关于 Lucas 数列同余性质的研究
2012-07-05马荣张玉龙
马荣,张玉龙
(1.西北工业大学理学院,陕西 西安 710072;2.西安交通大学电信学院,陕西 西安 710049)
关于 Lucas 数列同余性质的研究
马荣1,张玉龙2
(1.西北工业大学理学院,陕西 西安 710072;2.西安交通大学电信学院,陕西 西安 710049)
将二项式系数的性质应用到Lucas数列的研究中,并结合Fibonacci数列与Lucas数列的恒等式得到几个有趣的Lucas数列的同余式.
Fibonacci数列;Lucas数列;恒等式;同余式
1 引言
当n是素数时,知道Ln模n同余于1,这一性质对部分n是合数的情况也成立.关于Fn与Ln的其它性质,请参见文献[5-8].
2 几个引理
为了证明定理,需要以下几个引理.首先得到几个关于Fn的新的恒等式.
引理2.1对任意非负整数m和n,有
3 定理的证明
[1] Paulo Ribenboim. The New Book of Prime Number Records[M]. New York: Springer, 1996.
[2] Franz Lemmermeyer. Reciprocity Laws[M]. New York: Springer, 2000.
[3] Derek Jennings. Some polynomial identities for the Fibonacci and Lucas numbers[J]. The Fibonacci Quar- terly, 1993,31(2):134-137.
[4] Constance Brown. Fibonacci Analysis[M]. Hoboken: Bloomberg Press, 2008.
[5] Zhang Wenpeng. Some identities involving the Fibonacci numbers and Lucas numbers[J]. The Fibonacci Quarterly, 2004,42:149-154.
[6] Ma Rong. Zhang Wenpeng. Several identities involving the Fibonacci numbers and Lucas numbers[J]. The Fibonacci Quarterly, 2007,45:164-170.
[7] Duncan R L. Applications of uniform distribution to the Fibonacci numbers[J]. The Fibonacci Quarterly, 1967,5:137-140.
[8] Kuipers L. Remark on a paper by R. L. Duncan concerning the uniform distribution mod 1 of the sequence of the Logarithms of the Fibonacci numbers[J]. The Fibonacci Quarterly, 1969,7:465-466.
[9] Apostol Tom M. Intruduction to Analytic Number Theorem[M]. New York: Springer-Verlag, 1976.
On the congruence properties of the Lucas numbers
Ma Rong1,Zhang Yulong2
(1.School of Science,Northwestern Polytechnical University,Xi′an 710072,China; 2.The School of Electronic and In formation Engineering,Xi′an Jiaotong University,Xi′an 710049,China)
In this paper, we have used the properties of the binomial coe±cient to study the Lucas sequences, after combining the binomial coe±cient with the identities involving Fibonacci sequences and Lucas sequences, we have got several interesting congruence identities involving the Lucas sequences.
Fibonacci numbers, Lucas numbers, identities, congruence formula
O156.1
A
1008-5513(2012)02-0269-06
2011-07-29.
国家自然科学基金(11071194);西北工业大学基础研究基金(JC 201123).
马荣(1982-),博士,讲师,研究方向:初等数论与解析数论.
2010 MSC:11B39,11B83