APP下载

两种传递路径不同振动信号的特征分析❋

2012-01-23牛雪梅熊晓燕

中北大学学报(自然科学版) 2012年3期
关键词:齿轮箱齿轮故障诊断

牛雪梅,李 敏,熊晓燕

(1.太原科技大学电子信息工程学院,山西太原 030024;2.太原理工大学机械电子工程研究所,山西太原 030024)

0 引 言

在齿轮故障诊断中,齿轮箱箱体的振动加速度信号是使用最广泛的一种振动信号,已有大量文献研究对其进行各种分析和处理来提取故障特征,在很多情况下也是有效的[1-3].但若齿轮箱内部的传递环节较多时,各种因素会使系统的非线性特征明显,在箱体测得的振动信号是各种信号的交叉耦合,给特征提取带来困难,或者造成故障误判.若从轴端测取扭转振动信号,传递环节少,传递路径简单直接,干扰因素减少,信号比较单纯,经过简单的处理,故障特征就可以清晰地提取出来,利于故障的准确判断.根据实际对象或工业现场的条件,扭振信号的测取可以采取两种方式,一种由高精度编码器信号经变换处理得到[4],另一种使用定子电流信号解调而来.

1 扭振信号的获取

扭转振动是旋转机械中的一种重要的振动形式,传动轴及与其有关联的部件的损伤或故障的信息都可以反映在扭振信号中,并且由于其未经过复杂的传递路径,因而更容易提取出准确的故障特征.

有如下两种方法可以比较有效地获取扭转振动的信号:

1)在轴端安装高精度增量型光电编码器.这种编码器可以产生几千甚至几万个脉冲,其角度分辨率很高,可以感测到幅度(角度)较小的扭转振动,再经过频率-电压转换电路,就能获得扭转振动信号;也可以将编码器输出的信号经过希尔伯特变换而获取扭振信号.有些工业现场的旋转机械就安装有测量转速的编码器,经过适当的改造,可在工业现场方便地测得扭振信号.

2)使用电流传感器提取电机的电流信号,再经过解调分析来得到轴的扭振信号.

2 两种传递路径不同的振动信号的双谱特征

齿轮箱在许多机械系统中都是重要的组成部分,其主要作用是传递动力和改变转速.它的结构形式也多种多样.一般来说,齿轮上的振动激励到箱体上安装的振动加速度计的传递路径是:齿轮→轴→轴承→齿轮箱箱体→加速度计.在这个传递过程中,由于结构本身存在的非线性因素(如间隙、磨损及非线性刚度等)以及传递过程中混入的其它噪声,会使测得的信号非线性程度加强,给诊断带来困难.而直接从轴端测得的扭转振动信号,传递路径简单,非线性因素和干扰噪声减少,利于后续的诊断.

本文使用高阶谱分析对两种传递路径得到的振动信号进行了研究.这里把传递路径作为系统考虑.对于非线性系统,当谐波信号作用于它时,系统的输出信号既包含输入信号原有的频率成分,又会由于非线性耦合而出现新的频率成分.

高阶谱可以识别出非线性相位耦合的情况.这里,高阶谱所检测和描述的信号是指随机激励非线性系统得到的响应信号.设二次非线性系统的输入信号

系统的响应信号

式中:X为非零常数.

信号 z(k)含有余弦项 (λ1,h1),(λ2,h2),(2 λ1,2 h1),(2 λ2,2 h2),(λ1- λ2,h1-h2),(λ1+ λ2,h1+h2).响应信号中不但含有激励信号的频率成分,同时也出现了新的频率成分,它等于激励信号某两个频率成分的和(或差),同时其相位也等于两个相位的和(或差),这种现象就称为二次相位耦合.

功率谱是不含有相位信息的,故其无法检测二次相位耦合,而双谱(三阶累积量)就能检测及表征二次相位耦合的情况[5-15].

齿轮箱-电机实验台如图 1所示,由电机,单级传动齿轮箱,加载装置,振动加速度计和扭转振动测量装置组成.

当齿轮箱中的齿轮、轴和轴承均无故障时,对上述两种传递路径不同的振动信号进行双谱分析.由图 2可以看出,在箱体上测得的振动加速度信号已出现了非线性相位耦合现象,若齿轮箱中的零部件再出现故障时,信号的非线性情况会更加严重;若故障很轻微时,故障特征提取就变得较困难,有时也会出现误判的情况.扭振信号没有经过复杂的传递路径,由于传递路径的因素导致的非线性就不严重,当出现轻微故障时,简单的信号处理就能提取出明显的特征.图 3为扭振信号的双谱图,在 6个对称区域的某个区域中,频率成分简单,没有二次相位耦合现象.

图1 齿轮箱-电机实验台Fig.1 Test-bed of gearbox-motor

图2 箱体振动加速度信号的双谱图Fig.2 Bispectrum of box acceleration sig nal

图3 扭振信号的双谱图Fig.3 Bispectrum of to rsional vibration signal

3 故障特征提取

从上面的分析可以看出,当齿轮传动系统中的零部件有故障或损伤时,箱体振动加速度信号的频率成分就比扭振信号的频率成分复杂的多.当齿轮上存在点蚀、裂纹等故障时,其接触刚度随之发生变化,这会造成扭转刚度的瞬时改变,这种变化会反映在扭振信号中.

对于上述齿轮箱-电机实验台,经过理论计算,传动轴的转动频率为 3.4 Hz,齿轮的啮合频率为 100.4 Hz.这个特征也可以从扭振信号的频谱图中非常明显地体现出来,如图 4所示.

当发生故障时,齿轮啮合而产生的信号被上述故障信号调制,在频谱图上就表现为在啮合频率及其各次谐频的两侧出现间隔均匀的边频带.图 5为点蚀齿轮扭振信号的频谱图.从图 5中可以明显地得到点蚀齿轮的信号特征:在 3.4 Hz处有一突出谱线,在 100.1 Hz处也有一突出谱线,在其两边,存在以 3.4 Hz为间隔的均匀明显的边频带,这与理论计算是基本吻合的.

图4 提取的无损伤齿轮的扭振信号的频谱图Fig.4 Torsional vibration sig nal spectrum of undamag ed gear

图5 提取的点蚀齿轮的扭振信号的频谱图Fig.5 Torsional vibration signal spectrum of pitting gear

对箱体振动加速度信号施以与扭振信号相同的处理,其故障特征就远没有扭振信号的特征明显,如图 6所示.

图6 提取的点蚀齿轮的振动加速度信号的频谱图Fig.6 Vibration acceleration signal spectrum of pitting gear

4 结 论

当齿轮箱中的齿轮、轴和轴承均无故障时,对箱体振动加速度信号和传动轴端测取扭振信号这两种传递路径不同的振动信号进行双谱分析.振动加速度信号频率成分较复杂,出现了非线性相位耦合的现象.若齿轮箱中的零部件在出现故障时,信号的非线性情况会更加严重;若故障很轻微时,故障特征提取就变得较困难,有时也会出现误判的情况.扭振信号没有经过复杂的传递路径,由于传递路径的因素导致的非线性就不严重,双谱图中没有二次相位耦合的现象.当出现轻微故障时,谱分析就能提取出明显的特征.

[1]EndoH,Randall R B,Gosselin C. Differential diagnosis of spall vs.cracks in the gear tooth fillet region: experimentalvalidation[J]. Mechanical Systems and Signal Processing,2009,23(3):563.

[2]王楠,陈长征 ,孙长城,等.基于应力波与小波分析的低速滚动轴承故障诊断研究 [J].振动工程学报,2007,20(3):280-284.Wang Nan,Chen Changzheng,Sun Changcheng,et al. Studyon fault diagnosis of low-speed rolling bearing using stress waves and wavelet analysis[J].Journal of Vibration Engineering,2007,20(3):280-284.(in Chinese)

[3]程发斌,汤宝平,刘文艺.一种抑制维格纳分布交叉项的方法及在故障诊断中应用 [J].中国机械工程,2008,19(14):1727-1731.Chen Fabin,Tang Baoping,Liu Wenyi.Method to suppress cross-terms of wigner-ville distribution and its application in fault diagnosis[J].China Mechanical Engineering,2008,19(14):1727-1731.(in Chinese)

[4]熊晓燕.高分辨率扭振测量方法及其应用[J].振动、测试与诊断,2003,23(1):41-43.Xiong Xiaoyan.High resolution torsional vibration measurement and its applications[J]. Journal of Vibration Measurement& Diagnosis,2003,23(1):41-43.(in Chinese)

[5]张贤达.现代信号处理 [M].北京:北京大学出版社,2002.

[6]陈仲生.基于 M ATLAB 7.0的统计信息处理 [M].长沙:湖南科学技术出版社,2005.

[7]Proakis J G.统计信号处理算法 [M].汤俊译.北京:清华大学出版社,2006.

[8]苏文斌,史维祥,温熙森.故障诊断中非线性耦合特征提取(一)[J].机械研究与应用,1998,11(2):12.Su Wenbin,Shi Weixiang,Wen Xisen.Nonlinear coupling signature extracting in fault diagnosis(one)[J].Mechanical Research& Application,1998,11(2):12.(in Chinese)

[9]李学军,蒋玲丽,杨大栋.基于双谱分布区域的齿轮聚类分析与故障诊断 [J].振动工程学报,2011,24(3):304-308.Li Xuejun, Jiang Lingli,Yang Dadong. Cluster analysis and faultdiagnosis forgearbased on bispectrum distribution[J]. Journal of Vibration Engineering,2011,24(3):304-308.(in Chinese)

[10]李凌均,韩捷,李朋勇.矢双谱分析及其在机械故障诊断中的应用 [J].机械工程学报,2011,47(17):50-54.Li Lingjun, Han Jie, Li Pengyong. Vectorbispectrum analysis and its application in machinery fault diagnosis [J]. Journal of Mechanical Engineering,2011,47(17):50-54.(in Chinese)

[11]苏文斌,史维祥,温熙森.故障诊断中非线性耦合特征综合优化 [J].机械应用与研究,1998,11(3):10-12.Sun Wenbin, Shi Weixiang, Wen Xisen.Comprehensive optimization of nonlinearcoupling signature extracting in fault diagnosis [J].Mechanical Research& Application,1998,11(3):10-12.(in Chinese)

[12]马瑞,陈予恕.含裂纹故障齿轮的非线性动力学研究[J].机械工程学报,2011,47(21):84-90.Ma Rui,Chen Yushu.Nonlinear dynamic researcher on gear system with cracked failure[J].Journal of Mechanical Engineering,2011,47(21):84-90.(in Chinese)

[13]张青峰,唐立伟,郑海起.基于非线性动力学模型的齿根裂纹故障分析 [J].机械传动,2010,34(11):58-65.Zhang Qingfeng, Tang Liwei, Zheng Haiqi.Nonlinear dynamics fault model analysis on gear tooth crack[J].Journal of Mechanical Transmission,2010,34(11):58-65.(in Chinese)

[14]李辉,郑海起,唐立伟.基于双谱的齿轮箱升降速过程故障诊断研究 [J].中国机械工程,2006,17(16):1665-1668.Li Hui,Zheng Haiqi,Tang Liwei.Study on order bispectrum to fault diagnosis of gearbox during runup[J].Chinese Mechanical Engineering,2006,17(16):1665-1668.(in Chinese)

[15]张园,李力,邹隽.基于双谱的滚动轴承非线性耦合特征提取与故障分类 [J].轴承,2008(7):37-42.Zhang Yuan,Li Li,Zou Jun.Non-linear coupling characteristics extraction and classification for rolling based on bispectrum[J].Bearing,2008(7):37-42.(in Chinese)

猜你喜欢

齿轮箱齿轮故障诊断
风电齿轮箱轴承用钢100CrMnSi6-4的开发
基于包络解调原理的低转速滚动轴承故障诊断
东升齿轮
你找到齿轮了吗?
异性齿轮大赏
数控机床电气系统的故障诊断与维修
齿轮传动
提高齿轮箱式换档机构可靠性的改进设计
基于量子万有引力搜索的SVM自驾故障诊断
基于伪故障信号的齿轮箱故障诊断方法