APP下载

脉冲交互集值微分系统的严格稳定性

2013-03-01鲍俊艳高春霞葛志英

关键词:集值河北大学微分

鲍俊艳,高春霞,葛志英

(1.河北大学 数学与计算机学院,河北 保定 071002;2.河北大学 电子信息工程学院,河北 保定 071002;3.河北工程大学 理学院,河北 邯郸 056038)

随着科学技术的迅速发展,在生物、物理及工程应用等技术领域出现了具有脉冲影响的非线性微分系统的数学模型.这种数学模型描述的是在某个时刻状态会突然发生改变的动力过程,因此脉冲微分方程更具有一般性和应用性,吸引了国内外很多学者从事脉冲微分方程的研究工作,并得到了很多脉冲微分方程解的稳定性及存在性结果[1-10].

另外,近年来集值微分方程的理论得到了快速发展.Wang等学者在文献[11-14]中得到了集值微分系统解的存在性结果.Bhaskar及其他学者得到了集值微分系统解的稳定性结果[15-19].然而,Bao在文献[15]中利用Lyapunov直接方法得到的严格稳定性结果在实际应用中有一定的困难,因为Lyapunov函数导数的定号性条件要求较强.本文采用Lyapunov函数和比较原理,在较弱的条件下得到了脉冲交互集值微分系统的严格稳定性,发展了文献[15]中的方法,并克服了其在应用中存在的困难.

1 预备知识

2 比较原理

[1]LAKSHMIKANTHAM V,LIU X Z.Stability criteria for impulsive differential equations in terms of two measures[J].J Math Anal Appl,1989,137:591-604.

[2]SHEN Jihai.Razumikhin techniques in impulsive functional differential equations[J].Nonlinear Anal,1999,36:119-130.

[3]WANG Peiguang,LIAN Hairong.Stability in terms of two measures of impulsive integro-differential equations via variation of the Lyapunov method[J].Appl Math Comput,2006,177:387-395.

[4]WANG Peiguang,LIU Xia.φ0-Stability of hybrid impulsive dynamic systems on time scales[J].J Math Anal Appl,2007,334:1220-1231.

[5]AHMAD B,SIVASUNDARAM S.Dynamics and stability of impulsive hybrid setvalued integro-differential equations with delay[J].Nonlinear Anal,2006,65:2082-2093.

[6]AHMAD B,SIVASUNDARAM S.Existence results and monotone iterative technique for impulsive hybrid functional differential systems with anticipation and retardation[J].Appl Math Comput,2008,197:515-524.

[7]ZHANG Yu,SUN Jitao.Strict stability of impulsive functional differential equations[J].J Math Anal Appl,2005,301:237-248.

[8]LAKSHMIKANTHAM V,LEELA S.Differential and integral inequalities[M].New York:New York Academic Press.1969.

[9]LAKSHMIKANTHAM V,MOHAPATRA R N.Strict stability of differential equations[J].Nonlinear Anal,2001,46:915-921.

[10]LIU Kaien,YANG Guowei.Strict stability criteria for impulsive functional differential systems[J].J Ineq Appl,2008,Aricle ID 243863:1-8.

[11]GALANIS G N,BHASKAR T G,LAKSHMIKANTHAM V,et al.Set valued functions in Frechet spaces:continuity,Hukuhara differentiability and applications to set differential equations[J].Nonlinear Anal,2005,61:559-575.

[12]WANG Peiguang,GAO Wei.Quasilinearization of an initial value problem for a set valued integro-differential equation[J].Compu Math Appl,2011,61:2111-2115.

[13]AHMAD B,SIVASUNDARAM S.The monotone iterative technique for impulsive hybrid set valued integro-differential equations[J].Nonlinear Anal,2006,65:2260-2276.

[14]王培光,高玮.一阶集值微分方程初值问题拟线性化方法[J].河北大学学报:自然科学版,2011,31(1):1-6.

WANG Peiguang,GAO Wei.Quasilinearization of an initial value problem for set differential equations[J].Hebei University:Natural Science Edition,2011,31(1):1-6.

[15]BAO Junyan,ZHOU Caili,GAO Chunxia.Strict stability of impulsive set valued differential equations[J].Anna Diff Equa,2011,27(2):127-131.

[16]PHU N,QUANG L T,TUNG T T.Stability criteria for set control differential equations[J].Nonlinear Anal,2008,69:3715-3721.

[17]TU N N,TUNG T T.Stability of set differential equations and applications[J].Nonlinear Anal,2009,71:1526-1533.

[18]BHASKAR T G,DEVI J V.Stability criteria for set differential equations[J].Math Cop Model,2005,41:1371-1378.

[19]BHASKAR T G,DEVI J V.Set differential systems and vector Lyapunov functions[J].Appl Math Comput,2005,165:539-548.

猜你喜欢

集值河北大学微分
赵浩岳作品
具有初边值条件的集值脉冲微分方程的平均法
拟微分算子在Hp(ω)上的有界性
向量集值优化问题真有效解的最优性充分条件
上下解反向的脉冲微分包含解的存在性
The Application of a Diverse Visual Angles Concept in Eight Broken Plate to Advertising
An Analysis of the Adventures of Robinson Crusoe
关于集值映射连续性的若干反例
借助微分探求连续函数的极值点
河北大学工商学院招生现状分析