脓毒性休克微循环改变相关研究进展
2013-04-07段美丽
刘 威,段美丽,李 昂
(首都医科大学附属北京友谊医院,北京100050)
研究表明,脓毒性休克即使达到了早期的目标治疗,仍然可能存在微循环功能障碍,进而影响局部组织细胞的氧供,导致器官功能障碍。因此,改善微循环成为治疗脓毒性休克的关键。但临床监测微循环是一个难题,即便血流动力学参数在正常范围内,脓毒性休克患者可能已经发生微循环的损害。本文对脓毒性休克微循环改变相关研究进展作一综述。
1 脓毒性休克微循环改变机制
微循环的改变是在炎症介质作用下多种机制共同作用的结果[1]:①缩血管物质(如内皮素)使微血管收缩;②毛细血管内皮细胞间的连接发生改变;③毛细血管网络对局部刺激的自身调节功能受到损害[2];④微血栓形成以及白细胞、红细胞对毛细血管壁黏附性增加,微循环血流出现障碍[3]。同时,微循环血流存在不均一性,即同时存在灌注毛细血管和非灌注毛细血管,即便在脏器灌注充分情况下仍然会存在局部组织缺氧[4]。毛细血管密度降低,进一步导致氧输送距离的增加,在器官功能衰竭发展过程中起着重要作用。微循环的改变导致细胞损伤[5],而这些改变与血乳酸及NADH有关,表明微循环的改变直接损伤组织氧合功能。
2 微循环状态评估在脓毒性休克治疗中的意义[6]
De Backer等的研究发现,脓毒症患者微血管密度及灌注血管比例明显下降,这些改变与患者的病死率明显相关,而在脓毒症早期全身性的血流动力学指标不能及时准确地反映微循环的状态及组织灌注情况。Sakr等[7]通过观察舌下微循环发现,与死亡患者比较,存活患者微血管灌注比例增加。类似的研究同样证实,随着脓毒性休克病程进展,微循环改变随之加重,主要表现为灌注血管密度下降、灌注血管比例以及微血管流动指数减少、微循环不均一性增加[8],与 Top 等[9]在儿童脓毒性休克患者中观察到的结果一致。不均一的血流灌注使得氧合不均一,较于均匀减少的灌注能够导致更加严重的变化[10]。Trzeciak 等[11]观察到在复苏早期(3 h 内),舌下微循环的改善和脏器功能的改善相关,反之,往往产生器官功能进一步损害。因此,微循环的监测能使我们更早观察到组织灌注的减少,并且微循环衰竭的严重程度与器官功能衰竭及病死率相关[12~14]。鉴于微循环的特征,监测微循环的理想工具应该具有足够的空间分辨率,能够敏锐地观察到微循环的这种灌注及氧合的不均一特点。
3 微循环的监测方法
3.1 激光多普勒技术 这种技术被用于观察危重症患者皮肤微血管的灌注情况。这种技术仅仅能够观察容量0.5~1 mm3的组织情况,不能评估单个血管的情况,因此不能够评估微循环的不均一性。随着这种技术的发展,出现了扫描激光多普勒技术,特点是能够实时形成图像。在动物实验研究中,这种技术被证实能够监测到脓毒症引起的微循环的不均一特性。在临床中,这种技术只能被用来监测皮肤的微循环情况以及评估视网膜和脑血流图像。
3.2 活体显微镜技术 该技术直接应用于活体组织,使得直视下观察微血管成为可能。但是,应用这种技术同样面临许多困难,如被观察的组织需要有外来光源、反射光必须足够清晰来形成清楚的画面、避免组织的污染等。
3.3 正交极化光谱(OPS)以及旁流暗视野(SDF)成像技术 OPS和SDF成像技术是新近出现的非侵入性的观察方法。原理即把发光体置于组织表面,光在组织表面会发生反射,在深层组织发生散射,同时使组织表面成为半透明状态[15];反射光被极化滤波器滤过[16],而深入到组织的光会遇到多种细胞,因此就会失去极化特性而成像,使得我们能够观察到深部血管的情况。波长为530 nm的光能够被血红蛋白吸收(与血红蛋白的氧合状态无关),这样我们就能够观察到微血管。SDF技术同样是采用光被血红蛋白吸收的原理,只是在成像元件周围放置许多发光二极管,使得外部光源的反射光不能进入成像系统,使得画面更清晰。这两种技术能够用于研究凡是有上皮包被的组织,比如黏膜表面。在许多动物实验中已经被广泛应用,包括脑、肠系膜及肝脏。在危重症患者中,舌下是较为理想的操作部位,但是回肠、结肠、直肠和阴道也是可以观察的部位。通过这两种技术,我们能够观察到毛细血管和小静脉,而小动脉由于位置较深,一般不易观察到。红细胞在画面中呈现为黑色,组织的灌注情况通过单个血管的血流特点得到反映,并以半定量的方式被评估,是目前监测微循环的最好方法。
4 改善微循环的治疗方法
4.1 液体复苏和血管活性药物应用 补液和血管活性药物是以增加组织灌注为目标的循环复苏的关键。研究表明,补液能够改善微循环灌注,增加灌注毛细血管比例,减少微循环异质性,而微循环的改善与宏循环的变化并不相关[17,18]。另有研究表明,补液对于微循环的改善作用主要是在脓毒症的早期阶段(24 h内),48 h以后补液并不能对微循环起到好的效果[19]。不同液体的选择对微循环复苏的影响尚存争议,有动物实验显示,与晶体液相比,胶体液更能增加微循环灌注[20],但并未在脓毒症患者中得到证实[17]。研究证实,β-肾上腺素受体激动剂能够改善微循环灌注[19,21],而且微循环的改善并不与宏循环同步[21]。但毛细血管不存在β-肾上腺素受体,这些作用可能是通过降低白细胞黏附来实现的,因为白细胞表面存在β-肾上腺素受体。纠正严重的低血压可改善微循环灌注,可能是通过达到器官最低灌注压恢复脏器灌注实现的[22,23]。但是,持续增加的血压能否增加微循环灌注,在个体间差异很大[24,25]。有研究表明,动脉血压的升高会损伤患者的舌下微循环,但对重症患者是有益的[25]。总之,传统的血流动力学干预手段对脓毒性休克患者微循环的作用是易变的。
4.2 血管舒张药 血管过度收缩可能是导致灌注血管密度减低和毛细血管断流的原因,扩张血管药物可以缓解上述原因而发挥作用。研究表明,重症脓毒症合并严重微循环改变的患者,局部给予大剂量的乙酰胆碱,能使微循环恢复到和健康志愿者及非脓毒症ICU患者相似的水平[26]。这表明,脓毒症导致的微循环改变是可以纠正的,而且内皮功能虽然失调,仍可对超生理刺激产生反应。Spronk等[27]研究指出,硝酸甘油能够迅速改善微循环;但也有研究表明,使用硝酸甘油和安慰剂的脓毒性休克患者微循环改变没有差异[28];这两种不同的研究结果可能跟采用的硝酸甘油剂量不同有关。Salgado等[29]发现,与对照组相比,使用了血管紧张素抑制剂的实验组动物舌下微循环轻度改善,但是这些作用并不与器官功能改善同步。因此,目前并不推荐使用血管扩张剂,原因是血管扩张剂不具有选择性,非灌注、灌注血管同时被扩张,可能导致局部过度灌注。4.3 活化蛋白C(APC)APC改善微循环的作用在不同的动物实验模型及各种器官研究中得到反复证实[13,30,31]。也有研究显示,去除血管内皮结合位点但保留抗凝活性的抗凝剂并不能改善内毒素诱导的脓毒症大鼠的微循环[32,33]。除此之外,水蛭素同样不能改善脓毒症动物的微循环[34]。因此,APC和抗凝血酶并不是通过抗凝来改善微循环的,可能与降低白细胞及血小板黏附、增加血管内皮活性有关[35]。
4.4 激素 氢化可的松可能会引起小动脉收缩、改变毛细血管灌注,同时可改善血管内皮功能、减少白细胞黏附,进而减轻血流分布不均,常被用于脓毒性休克的辅助治疗[36,37]。在健康志愿者局部注射炎症因子损害血管内皮后,应用氢化可的松可以迅速改善症状[38]。Buchele 等[39]发现,氢化可的松可以增加脓毒性休克患者的微循环灌注,这种改善作用在给药后1 h出现,在整个观察过程中持续存在,而且与动脉血压无相关性。
4.5 维生素C和四氢生物蝶呤 维生素C和四氢生物蝶呤通过调整血管内皮的一氧化氮合酶来发挥作用,脓毒症患者可能存在这两种物质的缺乏。动物实验表明,给予维生素C可以改善微循环灌注,增加毛细血管密度,减少不良血管灌注[40,41],但尚未有人体试验证明。
5 结语
微循环的改变在脓毒性休克的发生、发展中起到关键性作用。微循环的重建和开放是遏制脓毒性休克进展的首要措施;微循环的监测能够让我们更早地发现组织灌注的不足,为早期干预提供依据;而以改善组织灌注为目标的循环复苏方法需要我们进一步深入研究。
[1]De Backer D,Donadello K,Taccone FS,et al.Microcirculatory alterations:potential mechanisms and implications for therapy[J].Ann Intensive Care,2011,1(1):1-27.
[2]Tyml K,Wang X,Lidington D,et al.Lipopolysaccharide reduces intercellular coupling in vitro and arteriolar conducted response in vivo[J].Am J Physiol Heart Circ Physiol,2001,281(3):1397-406.
[3]Drost EM,Kassabian G,Meiselman HJ,et al.Increased rigidity and priming of polymorphonuclear leukocytes in sepsis[J].Am J Respir Crit Care Med,1999,159(6):1696-1702.
[4]Edul VS,Enrico C,Laviolle B,et al.Quantitative assessment of the microcirculation in healthy volunteers and in patients with septic shock[J].Crit Care Med,2012,40(5):1443-1448.
[5]Eipel C,Bordel R,Nickels RM,et al.Impact of leukocytes and platelets in mediating hepatocyte apoptosis in a rat model of systemic endotoxemia[J].Am J Physiol Gastrointest Liver Physiol,2004,286(5):769-776.
[6]De Backer D,Crcteur J,Preiser JC,et al.Microvascular blood flow is altered in patients with sepsis[J].Am J Respir Crit Care Med,2002,166(1):166:98.
[7]Sakr Y,Dubois MJ,De Backer D,et al.Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock[J].Crit Care Med,2004,32(9):1825-1831.
[8]Trzeciak S,Dellinger RP,Parrillo JE,et al.Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock:relationship to hemodynamics,oxygen transport,and survival[J].Ann Emerg Med,2007,49(1):88-98.
[9]Top AP,Ince C,de Meij N,et al.Persistent low microcirculatory vessel density in nonsurvivors of sepsis in pediatric intensive care[J].Crit Care Med,2011,39(1):8-13.
[10] Walley KR.Heterogeneity of oxygen delivery impairs oxygen extraction by peripheral tissues:theory[J].J Appl Physiol,1996,81(2):885-894.
[11]Trzeciak S,McCoy JV,Phillip Dellinger R,et al.Early increases in microcirculatory perfusion during protocol-directed resuscitation are associated with reduced multi-organ failure at 24 h in patients with sepsis[J].Intensive Care Med,2008,34(12):2210-2217.
[12]Doerschug KC,Delsing AS,Schmidt GA,et al.Impairments in microvascular reactivity are related to organ failure in human sepsis[J].Am JPhysiol Heart Circ Physiol,2007,293(2):1065-1071.
[13]Shapiro NI,Arnold R,Sherwin R,et al.The association of near-infrared spectroscopy-derived tissue oxygenation measurements with sepsis syndromes,organ dysfunction and mortality in emergency department patients with sepsis[J].Crit Care,2011,15(5):R223.
[14]Trzeciak S,McCoy JV,Phillip Dellinger R,et al.Early increases in microcirculatory perfusion during protocol-directed resuscitation are associated with reduced multi-organ failure at 24 h in patients with sepsis[J].Intensive Care Med,2008,34(12):2210-2217.
[15]Groner W,Winkelman JW,Harris AG,et al.Orthogonal polarization spectral imaging:a new method for study of the microcirculation[J].Nat Med,1999,5(10):1209-1212.
[16]Goedhart PT,Khalilzada M,Bezemer R,et al.Sidestreal Dark Field(SDF)imaging:a novel stroboscopic LED ring-based ima-ging modality for clinical assessment of the microcirculation[J].Opt Express,2007,15(23):15101-15114.
[17]Ospina-Tascon G,Neves AP,Occhipinti G,et al.Effects of fluids on microvascular perfusion in patients with severe sepsis[J].Intensive Care Med,2010,36(6):949-955.
[18]Pottecher J,Deruddre S,Teboul JL,et al.Both passive leg raising and intravascular volume expansion improve sublingual microcirculatory perfusion in severe sepsis and septic shock patients[J].Intensive Care Med,2010,36(11):1867-1874.
[19]Secchi A,Wellmann R,Martin E,et al.Dobutamine maintains intestinal villus blood flow during normotensive endotoxemia:an intravital microscopic study in the rat[J].J Crit Care,1997,12(3):137-141.
[20] Hoffmann JN,Vollmar B,Laschke MW,et al.Hydroxyethyl starch(130 kD),but not crystalloid volume support,improves microcirculation during normotensive endotoxemia[J].Anesthesiology,2002,97(2):460-470.
[21]De Backer D,Creteur J,Dubois MJ,et al.The effects of dobutamine on microcirculatory alterations in patients with septic shock are independent of its systemic effects[J].Crit Care Med,2006,34(2):403-408.
[22]Nakajima Y,Baudry N,Duranteau J,et al.Effects of vasopressin,norepinephrine and L-arginine on intestinal microcirculation inendotoxemia[J].Crit Care Med,2006,34(6):1752-1757.
[23]Georger JF,Hamzaoui O,Chaari A,et al.Restoring arterial pressure with norepinephrine improves muscle tissue oxygenation assessed by near-infrared spectroscopy in severely hypotensive septic patients[J].Intensive Care Med,2010,36(11):1882-1889.
[24]Deruddre S,Cheisson G,Mazoit JX,et al.Renal arterial resistance in septic shock:effects of increasing mean arterial pressure with norepinephrine on the renal resistive index assessed with Doppler ultrasonography[J].Intensive Care Med,2007,33(9):1557-1562.
[25]Dubin A,Pozo MO,Casabella CA,et al.Increasing arterial blood pressure with norepinephrine does not improve microcirculatory blood flow:a prospective study[J].Crit Care,2009,13(3):R92.
[26] De Backer D,Creteur J,Preiser JC,et al.Microvascular blood flow is altered in patients with sepsis[J].Am J Respir Crit Care Med,2002,166(1):98-104.
[27] Spronk PE,Ince C,Gardien MJ,et al.Oudemans-van Straaten HM,Zandstra DF:Nitroglycerin in septic shock after intravascular volume resuscitation[J].Lancet,2002,360(9343):1395-1396.
[28]Boerma EC,Koopmans M,Konijn A,et al.Effects of nitroglycerin on sublingual microcirculatory blood flow in patients with severe sepsis/septic shock after a strict resuscitation protocol:A doubleblind randomized placebo controlled trial[J].Crit Care Med,2010,38(1):93-100.
[29] Salgado DR,He X,Su F,et al.Sublingual microcirculatory effects of enalaprilat in an ovine model of septic shock[J].Shock,2011,35(6):542-549.
[30]Gierer P,Hoffmann JN,Mahr F,et al.Activated protein C reduces tissue hypoxia,inflammation,and apoptosis in traumatized skeletal muscle during endotoxemia[J].Crit Care Med,2007,35(8):1966-1971.
[31]Gupta A,Berg DT,Gerlitz B,et al.Role of protein C in renal dysfunction after polymicrobial sepsis[J].J Am Soc Nephrol,2007,18(3):860-867.
[32]De Backer D,Verdant C,Chierego M,et al.Effects of drotecogin alfa activated on microcirculatory alterations in patients with severe sepsis[J].Crit Care Med,2006,34(7):1918-1924.
[33]Hoffmann JN,Vollmar B,Romisch J,et al.Antithrombin effects on endotoxin-induced microcirculatory disorders are mediated mainly by its interaction with microvascular endothelium[J].Crit Care Med,2002,30(1):218-225.
[34]Hoffmann JN,Vollmar B,Inthorn D,et al.The thrombin antagonist hirudin fails to inhibit endotoxin-induced leukocyte/endothelial cell interaction and microvascular perfusion failure[J].Shock,2000,14(5):528-534.
[35]Donati A,Romanelli M,Botticelli L,et al.Recombinant activated protein C treatment improves tissue perfusion and oxygenation in septic patients measured by near-infrared spectroscopy[J].Crit Care,2009,13(5):12.
[36]Chappell D,Hofmann-Kiefer K,Jacob M,et al.TNF-alpha induced shedding of the endothelial glycocalyx is prevented by hydrocortisone and antithrombin[J].Basic Res Cardiol,2009,104(1):78-89.
[37]Cronstein BN,Kimmel SC,Levin RI,et al.A mechanism for the antiinflammatory effects of corticosteroids:the glucocorticoid receptor regulates leukocyte adhesion to endothelial cells and expression of endothelial-leukocyte adhesion molecule 1 and intercellular adhesion molecule 1[J].Proc Natl Acad Sci,1992,89(21):9991-9995.
[38]Bhagat K,Vallance P.Inflammatory cytokines impair endotheliumdependent dilatation in human veins in vivo[J].Circulation,1997,96(9):3042-3047.
[39]Buchele GL,Silva E,Ospina-Tascon G,et al.Effects of hydrocortisone on microcirculatory alterations in patients with septic shock[J].Crit Care Med,2009,37(4):1341-1347.
[40]Tyml K,Li F,Wilson JX.Septic impairment of capillary blood flow requires NADPH oxidase but not NOSand is rapidly reversed by ascorbate through an eNOS-dependent mechanism[J].Crit Care Med,2008,36(8):2355-2362.
[41]He X,Su F,Velissaris D,et al.Administration of tetrahydrobiopterin improves the microcirculation and outcome in an ovine model of septic shock[J].Crit Care Med,2012,40(10):2833-2840.