铝合金焊接加工工艺及焊接裂纹的防止措施
2010-08-15吴水龙
吴水龙
(浙江中元建设股份有限公司,浙江 嘉兴 314000)
虽然已经应用铝及其合金焊成许多重要产品,但实际焊接生产中并不是没有困难,主要的问题有:焊缝中的气孔、焊接热裂纹、接头"等强性"等。由于铝及其合金的化学活泼性很强,表面极易形成氧化膜,且多具有难熔性质(如Al2O3的熔点为 2050℃,MgO 熔点为 2500℃),加之铝及其合金导热性强,焊接时容易造成不熔合现象。由于氧化膜密度同铝的密度极其接近,所以也容易成为焊缝金属中夹杂物。同时,氧化膜(特别是有 MgO存在的,不很致密的氧化膜)可以吸收较多水分而常常成为焊缝气孔的重要原因之一。此外,铝及其合金的线胀系数大,导热性又强,焊接时容易产生翘曲变形。
1 铝合金材料特点
铝是银白色的轻金属,具有良好的塑性、较高的导电性和导热性,同时还具有抗氧化和抗腐蚀的能力。铝极易氧化产生三氧化二铝薄膜,在焊缝中容易产生夹杂物,从而破坏金属的连续性和均匀性,降低其机械性能和耐腐蚀性能。
2 铝合金材料的焊接难点
极易氧化。在空气中,铝容易同氧化合,生成致密的三氧化二铝薄膜(厚度约0.1-0.2μm),熔点高(约2050℃),远远超过铝及铝合金的熔点(约600℃左右)。氧化铝的密度3.95-4.10g/cm3,约为铝的1.4倍,氧化铝薄膜的表面易吸附水分,焊接时,它阻碍基本金属的熔合,极易形成气孔、夹渣、未熔合等缺陷,引起焊缝性能下降。
易产生气孔。铝和铝合金焊接时产生气孔的主要原因是氢,由于液态铝可溶解大量的氢,而固态铝几乎不溶解氢,因此当熔池温度快速冷却与凝固时,氢来不及逸出,容易在焊缝中聚集形成气孔。氢气孔目前难于完全避免,氢的来源很多,有电弧焊气氛中的氢,铝板、焊丝表面吸附空气中的水分等。实践证明,即使氩气按GB/T4842标准要求,纯度达到99.99% 以上,但当水分含量达到20ppm时,也会出现大量的致密气孔,当空气相对湿度超过80%时,焊缝就会明显出现气孔。
焊缝变形和形成裂纹倾向大。铝的线膨胀系数和结晶收缩率约比钢大两倍,易产生较大的焊接变形的内应力,对刚性较大的结构将促使热裂纹的产生。
铝的导热系数大 (纯铝0.538卡/Cm.s.℃)。约为钢的4倍,因此,焊接铝和铝合金时,比焊钢要消耗更多的热量。
合金元素的蒸发的烧损。铝合金中含有低沸点的元素(如镁、锌、锰等),在高温电弧作用下,极易蒸发烧损,从而改变焊缝金属的化学成分,使焊缝性能下降。
高温强度和塑性低。高温时铝的强度和塑性很低,破坏了焊缝金属的成形,有时还容易造成焊缝金属塌落和焊穿现象。
无色彩变化。铝及铝合金从固态转为液态时,无明显的颜色变化,使操作者难以掌握加热温度。
3 铝合金材料焊接的工艺方法
3.1 焊前准备
采用化学或机械方法,严格清理焊缝坡口两侧的表面氧化膜。
化学清洗是使用碱或酸清洗工件表面,该法既可去除氧化膜,还可除油污,具体工艺过程如下:体积分数为6%~10%的氢氧化钠溶液,在70℃左右浸泡0.5min→水洗→体积分数为15%的硝酸在常温下浸泡1min进行中和处理→水洗→温水洗→干燥。洗好后的铝合金表面为无光泽的银白色。
机械清理可采用风动或电动铣刀,还可采用刮刀、锉刀等工具,对于较薄的氧化膜也可用0.25mm的铜丝刷打磨清除氧化膜。
清理好后立即施焊,如果放置时间超过4h,应重新清理。
3.2 确定装配间隙及定位焊间距
施焊过程中,铝板受热膨胀,致使焊缝坡口间隙减少,焊前装配间隙如果留得太小,焊接过程中就会引起两板的坡口重叠,增加焊后板面不平度和变形量;相反,装配间隙过大,则施焊困难,并有烧穿的可能。合适的定位焊间距能保证所需的定位焊间隙,因此,选择合适的装配间隙及定位焊间距,是减少变形的一项有效措施。
3.3 选择焊接设备
目前市场上焊接产品种类较多,一般情况下宜采用交流钨极氩弧焊(即TIG焊)。它是在氩气的保护下,利用钨电极与工件问产生的电弧热熔化母材和填充焊丝的一种焊接方法。该焊机工作时,由于交流电流的极性是在周期性的变换,在每个周期里半波为直流正接,半波为直流反接。正接的半波期间钨极可以发射足够的电子而又不致于过热,有利于电弧的稳定。反接的半波期间工件表面生成的氧化膜很容易被清理掉而获得表面光亮美观、成形良好的焊缝。
3.4 选择焊丝
一般选用301纯铝焊丝及311铝硅焊丝。
3.5 选取焊接方法和参数
一般以左焊法进行,焊炬和工件成60°角。焊接厚度15mm以上时,以右焊法进行,焊炬和工件成90°角。
焊接壁厚在3mm以上时,开V形坡口,夹角为 60°~70°,间隙不得大于 1mm,以多层焊完成。壁厚在1.5mm以下时,不开坡口,不留间隙,不加填充丝。焊固定管子对接接头时,当管径为200mm,壁厚为6mm时,应采用直径为3~4mm的钨极,以220~240A的焊接电流,直径为4mm的填充焊丝,以1~2层焊完。
4 铝合金焊接裂纹的防止措施
根据铝合金焊接时产生热裂纹的机理,可以从冶金因素和工艺因素两个方面进行改进,降低铝合金焊接热裂纹产生的机率。
在冶金因素方面,为了防止焊接时产生晶间热裂纹,主要通过调整焊缝合金系统或向填加金属中添加变质剂。调整焊缝合金系统的着眼点,从抗裂角度考虑,在于控制适量的易熔共晶并缩小结晶温度区间。由于铝合金属于典型的共晶型合金,最大裂纹倾向正好同合金的"最大"凝固温度区间相对应,少量易熔共晶的存在总是增大凝固裂纹倾向,所以,一般都是使主要合金元素含量超过裂纹倾向最大时的合金组元,以便能产生"愈合"作用。而作为变质剂向填加金属中加入Ti、Zr、V 和 B等微量元素,企图通过细化晶粒来改善塑性、韧性,并达到防止焊接热裂纹的目的尝试,在很早以前就开始了,并且取得了效果。
在工艺因素上,主要是焊接规范、预热、接头形式和焊接顺序,这些方法都是从焊接应力上着手来解决焊接裂纹。焊接工艺参数影响凝固过程的不平衡性和凝固的组织状态,也影响凝固过程中的应变增长速度,因而影响裂纹的产生。热能集中的焊接方法,有利于快速进行焊接过程,可防止形成方向性强的粗大柱状晶,因而可以改善抗裂性。采用小的焊接电流,减慢焊接速度,可减少熔池过热,也有利于改善抗裂性。而焊接速度的提高,促使增大焊接接头的应变速度,而增大热裂的倾向。可见,增大焊接速度和焊接电流,都促使增大裂纹倾向。在铝结构装配、施焊时不使焊缝承受很大的钢性,在工艺上可采取分段焊、预热或适当降低焊接速度等措施。通过预热,可以使得试件相对膨胀量较小,产生焊接应力相应降低,减小了在脆性温度区间的应力;尽量采用开坡口和留小间隙的对接焊,并避免采用十字形接头及不适当的定位、焊接顺序;焊接结束或中断时,应及时填满弧坑,然后再移去热源,否则易引起弧坑裂纹。对于 5000系合金多层焊的焊接接头,往往由于晶间局部熔化而产生显微裂纹,因此必须控制后一层焊道焊接热输入量。
对于铝合金的焊接,母材和填充材料的表面清理工作也相当重要。材料的夹杂在焊缝中将成为裂纹产生的源头,并成为引起焊缝性能下降的最主要原因。
[1]罗树方.焊接手册一一焊接方法及设备(第二版)第1篇第5章[M].北京:机械工业出版社,2001.
[2]刘玉东.小议现代焊接工艺中常用的几种铝合金焊接方法.今日科苑,2008.06.