一个较为精确的半离散Mulholland’s不等式加强*
2013-09-11聂彩云
聂彩云
(吉首大学数学与统计学院,湖南吉首 416000)
一个较为精确的半离散Mulholland’s不等式加强*
聂彩云
(吉首大学数学与统计学院,湖南吉首 416000)
利用Jensen-Hadmamard’s不等式及加强的Hölder不等式,对半离散的Mulholland’s不等式作了改进,建立了一些新的不等式.
Mulholland’s不等式;权系数;算子表述;Hölder不等式
(1)式称为Hardy-Hilbert积分不等式,它在分析学中有重要的应用.
文献[1]建立了如下一个新的较精确的半离散Mulholland不等式:
笔者利用改进的Hölder不等式对(2)式进行加强,从而建立一些新的不等式.
1 相关引理及其证明
为了方便起见,先介绍一些符号:
证明见文献[2-3].
引理2 若λ1>0,0<λ2≤1,λ1+λ2=λ,α≥,定义权函数
2 主要结果
即(3)式成立.
下面讨论Ra的表达式.选取由(4)式所定义的权函数(x,n),有由引理1,有
注1 (3)式即为(2)式的改进式.
[1] YANG Bi-cheng.On a More Accurate Half-Discrete Mulholland’s Inequality and Extension[J].Journal of Inequalities and Aplications,2012,Doi:10.1186/1029-242X-2012-70.
[2] HE Le-ping,GAO Ming-zhe,JIA Wei-jian.On a New Strengthened Hardy-Hilbert’s Inequality[J].Journal of Mathematical Research and Exposition,2006,26(2):276-282.
[3] HE Le-ping,JIA Wei-jian,GAO Ming-zhe.A Hardy-Hilbert’s Type Inequality with Gamma Function and Its Applications[J].Integral Transforms and Special Functions,2006,17(5):355-363.
[4] HE Le-ping,GAO Ming-zhe.A Hilbert Integral Inequality with Hurwitz Zeta Function[J].Journal of Mathematical Inequalities,2013,7(3):377-387.
(责任编辑 向阳洁)
A More Accurate Strengthend Half-Discrete Mulholland’s Inequality
NIE Cai-yun
(College of Mathematics and Statistics,Jishou University,Jishou 416000,Hunan China)
By means of Jensen-Hadmamard’s inequality and a sharpened Hölder’s inequality,the half-discrete Mulholland’s is improved,and some new inequalities are established.
Mulholland’s inequality;weight coefficient;operator expression;Hölder inequality
O178
A
10.3969/j.issn.1007-2985.2013.06.003
1007-2985(2013)06-0009-03
2013-06-19
聂彩云(1963-),女,湖南永顺人,吉首大学数学与统计学院副教授,主要从事函数论及应用研究.