APP下载

电磁波的生物效应与人体健康

2010-02-03吴石增

关键词:热效应生物体电离辐射

吴石增

(1中国科学院电工研究所,北京100190;2中南民族大学生物医学工程学院,武汉430074)

电磁波是客观存在的一种物质形式,通过专门设备可以感觉到它的存在.事实上,我们周围充满了各种类型的电磁波,它与人们的生活紧密相关.例如,我们用收音机可以听到电台的广播节目,用电视机可以收看到电视台的电视节目,人们天天都在使用手机打电话、发短信,这些事实都表明在我们周围存在着各种台站所发射的电磁波.与此同时,在医学健康领域基于电磁波的疾病诊断仪器和治疗仪器也得到广泛应用.也就是说当今人们的生产和生活活动中一刻也离不开电磁波,它在人们的生产和生活活动中起着不可估量的作用.当它为人们谋福利的同时,也为人们的生活和健康带来一定的负面影响.当其作用到人体时,不同波段的电磁波会产生不同的生物效应.但从大的方面来说,电磁波的生物效应分两种:即电离辐射效应和非电离辐射效应[1-3].电离辐射对人体有较强的伤害作用,人们在日常生产和生活中,需要特意的对它们进行防护;非电离辐射虽然对人体没有明显的伤害作用,但长时间作用所产生的累积效应也会产生潜移默化的伤害作用.也就是说电磁波是人类健康的“双刃剑”,人们在广泛接触电磁波的现实环境中,有必要认识和了解电磁波“双刃剑”的特性,以便趋利避害,充分利用它对人类生活和健康有益的一面,而对其对人体伤害的一面进行防护,使其更好地为人类的生产和生活活动以及人类的健康服务.

1 电磁波谱

根据物理学可知,电磁波就是随时间变化的电磁场,它具有波动的性质.在自由空间中,电磁波的波长λ和振荡频率f之间有如下关系:

式中,c是电磁波在自由空间的传播速度,它等于光速,即约为3×108m/s.这一速度大致相当于电磁波在一秒内沿赤道绕地球传播7周半.

从式(1)可以看出,不同波长的电磁波对应不同的频率和不同的能量,这些不同的参数变化形成电磁波谱[1-3],如表1所示.根据电磁波谱,电磁波划分为7个波段,依次是无线电波(又称射频)、微波、红外线、可见光、紫外线、X-射线、射线.它们的特点和规律是:波长依次从长变短,频率依次由低变高,能量依次由小变大.

人类是世界上最高级的生物,要了解电磁波对人体作用的影响,首先应该了解电磁波的生物效应.电磁波对生物的影响很复杂,每种电磁波由于它们的波长、频率和能量的不同,其对生物体的影响程度也各不相同.高能量波段的电磁波产生电离辐射效应,低能量波段则产生非电离辐射效应.

表1 电磁波谱Tab.1 Spectrum o f electrom agneticw ave

2 电离辐射效应

2.1 电离辐射的定义

由生物学可知,人体的软组织是由细胞购成,而细胞的结构又主要由蛋白质构成,蛋白质又由大量的分子所构成.当具有极高能量的电磁波或粒子流对生物体进行辐射作用时,分子内的原子在高能量的激发下就会失去电子,一旦原子失去电荷,分子的化学结构就会发生变化,形成离子,这种现象称为电离辐射效应.

2.2 电离辐射对人体健康的影响

人体软组织的细胞核中有DNA和RNA等基因物质,它们是由四种不同的碱基的各种排列控制着细胞的生存和分裂方式,这些排列就是遗传密码.在电离辐射的作用下,由于分子结构的变化,细胞的遗传密码往往就要被打乱,遗传密码一旦被打乱,细胞就有可能向着无法预计的方向发展,对生物体造成损害,使其产生不同程度的病变.

电离辐射在人体组织内释放能量,导致细胞死亡或损伤.在少量剂量下,它并不能对人体造成伤害.在某些情况下,细胞并不死亡,但是变成非正常细胞,有些为暂时,有些为永久的,那些非正常细胞甚至发展为癌变细胞.大剂量的辐射将引起大范围的细胞死亡.在小剂量的辐射下,人体或部分被辐射器官能存活下来,但是最终导致癌症发病的几率大大增加.受辐射损伤范围依赖于辐射源的大小,受辐射时间以及受辐射组织的面积和特性.受低剂量或中等剂量的辐射的伤害并不能在几个月甚至是1年中显示出来.例如,因辐射引起的白血病,受辐射发病的潜伏期为2年,肿瘤潜伏期为5年.辐射后产生的病变与发病的几率依赖于受辐射的类型(慢性辐射,急性辐射).但是并不是所有受辐射后产生的病因都由辐射引起.同时,因辐射诱发的癌症及人体基因的损伤与其他因素无显著差别.其中,慢性辐射在长时间内断断续续的暴露在低水平剂量的辐射环境下,慢性辐射产生的作用,只有在辐射后的一段时间后,才可能被察觉.这种作用包括:DNA变异、诱发癌症、良性肿瘤、白内障、皮肤癌、先天性缺陷等.急性辐射是在很短的时间内受到大剂量的辐射,大剂量的辐射一般由放射事故或是特殊的医疗过程产生的.在大多数情况下,大剂量的急性辐射能引起立即损伤,并产生慢性损害.对于人体,大剂量能引起急性放射病,如大面积出血,细菌感染,贫血,内分泌失调等,后期效应可能引起白内障,癌症,DNA变异等,极端剂量能在很短的时间内导致死亡.

2.3 具有电离辐射作用的电磁波段

如前所述,生物体的电离辐射是具有极高能量的电磁波或粒子流对生物体辐射时所产生的现象.具体到电磁波具有的能量达到多高时才能产生电离辐射效应呢?研究表明,电磁波的能量大于124 eV时就可以产生电离辐射效应[1],也就是124 eV是电磁波电离辐射的阈值.根据表1所列出的电磁波各波段的特征参数,其中X射线和γ射线所具有的能量均超过了这个阈值,它们对生物组织都具有明显的电离辐射作用,同时对生物组织还具有较强的穿透能力,其中γ射线经聚焦还能对生物组织进行切割.

从表1中还可以看出紫外线的能量其上限值已达到了电离辐射的阈值124 eV.尽管科学家们在划分电离辐射波段范围时,没有将其划入电离辐射范围之内,但其还是有微弱的电离辐射作用,紫外线应该算是从非电离辐射波段到电离辐射波段的过渡波段.它的微弱的电离辐射效应,对生物体还是有一定的损伤作用.例如,人体较长时间地接受紫外线的照射,就会出现伤痕;还有人们常用的紫外线消毒,就是用紫外线对细菌进行杀灭,这是由于细菌是细胞结构简单的生物体,紫外线微弱的电离作用能将细胞结构简单的生物体予以杀灭.为此,当人们使用有关紫外线的仪器和设备时,也要谨慎从事,防止使用不当所造成的误伤.

3 非电离辐射效应

如前所述,X射线和γ射线对生物体产生电离辐射作用,紫外线是非电离辐射作用向电离辐射作用过度波段,具有微弱的电离辐射作用.属于电磁波范围的其它几个波段——射频、微波、红外线、可见光对生物体的作用则为非电离辐射作用.非电离辐射作用又分为热效应和非热效应两类[2,4].

3.1 热效应

3.1.1 热效应产生的机制

人体内70%是水,所含各种组织、细胞、体液等无不由大量的分子、离子所组成.分子中可分为极性分子和非极性分子,前者指其内部正、负电荷中心分离,后者的正、负电荷中心暂且重合.离子则是分子或分子团、原子或原子团失去或得到电子而成为带电的正离子或负离子.当电磁波作用到生物组织时,受到了外加电磁场的作用,将发生以下两种机制的热效应[2,4].

(1)欧姆加热效应:其加热原理是电流流经电阻时电阻生热的原理.当人体内部的自由电子、离子即沿外加电场、磁场力的方向运动,引起定向传导电流或局部涡旋电流,这些电流与生物组织的电阻抗相互作用,产生欧姆加热效应.

(2)波动能量加热效应:其加热原理为物体之间摩擦生热的工作原理.极性分子则在交变电磁场的作用下随其频率作振动,原非极性分子因为电磁场的作用变成极化分子也随电磁场的频率作振动,结果使分子内能增加,即产生波动能量加热效应.无论是电子、离子的定向或涡旋运动还是极化分子的高频振动,都要加剧离子间的摩擦、极化分子之间的摩擦以及离子与极化分子的相互摩擦,这些摩擦都会产生热效应.

至于欧姆加热效应为主,还是波动能量加热效应为主,这取决于所施加电磁波的频率.一般说来,生物体组织既具有介电特性,又有导电特性,究竟以哪种性质为主,这取决于生物体特征频率的fc值与外加交变电磁场的频率.设外加电磁场的频率为f,则有:

当f≪fc时,介质的电阻抗较小,可看作导电体;当f≫fc时,介质的电阻抗较大,可看作介电体.

对于第一种情况生物体内会流过较强的电流,为此低频电磁波对生物体来说以欧姆加热效应为主;对于第二种情况生物体内流过的电流很微弱,极性分子在高频电磁场的作用下高频振动成为主要倾向,此时以波动能量加热效应为主.不管是那一种效应的加热,都表现为生物组织对电磁波能量的吸收,将电磁波能量转换为热能,使生物组织的温度升高.

3.1.2 对生物组织的加热深度

电磁波对生物组织的加热深度又称为穿透深度,它指波动能量加热效应的加热深度,它是衡量电磁波加热能力的一项重要指标.电磁波在进入生物组织媒质时被吸收而衰减,并且在不同性质的生物组织媒质的界面处产生反射和折射.在此过程当中,电磁波在媒质中不断损失能量,被组织所吸收,产生热量,使组织温度升高.由此看来,电磁波对生物组织加热的过程,就是自身能量和强度不断损失的过程.到底其能量和强度损失多少,就失去了再加热的能力,具体说来也就是对生物组织加热的深度是多少.

电磁波的能量和强度与它的振幅密切相关,物理上把电磁波振幅衰减为原振幅的1/e时,在生物组织中所传播的距离称为穿透深度[4,5].e是数学中的一个常数,其值e=2.71828183,则有:1/e=0.3678795≐0.37,亦就是电磁波振幅衰减为原振幅的37%时所传播的距离称为穿透深度.此时电磁波相应的能量减小到原来最大值的1/e2=0.135=13.5%.

3.1.3 加热深度的影响因素

(1)与电磁波的频率密切相关.电磁波对生物组织的穿透深度一方面与频率有密切关系,当其频率越高,波长越短,在传播过程中其波动能量热效应越显著,越容易被生物组织所吸收,其强度衰减越厉害,穿透深度越浅.

(2)与生物组织的性质密切相关.同一频率和功率的电磁波,对不同的生物组织的穿透深度也不相同.含水量多的生物组织,更容易吸收电磁波能量将其转换成热能,电磁波强度衰减较快,穿透深度较小.肌肉与脂肪和其他生物组织相比含水量较多,电磁波在其内部传播时,强度衰减较快,穿透深度较浅.表2给出了不同频率的电磁波对肌肉组织的穿透深度[4,5],以作参考.从表中可看出随着电磁波频率的升高穿透深度逐渐变浅的关系.

表2 不同频率的电磁波对肌肉的穿透深度Tab.2 Penetration dep th ofm uscle by electrom agnetic w avew ith different frequency

3.2 非热效应

电磁波的非热效应主要包括对神经肌肉的刺激作用和其他生物物理效应[4,5].电磁波对神经、肌肉产生刺激的原因为,当有电流流过神经、肌肉中的兴奋细胞,并使细胞膜内外电位差达到或超过阈值时,即产生兴奋现象.这种兴奋现象,在神经中表现为刺激信号,在肌肉中则表现为使之收缩.由于细胞膜主要呈电容特性,在高频电磁场作用时阻抗降低,同样电流所产生的膜内外电位差比低频电流产生的电位差要小的多.为此,对于其中的第一种刺激作用,随电磁波频率的升高成反比例减小,大体上,低频时1m A/cm2的电流密度即可产生兴奋刺激作用,当频率超过1 kH z时,则较难激起兴奋,例如频率为1M H z时,电流密度需达1A/cm2才能引起兴奋.

电磁场除热效应和对神经、肌肉有刺激作用外,还可以对生物组织细胞、分子产生某些微妙的生物物理效应.例如,以可闻声波频率调制的电磁波作用于生物组织时会产生音感;用低频电磁波作用于人体时则可引起脑电波的变化等.一般将这些生物效应称为非热效应,以与热效应相区别.由于此类现象通常在电磁场强度为数V/cm,并且作用时间较长时才会发生,故在热效应的应用场合一般不予考虑.

3.3 非电离辐射对人体健康的影响

3.3.1 累积效应对人体健康的影响

人体的器官和组织都存在微弱的电磁场,它们是稳定和有序的,一旦受到外界电磁波的干扰,所产生的热效应或非热效应作用于人体后,处于平衡状态的微弱电磁场即遭到破坏,人体正常循环机能就会遭受一定程度的破坏.如果外界电磁波的干扰经短时间的作用后及时消除,人体组织内所存在的微弱电磁场就会恢复到稳定和有序的状态,对人体健康不会有什么影响.如果外界电磁波连续或者较频繁地重复作用于人体,所产生的热效应和非热效应对人体的伤害尚未来得及自我修复之前,再次受到电磁波辐射的话,其伤害程度就会随之发生累积,久而久之其累积效应就会诱发永久性病变.对于长期接触电磁波辐射的群体,应当警惕积累效应对身体健康的影响.

各国科学家经过长期研究证明:长期接受电磁辐射会造成人体免疫力下降、新陈代谢紊乱、记忆力减退、提前衰老、心率失常、视力下降、听力下降、血压异常、皮肤产生斑痘、粗糙,甚至导致各类癌症等;男女生殖能力下降、妇女易患月经紊乱、流产、畸胎等症.

3.3.2 热效应对疾病的治疗作用

人体的疾病多种多样,但一般来说分为两大类,即恶性肿瘤和一般良性疾病.电磁波的热效应对两类疾病均有治疗作用.

(1)对肿瘤的治疗作用.随着对电磁波及其应用技术的研究和发展,人们认识了电磁波对生物组织的热效应以及对肿瘤有效治疗作用,对加热治疗肿瘤有了更加理性的认识.首先是肿瘤组织细胞与正常组织细胞相比对加热敏感,41~43℃即死亡,而正常组织在这个温度范围内不受损伤;第二,癌组织中含水量明显高于正常组织,且肿瘤组织内血管紊乱,血流量低,仅为正常组织的2%~15%,电磁波辐射后使瘤体发热容易、散热慢,很快形成高温.以上两点就形成了瘤体组织高温致死时间远少于正常组织的原因.

(2)对良疾性病的治疗作用.电磁波的热效应使皮下组织温度上升,致使毛细血管扩张,加速血液流动,使微循环血流量能增加1倍,致使病变组织微循环得到充分的改善,吸收能量养分、排除废物,以促进病变组织的新陈代谢,增强机体的生物免疫功能,提高细胞活力,改善局部组织的营养状态,达到治疗疾病的目的.

4 结束语

1864年,英国科学家麦克斯韦在总结前人研究电磁现象的基础上,建立了完整的电磁波理论.他断定电磁波的存在,推导出电磁波与光具有同样的传播速度.一个半世纪以来,人们对电磁波的研究和认识由浅入深,应用的领域不断扩展,应用的水平逐渐提高.但仔细回顾与总结起来,电磁波的应用领域主要集中在两大领域,一个是通信领域,另一个就是医学健康领域.在通讯领域的应用,人们建立了无线电广播、电视、移动电话等各种发射台站,研制了相应的接收设备收音机、电视机和手机等等;在医学健康领域,人们基于电磁波的生物效应,趋利避害,研制发明了一系列的医用仪器,如X射线成像疾病诊断仪、射频治疗仪、微波热疗仪、红外线治疗仪、紫外线治疗仪、伽玛手术刀、放疗机等等.随着科学技术的发展,基于电磁波的仪器、设备日益普及,广大的人群已经淹没在电磁波的汪洋大海之中,为此人们有必要普及电磁波的基本知识,了解电磁波的生物效应,深入认识电磁波“双刃剑”的特性,在尽情享受电磁波所带来方便的同时,注意采取必要的防护措施,防止电磁波对自己身体的伤害.

[1] 郭 鹞,陈晓燕.试论电离辐射与非电离辐射生物效应的关系与差异[C]//学术研讨会.全国非电离辐射与电离辐射生物效应及防护学术研讨会论文汇编.西安:西安交通大学出版社,2004.

[2] 吴石增.电磁波与医用仪器[J].现代科学仪器,2007(6):3-7.

[3] 庞小峰.生物电磁学[M].北京:国防工业出版社,2008.

[4] 宋 涛,霍小林,吴石增.生物电磁特性及其应用[M].北京:北京工业大学出版社,2008.

[5] 林世寅,李瑞英.现代肿瘤热疗学[M].北京:学苑出版社,1997.

猜你喜欢

热效应生物体电离辐射
掺杂半导体硅材料电阻率测量的光电效应和热效应
一个控制超强电离辐射抗性开关基因的研究进展
生物体的氧感受与适应
覆盖方式对土壤热效应和食葵生长的研究
化学反应热效应类试题解析
肝素在生物体内合成机制研究进展
电吹风的辐射真的很大吗?
对基层医务人员电离辐射知识*态度行为的调查及干预研究
低水平电离辐射危害小于不良生活习惯
基于Moodle平台的高中生命科学课堂教学实践研究——《生物体内营养物质转变》教学案例