化物酶的性质和应用[4]、Trametes cervina 的木素过氧化物酶性质[5]、利用现代化生产多种酶对不同木质纤维素原料降解作用[6]以及黄孢原毛平革菌产酶条件[7]等的文献综述。但是木质素降解是在自然条件下多个酶共同作用的复杂过程。因此,本文系统总结了近年发现与木质素降解有关的酶的种类和酶学特性,以便使研究者更全面的了解木质素生物降解过程中的多种酶的性质及该方面的研究进展。
1 微生物分泌木质素降解酶
生物预处理由于本身安全和无污染,受到越来越多人重视。到目前为止,仅有少数微生物可以降解木质素,其中绝大部分是白腐菌[8],少数是细菌[9],但是后者仅有较弱的木质素降解能力。由于白腐菌能高效地选择性降解木质素,因此被认为是去除木质素最有应用前景的一大类真菌。生物预处理木质纤维素原料的过程非常复杂,其中各种木质素降解酶被认为在木质纤维素的降解过程中起关键作用。已知白腐菌分泌木质素降解有关的几类主要过氧化物酶:木素过氧化物酶(LiP;EC 1.11.1.14),锰过氧化物酶(MnP;EC 1.11.1.13)(这两个酶首先在黄孢原毛平革菌中发现),多功能过氧化物酶(在杏鲍菇中首先发现)[10],漆酶(Laccase;EC 1.10.3.2)和多种辅助酶。由于木质素的结构复杂,因此推测木质素降解过程是多个酶共同作用的结果。
1.1 木素过氧化物酶
木素过氧化物酶(LiP;EC 1.11.1.14)是一个含铁的糖蛋白,首先在黄孢原毛平革菌中发现,具有独特的特点。例如,极高氧化还原电位和较低最适pH值。研究者证实自然界中主要是担子菌中木材降解菌能够分泌多种LiP。对黄孢原毛平革菌的研究发现,其基因组中至少有10个不同基因编码LiP同工酶,这些基因分别被命名为lipA-J,但是仍有许多问题科学家至今还没有研究清楚,如为什么这些酶具有很高的氧化还原电位以及在不同生长条件下产生的顺序。LiP同工酶不是同时产生的,如lipA、lipD和lipE编码的酶蛋白只有在碳饥饿的条件下才表达,而lipC只有在限氮培养下才表达。最近几年,多名研究者已经对木素过氧化物酶的催化机理和应用进行大量研究,如研究了LiP的分子结构特点,结合位点,翻译后修饰,基因重组、同源性分析[8],不同来源真菌LiP的异同点,LiP在环境修复和纸浆漂白工业中的应用[4],LiP的固定化工艺[11]和非水相催化的机理[12]等。
表1是最近几年报道的能在液体或固体培养中产生木素过氧化物酶的9种真菌,从表中能看到木腐真菌能够分泌多种LiP同工酶,P. chrysosporium分泌的同工酶多达10个,Trametes versicolor甚至可分泌16种同工酶。这些木素过氧化物酶具有共性,分子量38-50 kD,等电点大约pI3.0-4.0。而来自放线菌Streptomyces viridosporus的Lip分子量只有13.5-17.8 kD[13],这两类菌产生木素过氧化物酶分子量相差近3倍,具体原因可能是菌种不同引起的。
尽管有多名研究者指出LiP是木质素降解中重要的酶[14],但是至今还不清楚LiP对于自然界中木质素的降解能力以及LiP对于不同底物的氧化作用形式。目前LiP酶活大小是以黎芦醇作为底物进行测定,在自然界中LiP降解木质素的过程是否与分解藜芦醇具有完全相同形式尚不清楚。
1.2 锰过氧化物酶
锰过氧化物酶(MnP;EC 1.11.1.13)是P. chrysosporium和其他一些白腐真菌分泌到胞外的第二大类过氧化物酶,研究发现许多担子菌在其生活过程中都会分泌MnP。表2列出22种真菌在代谢过程中产生的MnP。经研究证实,从其他白腐菌获得的多种MnP的结构与P.chrysosporium分离到的同工酶非常相似[4]。所有已知分泌MnP的真菌都能分泌多种同工酶,等电点在pI3-7,分子量大约38-50 kD。Urzúa等[21]研究发现Ceriporiopsis subvermispora可以分泌多达11种的MnP同工酶。但是研究者也发现有些真菌产生的锰过氧化物酶具有某些特殊性,
如Tsukihara 等[22]研究发现Pleurotus ostreatus MnP2能够直接氧化一些高分子量的化合物,如Poly R-478和核酸酶A。
表1 木腐菌(W)和土壤有机物降解菌(SL)在液体(L)和/或固体(S)培养中产生木素过氧化物酶(LiP)
P. chrysosporium基因组含有5个mnp基因,分别命名为mnp1-5[18],可以合成多种同工酶[10]。锰过氧化物酶是过氧化氢依赖型的酶,在过氧化氢存在的条件下能催化Mn(II)形成Mn(III),然后Mn(III)再氧化酚类的木质素化合物。P. chrysosporium中锰过氧化物酶的催化循环形式在所有的木腐真菌中都相似。研究证实MnP的分子结构与LiP结构很相似,而且通过晶体X-射线衍射技术发现P. chrysosporium中MnP底物结合位点包括多个保守氨基酸,如MnP1通过Glu35、Glu39和 Asp179结合一个Mn2+[23],而且这些氨基酸残基在几乎所有真菌的锰过氧化物酶中都是保守的[14]。近年来,利用固定化技术固定锰过氧化物酶可以去除纺织工业的污水[24]。
1.3 漆酶
漆酶(benzenediol:oxygen oxidoreductase;EC 1.10.3.2)是一类含铜的蛋白质,能够以酚类化合物作为氢供体还原分子氧生成水。在某些介质存在下,非酚类化合物也能够被氧化,因此这类酶逐渐被应用到纸浆漂白工艺上[37]。到目前为止,除了植物病原菌和木腐真菌外,还有子囊菌属、曲霉属和弯孢属等多种土壤有机物降解菌也能分泌漆酶,几乎所有种类的白腐菌都能在一定程度上产生漆酶[3]。来自不同真菌的漆酶,其性质差别较大,底物也是各不相同[38]。类似于其他一些过氧化物酶,漆酶也是由一个复杂的相互联系的基因簇所编码。到目前为止,已有17株真菌的漆酶基因被克隆,其中部分菌的漆酶基因已经得到表达,但是不同真菌漆酶基因表达量差别较大。
表3列出了44株来自木材降解和土壤有机物降解的真菌,这些真菌所分泌的漆酶同工酶的数量、等电点和分子量等特性,从表中可以看出不同真菌的最适pH都在酸性范围。不同真菌来源的漆酶分子量差别较大。例如,来自Agaricus bisporus的漆酶分子量为40 kD,而来自Rhizoctonia solani的分子量为170 kD。根据漆酶分子量大小,Camarero等[39]推断漆酶进行木质素降解时不能进入木材内部,可能漆酶氧化某些化合物形成稳定的活跃小分子,这些活跃的小分子充当氧化还原的媒介,从菌丝表面渗透到酶分子而不能扩散到达木质纤维素内部进行降解[38]。自然界中木腐真菌基本都分泌漆酶,土壤有机物降解菌中只有部分子囊菌分泌漆酶。例 如,Aspergillus nidulans,Melanocarpus albomyces,Marasminus quercophilus等。Kiiskinen等[40]研 究发现某些使植物致病的子囊菌中也分泌漆酶,如Melanocarpus albomyces和 Neurospora crassa。 表 3显示,有几种真菌分泌多个漆酶同工酶,如白腐菌Flavodon(Irpex)flavus至少分泌13种漆酶同工酶,根据等电点不同分为两大类,一类是等电点在pI4-6的有7种;另一大类包涵至少6种pI<3的同工酶[16]。表3中所列漆酶同工酶的分子量在43-99 kD之间,这些酶绝大多数是单体酶,但是也有部分同工酶是二聚体,可能漆酶酶活需要两个相同亚基结合在一起才有活性,因此,表3中看到两个同工酶分子量大小相差约两倍。例如,担子菌Pleurotus
pulmonarius[41]和子囊菌Rhizoctonia solani[42]。漆酶利用各种各样的酚类化合物而不是酪氨酸作为氢供体把O2还原生成水[3]。最近研究发现,漆酶在螯合剂存在的情况下,除了能氧化酚类化合物,还能氧化Mn2+形成Mn3+。Schlosser & Höfer[35]从Stropharia rugosoannulata获得漆酶并在草酸和苹果酸作为螯合剂的情况下,能够氧化土壤中的有机物。此外,真菌T. versicolor漆酶的作用方式与Stropharia rugosoannulata类似[4]。Schlosser & Höfer研究证实,在Mn2+和苹果酸存在的情况下,漆酶能产生Mn3+-苹果酸复合物,这个复合物启动随后的一系列反应产生H2O2,然后H2O2激活过氧化物酶所催化的各种反应进行降解。
表2 木腐菌(W)和土壤有机物降解菌(SL)在液体和/或固体培养基中产生锰过氧化物酶(MnP)
1.4 多功能过氧化物酶
多功能过氧化物酶(VPs)首先在Pleurotus eryngii[10]中被发现,随后在其他种类的Pleurotus和Bjerkandera中都发现该酶的存在,并且研究了多个白腐菌中多功能过氧化酶的底物结合位点保守氨基酸和作用[72]。国内浙江大学陈敏等[73]从食用菌杏鲍菇中得到多功能过氧化物酶,并研究该酶性质。多功能过氧化物酶和漆酶被认为在木质素的解聚中起作用。多功能过氧化物酶的起源和分布至今不是很清楚,只在少数几种Agaricales和Polyporales中发现,经过研究发现来自Agaricales和Polyporales的多功能过氧化物酶似乎独立进化,它们之间并没有表现出比较近的亲缘关系[14]。多功能过氧化物酶代表真菌所分泌的既具有部分木质素过氧化物酶特性,又具有某些锰过氧化物酶特性的一类独特的过氧化物酶,但是对于多功能过氧化物酶的作用机理尚不清楚。Busse等[74]研究发现,如果在反应体系中缺乏木质素过氧化物酶常见的作用底物黎芦醇和锰过氧化酶的作用底物Mn2+情况下,该酶又具有一些不同于木素过氧化物酶和锰过氧化物酶的特点,降解过程与H2O2浓度有直接关系。Bernini等[75]利用氨基酸的定点突变技术研究P. eryngii的VPs的分子结构和催化特性。Morgenstern等[14]研究结果表明多功能过氧化物酶的分布可能比现在已知的范围更加广泛。研究者推断多功能过氧化物可能与其他一些
含亚铁血红素的过氧化物酶具有相似的催化机理。到目前为止,已发现的多功能过氧化物比较少,也没有进行系统的研究,因此对于其相关基因和基因组鲜有报道。
上述的几种酶是木质素降解过程中比较重要的酶,至于对不同菌种、特别是来源于不同自然环境的真菌降解过程究竟哪类酶起主要作用,还没有定论[6]。科学家还需要探索在复杂的自然环境中不同酶催化木质素降解的先后顺序,只有这样才可能在工业生产中充分利用木质纤维素原料。
2 木质素降解酶的基因表达和基因组学
2.1 木质素降解酶的基因表达
生物质预处理的主要目的是破坏木质素的包裹作用,使纤维素和半纤维素暴露出来,利于后面的酶水解能形成发酵糖类[76],然而当前生物预处理效率比较低,不能满足现代化工业生产的需要,同时上述的4种过氧化物酶即使在菌丝存在情况下也很快失活。许多研究者希望利用基因工程技术提高过氧化物酶的产量,因此对白腐菌的多个过氧化物酶基因进行克隆、同源[77]和异源宿主的过量表达。在蛋白质表达体系中,异源宿主表达高效更能满足工业化生产的需要。P. chrysosporium的木素过氧化物酶基因在杆状病毒中得到有活性的表达[78],随后在大肠杆菌[79]、米曲霉[80]、黑曲霉[81]、构巢曲霉[82]和毕赤酵母[83]中都得到表达。另外来自Bjerkandera adusta多功能过氧化物酶也在大肠杆菌中以可溶形式得到过量表达[84]。虽然多株真菌中木质素降解酶基因在细菌和真菌等多个表达体系中得到表达,但是木质素降解酶基因的表达量和酶活都不高,其中对于基因启动子序列、基因转录水平的调控因子等理解不够深入[85],因此今后研究中还需要寻找新的高效表达体系。
2.2 木质素降解酶的基因组学
近年基因组学发展迅速,出现了宏基因组学、比较基因组学、功能基因组学、结构基因组学和蛋白质相互作用组学等。木质素在自然界的降解是一个非常复杂的过程,至今人类还没有完全清楚。通过基因组学研究,人类期待可以更好理解木质素降解过程。对于真菌基因组学研究已经取得了一些进步,如P. chrysosporium基因组信息和基因模式于2002年公布[18],随后又公布了转基因组学信息[86],所有的研究成果随时公布在www.jgi.doe.gov/whiterot上。Kotik等[87]利用基因组步移技术,结合兼并引物设计法和宏基因组学等技术,已经从环境样品中获得几个公认的木聚糖酶基因;Xu等[88]利用宏基因组库的方法已经从深海沉积物环境DNA样品中获得两个独特的碱性羟化酶基因,在恶臭假单胞菌和荧光假单胞菌中成功表达。利用比较基因组学,Fernández-Fueyo等[89]研究P. chrysosporium和C. subvermispora基因组差异,希望寻找到这两株真菌降解能力差异的根本原因。借助基因组学的研究成果可以从自然界中寻找新的微生物或在已知微生物中寻找新的木质素降解基因而避免使用传统的活力筛选方法,为将来木质纤维素降解基因的研究提供一个新的思路,也可以利用宏基因组学建立某个环境下的木质素降解的微生物群落种类。预期在不久的将来可以利用上述研究手段发现木质素降解过程中的关键基因或关键酶,或借助基因组学进一步寻找新的启动子、调控元件来获得更多有活性的重组蛋白[85]。
3 展望
降低木质纤维素预处理的成本,提高木质素降解酶的产量是解决这个问题的关键。一方面可以把木质素降解酶进行联合固定化降解木质素降低生物预处理费用[90],或者利用多种微生物混合培养,提高生物处理的速度。例如,Trametes versicolor和Candida sp. HSD07A在液体培养基中混合培养可以显著提高前者的漆酶酶活[91];另一方面在已有的基因工程和基因组学研究成果的基础上,结合转录组学[92]和蛋白质分泌组学[93]的研究成果,研究者才能更好的理解木质素降解真菌的遗传学和生理学的调控机理。也可以考虑把木质素降解酶的基因转入生物燃料植物,在植物收获后直接进行原位降解,减少运输和酶的生产许多环节,或者利用木质素合成基因在生物燃料类植物中合成有规律的、较容易被单一木质素降解酶分解的人工定向木质素新植株。
[1]Fernández-Fueyo E, Ruiz-Dueñas FJ, Miki Y, et al. Lignin-degrading
peroxidases from genome of selective ligninolytic fungus Ceriporiopsis subvermispora[J]. The Journal of Biological Chemistry, 2012, 287(20):16903-16916.
[2]Hendriks AT, Zeeman G. Pretreatments to enhance the digestibility of lignocellulosic biomass[J]. Bioresource Technology, 2009, 100(1):10-18.
[3]Strong PJ, Claus H. Laccase:a review of its past and its future in bioremediation[J]. Critical Reviews in Environmental Science and Technology, 2011, 41(4):373-434.
[4]Elisashvili V, Kachlishvili E. Physiological regulation of laccase and manganese peroxidase production by white-rot Basidiomycetes[J]. Journal of Biotechnology, 2009, 144(1):37-42.
[5]Miki Y, Ichinose H, Wariishi H. Molecular characterization of lignin peroxidase from the white-rot basidiomycete Trametes cervina:a novel fungal peroxidase[J]. FEMS Microbiology Letters, 2010, 304(1):39-46.
[6]Van Dyk JS, Pletschke BI. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—factors affecting enzymes, conversion and synergy[J]. Biotechnology Advances, 2012, 30(6):1458-1480.
[7]Singh D, Chen SL. The white-rot fungus Phanerochaete chrysosporium:conditions for the production of lignin-degrading enzymes[J]. Applied Microbiology and Biotechnology, 2008, 81(3):399-417.
[8]Lundell TK, Mäkelä MR, Hildén K. Lignin-modifying enzymes in filamentous basidiomycetes—ecological, functional and phylogenetic review[J]. Journal of Basic Microbiology, 2010, 50(1):5-20.
[9]Yang JS, Ni JR, Yuan HL, et al. Biodegradation of three different wood chips by Pseudomonas sp. PKE117[J]. International Biodeterioration and Biodegradation, 2007, 60(2):90-95.
[10]Heinfling A, Ruiz-Dueñas FJ, Martínez MJ, et al. A study on reducing substrates of manganese oxidizing peroxidases from Pleurotus eryngii and Bjerkandera adusta[J]. FEBS Letters, 1998, 428(3):141-146.
[11]Cheng XB, Jia R, Li PS, et al. Purification of a new manganese peroxidase of the white-rot fungus Schizophyllum sp. F17 and decolorization of azo dyes by the enzyme[J]. Enzyme and Microbial Technology, 2007, 41(3):258-264.
[12]Patel DS, Aithal RK, Krishna G, et al. Nano-assembly of manganese peroxidase and lignin peroxidase from P. chrysosporium for biocatalysis in aqueous and non-aqueous media[J]. Colloids and Surfaces B:Biointerfaces, 2005, 43(1):13-19.
[13]Nascimento HJ, Silva JG. Purification of lignin peroxidase isoforms from Streptomyces viridosporus T7A by hydrophobic based chromatographies[J]. World Journal of Microbiology and Biotechnology, 2008, 24(9):1973-1975.
[14]Morgenstern I, Klopman S, Hibbett DS. Molecular Evolution and diversity of lignin degrading heme peroxidases in the agaricomycetes[J]. Journal of Molecular Evolution, 2008, 66(3):243-257.
[15]Bonugli-Santos RC, Durrant LR, Silva MD, et al. Production of laccase, manganese peroxidase and lignin peroxidase by Brazilian marine-derived fungi[J]. Enzyme and Microbial Technology, 2010, 46(1):32-37.
[16]Raghukumar C, D’souza TM, Thorn RG, et al. Lignin-modifying enzymes of Flavodon flavus, a basidiomycete isolated from a coastal marine environment[J]. Applied Microbiology and Biotechnology, 1999, 65(5):2103-2111.
[17]Hofrichter M, Vares T, Kalsi M, et al. Production of ligninolytic enzymes and organic acids, and mineralization of14C-labeled lignin during solid-state fermentation of wheat straw with the white-rot fungus Nematoloma frowardii[J]. Applied and Environmental Microbiology, 1999, 65(5):1864-1870.
[18]Martinez D, Larrondo LF, Putnam N, et al. Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78[J]. Nature Biotechnology, 2004, 22(6):695-700.
[19]Hirai H, Sugiura M, Kawai S, et al. Characteristics of novel lignin peroxidases produced by white-rot fungus Phanerochaete sordida YK-624[J]. FEMS Microbiology Letters, 2005, 246(1):19-24.
[20]Vares T, Kalsi M, Hatakka A. Lignin peroxidases, manganese peroxidases, and other ligninolytic enzymes produced by Phlebia radiate during solid-state fermentation of wheat straw[J]. Applied and Environmental Microbiology, 1995, 61(10):3515-3520.
[21]Urzúa U, Larrondo LF, Lobos S, et al. Oxidation reactions catalyzed by manganese peroxidase isoenzymes from Ceriporiopsis subvermispora[J]. FEBS Letters, 1995, 371(2):132-136.
[22]Tsukihara T, Honda Y, Sakai R, et al. Mechanism for oxidation of high-molecular-weight substrates by a fungal versatile peroxidase, MnP2[J]. Applied and Environmental Mocrobiology, 2008, 74
(9):2873-2881.
[23]Sundaramoorthy M, Youngs HL, Gold MH, et al. High-resolution crystal structure of manganese peroxidase:substrate and inhibitor complexes[J]. Biochemistry, 2005, 44(17):6463-6470.
[24]Iqbal HM, Asgher M. Characterization and decolorization applicability of xerogel matrix immobilized manganese peroxidase produced from Trametes versicolor IBL-04[J]. Protein and Peptide Letters, 2013, 20(5):591-600.
[25]Lankinen VP, Bonnen AM, Anton LH, et al. Characteristics and N-terminal amino acid sequence of manganese peroxidase from solid substrate cultures of Agaricus bisporus[J]. Applied Microbiology and Biotechnology, 2001, 55(2):170-176.
[26]Steffen KT, Hofrichter M, Hatakka A. Purification and characterization of manganese peroxidases from the litter decomposing basidiomycetes Agrocybe praecox and Stropharia coronilla[J]. Enzyme and Microbial Technology, 2002, 30(4):550-555.
[27]Ziegenhagen D, Hofrichter M. A simple and rapid method to gain high amounts of manganese peroxidase with immobilized mycelium of the agaric white-rot fungus Clitocybula dusenii[J]. Applied Microbiology and Biotechnology, 2000, 53(5):553-557.
[28]Sklenara J, Niku-Paavola ML, Santos S, et al. Isolation and characterization of novel pI 4. 8 MnP isoenzyme from white-rot fungus Irpex lacteus[J]. Enzyme and Microbial Technology, 2010, 46(7):550-556.
[29]Boer CG, Obici L, de Souza CGM, et al. Purification and some properties of Mn peroxidase from Lentinula edodes[J]. Process Biochemistry, 2006, 41(5):1203-1207.
[30]Petruccioli M, Frasconi M, Quaratino D, et al. Kinetic and redox properties of MnP II, a major manganese peroxidase isoenzyme from Panus tigrinus CBS 577. 79[J]. Journal of Biological Inorganic Chemistry, 2009, 14(8):1153-1163.
[31]Rubia T, De la Linares A, Pérez J, et al. Characterization of manganese-dependent peroxidase isoenzymes from the ligninolytic fungus Phanerochaete flavido-alba[J]. Research in Microbiology, 2002, 153(8):547-554.
[32]Hakala TK, Lundell T, Galkin S, et al. Manganese peroxidases, laccases and oxalic acid from the selective white-rot fungus Physisporinus rivulosus grown on spruce wood chips[J]. Enzyme and Microbial Technology, 2005, 36(4):461-468.
[33]Martínez MJ, Ruiz-Dueñas GF, Martínez AT. Purification and catalytic properties of two manganese isoenzymes from Pleurotus eryngii[J]. European Journal of Biochemistry, 1996, 237(2):424-432.
[34]Giardina P, Palmieri G, Fontanella B, et al. Manganese peroxidase isoenzymes produced by Pleurotus ostreatus grown on wood sawdust[J]. Archives Biochemistry and Biophysics, 2000, 376(1):171-179.
[35]Schlosser D, Höfer C. Laccase-catalyzed oxidation of Mn2+in the presence of natural Mn3+chelators as a novel source of extracellular H2O2production and its impact on manganese peroxidase[J]. Applied Microbiology and Biotechnology, 2002, 68(7):3514-3521.
[36]Bermek H, Yazıcı H, Öztürk H, et al. Purification and characterization of manganese peroxidase from wood-degrading fungus Trichophyton rubrum LSK-27[J]. Enzyme and Microbial Technology, 2004, 35(1):87-92.
[37]Liew CY, Husaini A, Hussain H. Lignin biodegradation and ligninolytic enzyme studiesduring biopulping of Acacia mangium wood chips by tropical white rot fungi[J]. World Journal of Microbiol Biotechnol, 2011, 27(10):1457-1468.
[38]Baldrian P. Fungal laccases-occurrence and properties[J]. FEMS Microbiology Reviews, 2006, 30(2):215-242.
[39]Camarero S, Ibarra D, Martínez MJ, et al. Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes[J]. Applied and Environmental Microbiology, 2005, 71(4):1775-1784.
[40]Kiiskinen LL, Viikari L, Kruus K. Purification and characterisation of a novel laccase from the ascomycete Melanocarpus albomyces[J]. Applied Microbiology and Biotechnology, 2002, 59(2-3):198-204.
[41]Souza CGM, Peralta RM. Purification and characterization of the main laccase produced by the white-rot fungus Pleurotus pulmonarius on wheat bran solid state medium[J]. Journal of Basic Microbiology, 2003, 43(4):278-286.
[42]Aslam MS, Aishy A, Samra ZQ, et al. Identification, purification and characterization of a novel extracellular laccase from Cladosporium Cladosporioides[J]. Biotechnology & Biotechnological Equipment, 2012, 26(6):3344-3350.
[43]Koroleva OV, Gavrilova VP, Stepanova EV, et al. Production of lignin modifying enzymes by co-cultivated White-Rot Fungi Cerrena
maxima and Coriolus hirsutus and characterization of laccase from Cerrena maxima[J]. Enzyme and Microbial Technology, 2002, 30(4):573-580.
[44]Salas C, Lobos S, Larrain J, et al. Properties of laccase isoenzymes produced by the basidiomycetes Ceriporiopsis subvermispora[J]. Biotechnology and Applied Biochemistry, 1995, 21(3):323-333.
[45]Lisova ZA, Lisov AV, Leontievsky AA. Two laccase isoforms of the basidiomycete Cerrena unicolor VKMF-3196:Induction, isolation and properties[J]. Journal of Basic Microbiology, 2010, 50(1):72-82.
[46]Schneider P, Caspersen MB, Mondorf K, et al. Characterization of a Coprinus cinereus laccase[J]. Enzyme and Microbial Technology, 1999, 25(6):502-508.
[47]Saparrat MCN, Guillén F, Arambarri AM, et al. Induction, isolation, and characterization of two laccases from the white rot basidiomycete Coriolopsis rigida[J]. Applied Microbiology and Biotechnology, 2002, 68(4):1534-1540.
[48]Do Rosário Freixo M, Karmali A, Arteiro JM. Production of polygalacturonase from Coriolus versicolor grown on tomato pomace and its chromatographic behaviour on immobilized metal chelates[J]. Journal of Industrial Microbiology and Biotechnology, 2008, 35(6):475-484.
[49]Zhang GQ, Wang YF, Zhang XQ, et al. Purification and characterization of a novel laccase from the edible mushroom Clitocybe maxima[J]. Process Biochemistry, 2010, 45(5):627-633.
[50]Perie FH, Reddy GVB, Blackburn NJ, et al. Purification and characterization of laccases from the white-rot basidiomycete Dichomitus squalens[J]. Archives of Biochemistry and Biophysics, 1998, 353(2):349-355.
[51]Wu YR, Luo ZH, Chow RKK, et al. Purification and characterization of an extracellular laccase from the anthracene-degrading fungus Fusarium solani MAS2[J]. Bioresource Technology, 2010, 101(24):9772-9777.
[52]D’Souza TM, Merritt CS, Reddy CA. Lignin-modifying enzymes of the white rot basidiomycete Ganoderma lucidum[J]. Applied and Environmental Microbiology, 1999, 65(12):5307-5313.
[53]Nagai M, Sato T, Watanabe H, et al. Purification and characterization of an extracellular laccase from the edible mushroom Lentinula edodes, and decolorization of chemically different dyes[J]. Applied Microbiology and Biotechnology, 2002, 60(3):327-335.
[54]Iyer G, Chattoo BB. Purification and characterization of laccase from the rice blast fungus Magnaporthe grisea[J]. FEMS Microbiology Letters, 2003, 227(1):121-126.
[55]Schückel J, Matura A, van Pée KH. One-copper laccase-related enzyme from Marasmius sp. :purification, characterization and bleaching of textile dyes[J]. Enzyme and Microbial Technology, 2011, 48(3):278-284.
[56]Farnet AM, Criquet S, Pocachard E, et al. Purification of a new isoform of laccase from a Marasmius quercophilus strain isolated from a cork oak litter(Quercus suber L. )[J]. Mycologia, 2002, 94(5):735-740.
[57]Qiu WH, Chen HZ. An alkali-stable enzyme with laccase activity from entophytic fungus and the enzymatic modification of alkali lignin[J]. Bioresource Technology, 2008, 99(13):5480-5484.[58]Quaratino D, Federici F, Petruccioli M, et al. Production, purification and partial characterisation of a novel laccase from the whiterot fungus Panus tigrinus CBS 577. 79[J]. Antonie van Leeuwenhoek, 2007, 91(1):57-69.
[59]Sathishkumar P, Murugesan K, Palvannan T. Production of laccase from Pleurotus florida using agro-wastes and efficient decolorization of Reactive blue 198[J]. Journal of Basic Microbiology, 2010, 50(4):360-367.
[60]Mansur M, Arias ME, Copa-Patiño JL, et al. The white-rot fungus Pleurotus ostreatus secretes laccase isozymes with different substrate specificities[J]. Mycologia, 2003, 95(6):1013-1020.
[61]Kalme S, Jadhav S, Jadhav M, et al. Textile dye degrading laccase from Pseudomonas desmolyticum NCIM 2112[J]. Enzyme and Microbial Technology, 2009, 44(2):65-71.
[62]Jaouaní A, Guillén F, Penninckx MJ, et al. Role of Pycnoporus coccineus laccase in the degradation of aromatic compounds in olive oil mill wastewater[J]. Enzyme and Microbial Technology, 2005, 36(4):478-486.
[63]Vite-Vallejo O, Palomares LA, Dantán-González E, et al. The role of N-glycosylation on the enzymatic activity of a Pycnoporus sanguineus laccase[J]. Enzyme and Microbial Technology, 2009, 45(3):233-239.
[64]Di Nardo C, Cinquegrana A, Papa S, et al. Laccase and peroxidase isoenzymes during leaf litter decomposition of Quercus ilex in a Mediterranean ecosystem[J]. Soil Biology & Biochemistry, 2004,
36(10):1539-1544.
[65]Cambria MT, Cambria A, Ragusa S, et al. Production, purification and properties of an extracellular laccase from Rigidoporus lignosus[J]. Protein Expression and Purification, 2000, 18(2):141-147.
[66]Shleev SV, Morozova O, Nikitina O, et al. Comparison of physico-chemical characteristics of four laccases from different basidiomycetes[J]. Biochimie, 2004, 86(9-10):693-703.
[67]Galhaup C, Goller S, Peterbauer CK, et al. Characterization of the major laccase isoenzyme from Trametes pubescens and regulation of its synthesis by metal ions[J]. Microbiology, 2002, 148(7):2159-2169.
[68]Jung H, Xu F, Li KC. Purification and characterization of laccase from wood-degrading fungus Trichophyton rubrum LKY-7[J]. Enzyme and Microbial Technology, 2002, 30(2):161-168.
[69]Chakroun H, Mechichi T, Martinez MJ, et al. Purification and characterization of a novel laccase from the ascomycete Trichoderma atroviride:Application on bioremediation of phenolic compounds[J]. Process Biochemistry, 2010, 45(4):507-513.
[70]Sadhasivam S, Savitha S, Swaminathan K, et al. Production, purification and characterization of mid-redox potential laccase from a newly isolated Trichoderma harzianum WL1[J]. Process Biochemistry, 2008, 43(7):736-742.
[71]Liers C, Ullrich R, Pecyna M, et al. Production, purification and partial enzymatic and molecular characterization of a laccase from the wood-rotting ascomycete Xylaria polymorpha[J]. Enzyme and Microbial Technology, 2007, 41(6):785-793.
[72]Ruiz-Dueñas FJ, Morales M, García E, et al. Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases[J]. Journal of Experimental Botany, 2009, 60(2):441-52.
[73]陈敏, 姚善泾, 张虹, 等. 食用菌杏鲍菇中一个多功能氧化酶纯化和特性研究[J]. 中国化学工程, 2010, 18(5):824-829.
[74]Busse N, Wagner D, Kraume M, et al. Reaction kinetics of versatile peroxidase for the degradation of lignin compounds[J]. American Journal of Biochemistry and Biotechnology, 2013, 9(4):365-394.
[75]Bernini C, Pogni R, Basosi R, et al. Prediction of hydrogenbonding networks around tyrosyl radical in P. eryngii versatile peroxidase W164Y variants:a QM/MM MD study[J]. Molecular Simulation, 2013, DOI:10. 1080/08927022. 2013. 822967.
[76]Menon V, Rao M. Trends in bioconversion of lignocellulose:Biofuels, platform chemicals & biorefinery concept[J]. Progress in Energy and Combustion Science, 2012, 38(4):522-550.
[77]Irie T, Honda Y, Watanabe T, et al. Homologous expression of recombinant manganese peroxidase genes in ligninolytic fungus Pleurotus ostreatus[J]. Applied Microbiology and Biotechnology, 2001, 55(5):566-570.
[78]Johnson TM, Pease EA, Li JK, et al. Production and characterization of recombinant lignin peroxidase isozyme H2 from Phanerochaete chrysosporium using recombinant baculovirus[J]. Archives Biocheistry and Biophysics, 1992, 296(2):660-666.
[79]Nie GJ, Reading NS, Aust SD. Expression of the lignin peroxidase H2gene from Phanerochaete chrysosporium in Escherichia coli[J]. Biochemical and Biophysical Research Communications, 1998, 249(1):146-150.
[80]Stewart P, Whitwam RE, Kersten PJ, et al. Efficient expression of Phanerochaete chrysosporium manganese peroxidase gene in Aspergillus oryzae[J]. Applied and Environmental Microbiology, 1996, 62(3):860-864.
[81]Conesa A, van den Hondel CAMJJ, Punt PJ. Studies on the production of fungal peroxidases in Aspergillus niger[J]. Applied and Environmental Microbiology, 2000, 66(7):3016-3023.
[82]Larrondo LF, Lobos S, Stewart P, et al. Isoenzyme multiplicity and characterization of recombinant manganese peroxidases from Ceriporiopsis subvermispora and Phanerochaete chrysosporium[J]. Applied Microbiology and Biotechnology, 2001, 67(5):2070-2075.
[83]Wang HK, Lu FP, Sun YF, et al. Heterologous expression of lignin peroxidase of Phanerochaete chrysosporium in Pichia methanolica[J]. Biotechnology Letters, 2004, 26(20):1569-1573.
[84]Mohorčič M, BenČina M, Friedrich J, et al. Expression of soluble versatile peroxidase of Bjerkandera adusta in Escherichia coli[J]. Bioresource Technology, 2009, 100(2):851-858.
[85]Janusz G, Kucharzyk KH, Pawlik A, et al. Fungal laccase, manganese peroxidase and lignin peroxidase:gene expression and regulation[J]. Enzyme and Microbial Technology, 2013, 52(1):1-12.
[86]Minami M, Kureha O, Mori M, et al. Long serial analysis
of gene expression for transcriptome profiling during the initiation or lignolytic enzymes production in Phanerochaete chrysosporium[J]. Applied Microbiology and Biotechnology, 2007, 75(3):609-618.
[87]Kotik M. Novel genes retrieved from environmental DNA by polymerase chain reaction:current genome-walking techniques for future metagenome applications[J]. Journal of Biotechnology, 2009, 144(2):75-82.
[88]Xu MX, Xiao X, Wang FP. Isolation and characterization of alkane hydroxylases from a metagenomic library of Pacific deep-sea sediment[J]. Extremophiles, 2008, 12(2):255-262.
[89]Fernández-Fueyo E, Ruiz-Dueñas FJ, Ferreira P, et al. Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis[J]. Proceedings of the National Academy of Sciences, 2012, 109(14):5458-5463.
[90]Ran YH, Che FZ, Chen WQ. Co-Immobilized lignin peroxidase and manganese peroxidase from coriolus versicolor capable of decolorizing molasses waste water[J]. Applied Mechanics and Materials, 2012, 138-139:1067-1071.
[91]Wang HL, Yu GL, Li P, et al. Overproduction of Trametes versicolor laccase by making glucose starvation using yeast[J]. Enzyme and Microbial Technology, 2009, 45(2):146-149.
[92]Yu GJ, Wang M, Huang J, et al. Deep insight into the ganoderma lucidumby comprehensive analysis of its transcriptome[J]. PLoS ONE, 2012, 7(8):44031-44040.
[93]Salvachúa D, Martínez AT, Tien M, et al.Differential proteomic analysis of the secretome of Irpex lacteus and other white-rot fungi during wheat straw pretreatment[J].Biotechnology for Biofuels, 2013, 6:115-129.
(责任编辑 狄艳红)
Progress in Studies of Ligninolytic Enzymes and Genes
Dong Xiuqin1Yuan Hongli2Gao Tongguo3
(1. Beijing Jili University,Beijing 102202;2. State Key Lab for Agrobiotechnology,College of Biological Sciences,China Agricultural University,Beijing 100193;3. College of Life Sciences,Agricultural University of Hebei,Baoding 071000)
Efficient enzymatic conversion of renewable biomass becomes the focus of intensive research currently throughout the world. Lignocellulose is comprised mainly of cellulose, hemicelluloses and lignin. Removal of lignin from the complex lignocellulosic matrix is considered as the key process of comprehensive lignocellulose utilization, which renders recalcitrant lignocellulosic biomass more accessible to the hydrolytic enzyme system. Biodegradation of lignin by fungi is more environment friendly and less energy intensive, compared to other pretreatment methods. Its mechanism is based principally on the activity of different extracellular enzymes. Here we reviewed the recent progress in characteristics of fungal lignin-degrading enzymes, including lignin peroxidase(LiP), manganese peroxidase(MnP), laccase and versatile peroxidase(VP), and also their applications in genetic engineering and genomics research.
Lignin Biodegradation Peroxidase Laccase Genomics
2014-03-20
董秀芹,女,副教授,研究方向:木质素降解;E-mail:wlcdxq@163.com
袁红莉,女,博士,教授,研究方向:生物降解及生物修复;E-mail:hliyuan@cau.edu.cn