APP下载

染色质修饰调节植物成花机理研究

2013-04-01赵荣秋刘乐承长江大学园艺园林学院湖北荆州434025

长江大学学报(自科版) 2013年29期
关键词:成花染色质复合体

赵荣秋,刘乐承 (长江大学园艺园林学院,湖北 荆州434025)

成花转变是植物生命周期中一个重要的发育过程。拟南芥染色质机制通过调控成花关键基因表达在成花时间上起关键作用,各种保守的染色质修饰因子、植物特异因子和长的非编码RNAs都参与到FLOWERING LOCUS C (FLC)基因染色质调节过程中,FLC是植物成花的负调控因子。FLC调控机制的研究已为以染色质调控为基础的其他发育基因的研究提供了一个范本。同时,染色质修饰在FLOWERING LOCUS T (FT)的表达调控中也同样起着重要作用;FT是编码植物成花素的基因,在被子植物中高度保守。此外,其他植物中与FT相关的基因也可能具有与FT基因相同的调控机制从而影响植物成花时间。在此主要对拟南芥成花调控及其以染色质修饰为基础的调节机制进行综述。

1 植物成花转变的调控

从营养生长向生殖生长阶段转变的时间是被子植物获得生殖成功的关键,许多物种已进化出多条途径响应环境信号和内源因子的变化,从而调控其在正确时间开花。长日照植物拟南芥春化作用、光周期、寒冷的冬天、环境温度和长日照等外因分别响应体内内源因子如苗龄和赤霉素水平共同作用形成复杂的成花调控网络。目前,已分离出成花网络中的关键成花基因,其表达调控机制已被深入研究。

拟南芥FLC基因是一个主要的开花抑制因子,其表达机制复杂[1-2],FRIGIDA (FRI)可以激活或者上调FLC基因的表达至较高水平从而抑制开花,然而春化作用、长时间低温诱导可以抵消FRI对FLC激活作用,关闭FLC的表达,促进植物开花[3-4]。有春化响应的冬性一年生植物和无春化需求的早花植物不同的成花习性主要由FLC的表达水平不同所决定,冬性一年生植物具有显性等位基因FRI和FLC,而无春化需求的早花植物缺乏有功能的FRI,FLC的表达被自主途径基因或FLC自身抑制,不依赖于环境输入信号所抑制[5-6]。

FT基因是另外一个调控植物开花时间的关键基因,FT蛋白是植物开花素[7-10],其表达可被长日照下CONSTANS(CO)基因所激活,被FLC基因直接抑制[11-13]。FT在维管组织特异表达,尤其在叶的韧皮部,FT蛋白由韧皮部被输送到茎尖分生组织,在茎尖分生组织与具有bZIP结构的锌指蛋白FD结合形成复合体,激活花分生组织基因LEAFY和APETALA1(AP1)的表达,导致花原基形成[14-15]。

染色质修饰参与到植物发育基因的调控中,这些修饰调控染色质结构和基因表达,包括核小体重塑、DNA甲基化和各种组蛋白修饰[16]。总的来说,组蛋白乙酰化、组蛋白H3K4三甲基化、组蛋白H2B单泛素化、组蛋白H3K36的二甲基化和三基化与基因表达活性有关;而组蛋白去乙酰化、H3K9甲基化、H3K27三基化、H2A单泛素化抑制基因的表达[17]。拟南芥染色质调节FLC表达已被深入研究,表明各种修饰因子调节FLC表达与其成花有关[3-4,17]。如ATX1H3K4甲基转移酶和EFS H3K36甲基转移酶分别调节FLC染色质H3K4和H3K36的甲基化,两者都是FLC基因表达必须的,其表达抑制成花[18–20];与此相反,PRC2-like复合体使FLC染色质H3K27三甲基化水平升高从而关闭FLC的表达[21-22]。FLC的调控机制已成为认识植物其他发育基因表达调控的范例。

FLC表达调控的最新进展表明FRI是植物体内特异的支架蛋白,是募集染色质修饰因子至FLC位点复合体的一部分,可以激活FLC。另外,最近研究表明长的非编码RNAs(lncRNAs)不仅可以导致非春化需求型植物FLC表达抑制,而且可以通过春化调节使一年生冬性植物FLC沉默。另外,近年来的研究表明染色质修饰也部分调控FT基因表达。

2 FRI调节FLC染色质修饰使冬性一年生植物成花

FRI编码植物特异的支架蛋白,是决定拟南芥成花时间的关键因子[6],许多参与到FRI依赖途径的FLC表达的激活因子,已在以FRI为背景的抑制FLC表达的突变体遗传检测中被验证,包括保守的染色质修饰因子和植物特异组分[3,5],这些组分功能缺失的突变体抑制FLC表达,所以导致FRI为背景的植物早花。另外,其中一些因子如染色质修饰因子调控拟南芥基因组很多基因表达。

第一个被证实的FRI行使功能的保守成分是PAF1c复合体[23-25],它在酵母、植物和人体内均高度保守,在转录过程中与Pol II结合。拟南芥PAF1c有6个亚单位,其功能缺失导致FLC染色质组蛋白H3K4三甲基化、H3K36二甲基化和H3K36三甲基化水平降低,并在FRI背景下抑制FLC的表达[19,23]。另外,PAF1c也是全基因组组蛋白H2B单泛素化所需要的组分[26]。PAF1c本身不具有组蛋白修饰活性,但它为转录激活和延伸过程中组蛋白修饰酶活动提供平台。

COMPASS-like H3K4甲基转移酶复合体使FLC染色质H3K4三甲基化水平升高,从而 激活其表达。拟南芥COMPASS包含4个保守的核心亚单位,即含有SET结构域的H3K4甲基转移酶和3个结构性核心组分 (WDR5a、RBL和ASH2R),它们组成一个稳定的核心亚复合体,为H3K4的甲基化提供结构平台[27-28]。2个H3K4的甲基转移酶ATX1和ATXR3(或者SDG2)和2个推定的称做ATX2和 ATXR7的酶使FLC组蛋白H3K4的三甲基化[18,29-32]。ATX1已被证实与 WDR5亚单位结合[27],很可能ATX2、ATXR3和ATXR7在FLC染色质H3K4的三甲基化过程中也是以COMPASS为背景而行使其功能。H3K4的三甲基化主要集中在FLC的转录起始部位[23],这个过程需要COMPASS组分的直接参与,并且激活FLC的表达[27-28]。此外,超表达ASH2R导致FLC染色质H3K4三甲基化水平升高激活FLC转录[28],这一结果表明H3K4的三甲基化水平升高足以激活FLC表达从而抑制植物成花。

除了组蛋白H3K4三甲基化外,依赖FRI途径的FLC表达还分别需要EFS催化下的H3K36甲基化和H2B单泛素化复合体HUB–UBC作用下H2B单泛素化。EFS催化FLC组蛋白H3K36二甲基化和三甲基化[19-20],HUB–UBC复合体包含E3泛素连接酶HUB1和HUB2、E2泛素结合酶UBC1和UBC2,其催化全基因组组蛋白H2B的单泛素化,包括FLC位点[33–35]。利用重组的人类染色质装配系统,证实H2B单泛素化通过组蛋白分子伴侣FACT调节H2A-H2B间更换和核小体重组,可以使Pol II聚合酶在基因核小体上顺畅移动[36]。基因组蛋白H2B单泛素化可能与保守的FACT协同作用,从而促使FLC转录延伸,因为FACT组分的突变体SPT16和SSRP1使FLC表达受到抑制[37]。另外,H2B单泛素化在FLC位点的内稳定对FLC的表达是关键的[26]。FLC染色质上H2B在UBP26去泛素化酶作用下的脱泛素对其表达也是必需的,表明要么维持组蛋白H2B单泛素化在一个恰当的平衡水平,要么其脱泛素化对FLC的转录都起着决定性的作用。

FRI依赖途径的FLC激活也需要FLC位点上保守SWR1复合体 (SWR1c)作用下的组蛋白变体H2A.Z的沉积[38-39]。SWR1c功能缺失阻止FLC染色质上 H2A.Z的沉积,抑制其表达导致早花。SWR1c是ATP酶染色质重塑复合体,其功能是使H2A.Z代替正常的H2A提高拟南芥体内FLC的转录能力[40]。研究结果显示进一步乙酰化修饰的组蛋白变体H2A.Z核小体不稳定解体促进FLC的转录[41-42]。FLC起始位点H2A.Z的沉积可能是通过这种机制促进FLC的转录。

除了染色质修饰因子,FRI依赖途径的FLC激活需要FRL1、FES1 2个植物特异因子和SUF4、FLX 2个组分[43–47],这些蛋白与FRI结合形成一个假定的转录增强复合体FRIc,其中SUF4识别FLC的近端启动子顺式元件[48]。任一FRIc亚单位功能缺失可以抑制FLC表达,导致没有任何明显表型变化的早花,表明这一复合体是FLC特异增强子;FRIc复合体直接与染色质修饰因子EFS和SWR1c结合[20,48]。另外,FLC位点上WDR5积累需要有功能的FRI,表明FRIc募集COMPASS使之参与到FLC染色质H3K4甲基化过程中[27],同时这些结果表明FRIc募集或者吸引很多FLC染色质修饰因子至基因位点并激活其表达。FRI依赖途径的FLC激活需要许多有效的染色质修饰,包括组蛋白变体H2A.Z的沉积、组白乙酰化、组白H3K4三甲基化、H2B单泛素化和H3K36二甲基化和三甲基化。这些FLC的染色质修饰存在功能上的相互依赖,如EFS缺失不仅导致以FRI为背景H3K36三甲基化水平的降低,而且也降低了H3K4三甲基化水平[20,49]。总之,结合到FLC近端启动子后FRIc募集或吸引很多有活性染色质修饰因子,在FLC位点形成有利于FLC表达的微环境,从而形成冬性一年生植物的开花习性。

如上所述,FRIc复合体功能依赖于PAF1c,酵母中保守的Paf1c与PolⅡ和很多染色质修饰因子结合,包括COMPASS、1个H3K36甲基转移酶和H2B单泛素化复合体[50]。在FLC位点,PAF1c可能与FRIc直接结合行使功能,导致其募集或吸引有活性的染色质修饰因子,从而提高FLC转录水平。

3 染色质修饰调节FT基因表达

FT被长日照和外界环境温度升高诱导在维管组织中特异表达;各种染色质修饰因子,包括SWR1c、PRC2、LHP1、REF6H3K27的去甲基化酶和PKDM7BH3K4的去甲基化酶,参与到FT的表达调控中。

FT不管在长日照还是在短日条件下均可被PcG抑制,CLF缠绕在FT染色质上,促进FT染色质的组蛋白H3K27三甲基化积累抑制FT表达[51]。另外,其他PRC2组分,包括SWN、EMF2和FIE也会抑制FT的表达[51-52],表明PRC2-like复合体使FT染色质H3K27积累而抑制其在维管组织中表达。H3K27三甲基化水平被H3K27去甲基转移酶动力调控,REF6、含JmjC结构域的H3K27去甲基转移酶参与FT染色质H3K27去甲基化是其表达必须的[53]。因此,FT染色质的H3K27的三甲基化水平被PRC2和REF6动态控制。如上所述,H3K27三甲基化标记已被LHP1所识别。事实上,LHP1直接缠绕在FT染色质上抑制其在维管组织中表达[54]。另外,另一个假定的PRC1-like组分EMF1也抑制FT的表达[55-56],同时PRC1-like复合体与PRC2协同作用抑制FT表达从而抑制植物成花。

FT染色质有一个二价结构,自发携带有活性H3K4三甲基化标记和抑制态的H3K27三甲基化标记[51],PRC2依赖途径的H3K27三甲基化被抑制但没有消除,FT染色质的H3K4三甲基化处于活化状态,反之亦然。PRC2功能缺失不仅消除H3K27三甲基化,而且导致FT染色质H3K4三甲基化水平增加[51]。组蛋白H3K4二甲基化和三甲基化去甲基转移酶PKDM7B与FT染色质结合,使FT染色质H3K4去甲基化抑制其表达[57–59],PKDM7B功能缺失导致H3K4三甲基化水平升高而H3K27三甲基化水平降低[57-58],因此FT染色质上H3K4和H3K27三甲基化具有拮抗作用,它们的相对水平在FT的表达调控中起着关键的作用。

FT的表达通过温感途径被环境温度升高所诱导,FT染色质上含有H2A.Z的核小体调节这一反应[60-61],SWR1c作用使组蛋白变体H2A.Z堆积,H2A.Z核小体位于FT起始位点区域,研究已表明环境温度从178℃升高到278℃引起H2A.Z核小体解体,使FT被PolⅡ诱导表达[61],SWR1c的功能破坏导致温度不敏感FT表达增强和早花。

FT在维管组织中特异表达,这一空间调节不涉及上述的染色质修饰因子,如PcG活性在大多数组织中普遍存在,其缺失导致FT仅在维管中脱抑制,表明它是FT表达必须的维管特异因子[52]。因此,FT表达的空间和环境调节不仅涉及到保守的通用染色质修饰因子,也涉及到与FT基因的顺式调节元件共同行使功能的维管特异因子。这些因素共同调控FT的表达,导致植物开花。

4 结语

拟南芥染色质修饰调控成花关键基因FLC和FT的表达,在成花时间决定中起着决定性的作用,FLC染色质修饰涉及到多种保守的染色质修饰因子、植物特异因子和lncRNAs,其他发育基因的调节也涉及到染色质的修饰。FLC基因在十字花科植物中高度保守,而FT基因在被子植物中作为成花诱导因子其结构和功能均高度保守,在拟南芥中参与FT染色质修饰的因子在其他开花植物中也是保守的。因此以拟南芥FT基因调控为基础的染色质修饰机制也可能参与到FT相关基因的调节和其他植物的开花时间控制中,开花时间对环境信号如温度和光周期非常敏感,如何使内在的染色质修饰与外在的环境条件刺激FLC和FT表达最终导致成花转变,是一个值得探讨的有趣的领域。

[1]Michaels SD,Amasino R M.Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization [J].Plant Cell,2001,13:935-941.

[2]Sheldon C C,Rouse D T,Finnegan E,et al.The molecular basis of vernalization:the central role of FLOWERING LOCUS C [J].PNAS,2000,97:3753-3758.

[3]Crevillen P,Dean C.Regulation of the floral repressor gene FLC:the complexity of transcription in a chromatin context[J].Curr Opin Plant Biol,2011,14:38-44.

[4]Kim D H,Doyle M R,Sung S,et al.Vernalization:winter and the timing of flowering in plants[J].Annu Rev Cell Dev Biol,2009,25:277-299.

[5]Amasino R.Seasonal and developmental timing of flowering [J].Plant J,2010,61:1001-1013.

[6]Johanson U,West J,Lister C,et al.Molecular analysis of FRIGIDA,a major determinant of natural variation in Arabidopsis flowering time[J].Science,2010,290:344-347.

[7]Corbesier L,Vincent C,Jang S,et al.FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis[J].Science,2007,316:1030-1033.

[8]Tamaki S,Matsuo S,Wong H L,et al.Hd3aprotein is a mobile flowering signal in rice[J].Science,2007,316:1033-1036.

[9]Jaeger K E,Wigge P A.FT protein acts as a long-range signal in Arabidopsis [J].Curr Biol,2007,17:1050-1054.

[10]Mathieu J,Warthmann N,Küttner F,et al.Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis[J].Curr Biol,2007,17:1055-1060.

[11]Searle I,He Y,Turck F,et al.The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis [J].Genes Dev,2006,20:898-912.

[12]Helliwell C A,Wood C C,Robertson M,et al.The Arabidopsis FLC protein interacts directly in vivo with SOC1and FT chromatin and is part of a high-molecular-weight protein complex [J].Plant J,2006,46:183-192.

[13]Li D,Liu C,Shen L,et al.A repressor complex governs the integration of flowering signals in Arabidopsis [J].Dev Cell,2008,15:110-120.

[14]Wigge P A,Kim M C,Jaeger K E,et al.Integration of spatial and temporal information during floral induction in Arabidopsis [J].Science,2005,309:1056-1059.

[15]Abe M,Kobayashi Y,Yamamoto S,et al.FD,a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex [J].Science,2005,309:1052-1056.

[16]Henikoff S,Shilatifard A.Histone modification:cause or cog?[J].Trends Genet,2011,27:389-396.

[17]He Y.Control of the transition to flowering by chromatin modifications[J].Mol Plant,2009,2:554-564.

[18]Pien S,Fleury D,Mylne J S,et al.ARABIDOPSIS TRITHORAX1dynamically regulates FLOWERING LOCUS C activation via histone H3lysine-4trimethylation [J].Plant Cell,2008,20:580-588.

[19]Xu L,Zhao Z,Dong A,et al.Di-and trimethylation on histone H3lysine 36marks active transcription of genes involved in flowering time regulation and other processes in Arabidopsis thaliana [J].Mol Cell Biol,2008,28:1348-1360.

[20]Ko J H,Mitina I,Tamada Y,et al.Growth habit determination by the balance of histone methylation activities in Arabidopsis[J].EMBO J,2010,29:3208-3215.

[21]De Lucia F,Crevillen P,Jones A M,et al.A PHD-Polycomb repressive complex 2triggers the epigenetic silencing of FLC during vernalization [J].PNAS,2008,105:16831-16836.

[22]Wood C C,Robertson M,Tanner G,et al.The Arabidopsis thaliana vernalization response requires a Polycomb-like protein complex that also includes VERNALIZATION INSENSITIVE 3 [J].PNAS,2006,103:14631-14636.

[23]He Y,Doyle M R,Amasino R M,et al.PAF1-complex-mediated histone methylation of FLOWERING LOCUS C chromatin is required for the vernalization-responsive,winter-annual habit in Arabidopsis [J].Genes Dev,2004,18:2774-2784.

[24]Oh S,Zhang H,Ludwig P,et al.A mechanism related to the yeast transcriptional regulator Paf1cis required for expression of the Arabidopsis FLC/MAF MADS box gene family [J].Plant Cell,2004,16:2940-2953.

[25]Yu X,Michaels S D.The Arabidopsis Paf1ccomplex component CDC73participates in the modification of FLOWERING LOCUS C chromatin [J].Plant Physiol,2010,153:1074-1084.

[26]Schmitz R J,Tamada Y,Doyle M R,et al.Histone H2Bdeubiquitination is required for transcriptional activation of FLOWERING LOCUS C and for proper control of flowering in Arabidopsis [J].Plant Physiol,2009,149:1196-1204.

[27]Jiang D,Gu X,He Y,et al.Establishment of the winter-annual growth habit via FRIGIDA-mediated histone methylation at FLOWERING LOCUS C in Arabidopsis [J].Plant Cell,2009,21:1733-1746.

[28]Jiang D,Kong NC,Gu X,et al.Arabidopsis COMPASS-like complexes mediate histone H3lysine-4trimethylation to control floral transition and plant development[J].PLoS Genet,2011,7:e1001330.

[29]Tamada Y,Yun J Y,Woo S C,et al.ARABIDOPSIS TRITHORAX-RELATED7is required for methylation of lysine 4of histone H3and for transcriptional activation of FLOWERING LOCUS C [J].Plant Cell,2009,21:3257-3269.

[30]Berr A,McCallum E J,Ménard R,et al.Arabidopsis SET DOMAIN GROUP2is required for H3K4trimethylation and is crucial for both sporophyte and gametophyte development[J].Plant Cell,2010,22:3232-3248.

[31]Yun J Y,Tamada Y,Kang Y E,et al.ARABIDOPSIS TRITHORAX-RELATED3/SET DOMAIN GROUP2is required for the winter-annual habit of Arabidopsis thaliana [J].Plant Cell Physiol,2012,53:834-846.

[32]Guo L,Yu Y,Law J A,et al.SET DOMAIN GROUP2is the major histone H3lysine 4trimethyltransferase in Arabidopsis [J].PNAS,2010,107:18557-18562.

[33]Xu L,Ménard R,Berr A,et al.The E2ubiquitin-conjugating enzymes,AtUBC1and AtUBC2,play redundant roles and are involved in activation of FLC expression and repression of flowering in Arabidopsis thaliana [J].Plant J,2008,57:279-288.

[34]Gu X,Jiang D,Wang Y,et al.Repression of the floral transition via histone H2Bmonoubiquitination [J].Plant J,2009,57:522-533.

[35]Cao Y,Dai Y,Cui S,et al.Histone H2Bmonoubiquitination in the chromatin of FLOWERING LOCUS C regulates flowering time in Arabidopsis[J].Plant Cell,2008,20:2586-2602.

[36]Pavri R,Zhu B,Li G,et al.Histone H2Bmonoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II[J].Cell,2006,125:703-717.

[37]Lolas I B,Himanen K,Gr?nlund J T,et al.The transcript elongation factor FACT affects Arabidopsis vegetative and reproductive development and genetically interacts with HUB1/2 [J].Plant J,2009,61:686-697.

[38]Deal R B,Topp C N,McKinney E C,et al.Repression of flowering in Arabidopsis requires activation of FLOWERING LOCUS C expression by the histone variant H2A.Z [J].Plant Cell,2007,19:74-83.

[39]Choi K,Park C,Lee J,et al.Arabidopsis homologs of components of the SWR1complex regulate flowering and plant development[J].Development,2007,134:1931-1941.

[40]Zilberman D,Coleman-Derr D,Ballinger T,et al.Histone H2A.Z.and DNA methylation are mutually antagonistic chromatin marks[J].Nature,2008,456:125-129.

[41]Millar C B,Xu F,Zhang K,et al.Acetylation of H2A.Z.Lys 14is associated with genome-wide gene activity in yeast [J].Genes Dev,2006,20:711-722.

[42]Billon P,Cote J.Precise deposition of histone H2A.Z.in chromatin for genome expression and maintenance[J].Biochim Biophys Acta,2012,1819:290-302.

[43]Michaels S D,Bezerra I C,Amasino R M,et al.FRIGIDA-related genes are required for the winter-annual habit in Arabidopsis[J].PNAS,2004,101:3281-3285.

[44]Schmitz RJ,Hong L,Michaels S,et al.FRIGIDA-ESSENTIAL 1interacts genetically with FRIGIDA and FRIGIDA-LIKE 1to promote the winter-annual habit of Arabidopsis thaliana [J].Development,2005,132:5471-5478.

[45]Kim S,Choi K,Park C,et al.SUPPRESSOR OF FRIGIDA 4,encoding a C2H2-type zinc finger protein,represses flowering by transcriptional activation of Arabidopsis FLOWERING LOCUS C [J].Plant Cell,2006,18:2985-2998.

[46]Kim S Y,Michaels S D.SUPPRESSOR OF FRI 4encodes a nuclear-localized protein that is required for delayed flowering in winterannual Arabidopsis [J].Development,2006,133:4699-4707.

[47]Andersson C R,Helliwell C A,Bagnall D J,et al.The FLX gene of Arabidopsis is required for FRI-dependent activation of FLC expression [J].Plant Cell Physiol,2008,49:191-200.

[48]Choi K,Kim J,Hwang H J,et al.The FRIGIDA complex activates transcription of FLC,a strong flowering repressor in Arabidopsis,by recruiting chromatin modification factors[J].Plant Cell,2011,23:289-303.

[49]Kim SY,He Y,Jacob Y,et al.Establishment of the vernalization-responsive,winter-annual habit in Arabidopsis requires a putative histone H3methyl transferase[J].Plant Cell,2005,17:3301-3310.

[50]Jaehning J A.The Paf1complex:platform or player in RNA polymerase II transcription?[J].Biochim Biophys Acta,2010,1799:379-388.

[51]Jiang D,Wang Y,Wang Y,et al.Repression of FLOWERING LOCUS C and FLOWERING LOCUS T by the Arabidopsis Polycomb repressive complex 2components[J].PLoS ONE,2008,3:e3404.

[52]Farrona S,Thorpe F L,Engelhorn J,et al.Tissue-specific expression of FLOWERING LOCUS T in Arabidopsisis maintained independently of Polycomb group protein repression [J].Plant Cell,2011,23:3204-3214.

[53]Lu F,Cui X,Zhang S,et al.Arabidopsis REF6is a histone H3lysine 27demethylase[J].Nat Genet,2011,43:715-719.

[54]Turck F,Roudier F,Farrona S,et al.Arabidopsis TFL2/LHP1specifically associates with genes marked by trimethylation of histone H3lysine 27 [J].PLoS Genet,2007,3:e86.

[55]Moon Y H,Chen L,Pan R L,et al.EMF genes maintain vegetative development by repressing the flower program in Arabidopsis[J].Plant Cell,2003,15:681-693.

[56]Bratzel F,López-Torrejón G,Koch M,et al.Keeping cell identity in Arabidopsis requires PRC1RING-finger homologs that catalyze H2Amonoubiquitination [J].Curr Biol,2010,20:1853-1859.

[57]Yang W,Jiang D,Jiang J,et al.A plant-specific histone H3lysine 4demethylase represses the floral transition in Arabidopsis[J].Plant J,2010,62:663-673.

[58]Jeong J H,Song H R,Ko J H,et al.Repression of FLOWERING LOCUS T chromatin by functionally redundant histone H3lysine 4demethylases in Arabidopsis[J].PLoS ONE,2009,4:e8033.

[59]Lu F,Cui X,Zhang S,et al.JMJ14is an H3K4demethylase regulating flowering time in Arabidopsis [J].Cell Res,2010,20:387-390.

[60]Blázquez M A,Ahn J H,Weigel D,et al.A thermosensory pathway controlling flowering time in Arabidopsis thaliana [J].Nat Genet,2003,33:168-171.

[61]Kumar S V,Wigge P A.H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis[J].Cell,2010,140:136-147.

猜你喜欢

成花染色质复合体
染色质开放性与动物胚胎发育关系的研究进展
哺乳动物合子基因组激活过程中的染色质重塑
随想
染色质可接近性在前列腺癌研究中的作用
“哺乳动物卵母细胞生发泡染色质构型的研究进展”一文附图
海南冬季诱导火龙果开花的补光条件
修剪方式对大棚青提葡萄成花坐果的影响试验
CoFe2O4/空心微球复合体的制备与吸波性能
3种多糖复合体外抗肿瘤协同增效作用
赤霉酸通过抑制CiFT基因表达降低甜橙开花强度