磁共振成像技术在乳腺癌诊断中的应用价值
2024-12-31李刚黄旭李安琪陈文颖吴诗欣邓志翔高欣张武
[摘要]"乳腺癌在全球范围内的发病率持续升高,但其病死率却逐渐降低,这与乳腺癌诊疗水平的提高存在密切联系。影像学技术在乳腺癌的诊断过程中发挥重要作用。在乳腺疾病的检出和诊断方面,磁共振成像(magnetic"resonance"imaging,MRI)技术比乳腺X线钼靶、超声、CT等技术具有更大的优势。MRI技术在乳腺疾病诊断中的应用价值引起临床医师的高度关注。MRI技术的不断进步和应用推广使其在乳腺癌的早期发现、分子分型、新辅助化疗效果评估、手术前评估及手术后随访监测等方面的应用价值逐步得到认可。本文对乳腺癌的流行病学特征及乳腺MRI的成像原理、成像特点和应用现状等作一综述,旨在为乳腺癌的早期诊断、治疗方案选择、疗效评估及预后随访监测提供技术指导和理论支持。
[关键词]"乳腺癌;磁共振成像;诊断
[中图分类号]"R445.2;R737.9""""""[文献标识码]"A""""""[DOI]"10.3969/j.issn.1673-9701.2024.23.031
乳腺癌是一种源于乳腺上皮组织的恶性肿瘤[1]。在全球范围内,乳腺癌是女性健康的最大威胁者,已成为当今社会的重大公共卫生问题之一。2020年,全球乳腺癌的发病人数和死亡人数约为226万和68.5万例,分别占女性恶性肿瘤的24.5%和15.5%[2]。近年来,乳腺癌的发病率呈快速上升趋势。中国不同地区的经济发展水平和居民生活习惯导致乳腺癌的发病率存在差异。中国城市女性乳腺癌的年龄标化发病率高于农村[3]。此外,乳腺癌呈现年轻化趋势[4]。中国乳腺癌的发病和死亡人数较多,社会负担较重[5]。乳腺癌早期筛查和诊疗是减轻乳腺癌社会负担的前提和基础。乳腺癌的早期诊断主要依赖于影像学技术,乳腺癌的分子异质性和复杂性及形态学上的差异性极大地增加了乳腺癌精准诊断的难度[6-7]。近年来,乳腺磁共振成像(magnetic"resonance"imaging,MRI)技术有了快速发展,其可有效弥补乳腺X线钼靶、超声、CT等技术在乳腺疾病诊断方面的不足。乳腺MRI检查包括多种技术,每种技术诊断乳腺疾病的敏感度和特异性不同。本文对乳腺MRI的成像原理、成像特点和应用现状等作一综述。
1""乳腺MRI的成像原理及特点
MRI是一种利用人体内氢质子的磁性特征来获取图像的技术。在强磁场作用下,氢质子会排列成一个总磁矩,受射频脉冲激励而偏离平衡状态,出现驰豫现象。当射频脉冲停止后,氢质子会恢复平衡状态,同时释放出无线电信号。这些信号被接收线圈捕获,经过处理和转换,最终在显示器上呈现出人体不同层面的灰度图像。人体各组织和器官中氢质子含量差异很大,其氢核所产生的T1、T2值不同,可用于区分人体不同组织结构和病变。MRI检查可对组织进行多序列、多角度和多参数成像[8]。乳腺MRI检查序列包括常规序列和功能序列。常规序列包括T1加权成像、T2加权成像及T2加权成像压脂。功能序列包括动态对比增强磁共振成像(dynamic"contrast-enhanced"magnetic"resonance"imaging,DCE-"MRI)、弥散加权成像(diffusion"weighted"imaging,DWI)、弥散张量成像(diffusion"tensor"imaging,DTI)、体素内不相干运动成像、扩散峰度成像、磁共振波谱(magnetic"resonance"spectroscopy,MRS)、磁敏感加权成像、磁共振弹性成像(magnetic"resonance"elastography,MRE)等。
2""乳腺MRI的成像优势
在临床工作中,乳腺癌的筛查方式主要有体格检查和影像学检查。但有研究表明,体格检查在乳腺癌的早期诊断中无统计学意义[9-10]。国内外大量研究表明,乳腺组织病理活检是诊断乳腺癌的金标准。但该检查价格昂贵、操作过程繁琐且属于有创性检查,术后留有疤痕,会给患者造成不同程度的身心伤害,不易被患者所接受[11]。因此,影像学检查成为乳腺疾病诊断的主要手段。目前,乳腺癌常用影像学检查方法包括乳腺X线钼靶、超声、红外线、CT、MRI和核素显像等[12]。乳腺X线钼靶具有操作简便、经济、无创等特点,而成为乳腺癌筛查和诊断的首选方法;但乳腺X线钼靶检查为软X线摄影,射线穿透力较弱,对致密乳腺组织结构显示不佳,尤其对乳腺的边缘部位,如乳头、乳晕、乳腺深部靠近胸壁和乳腺尾部病变难以清晰显示,极易造成误诊和漏诊;此外,X线钼靶检查还存在一定的电离辐射,对人体有潜在危害[13]。乳腺超声检查方便、经济、快捷,可对致密乳腺组织病变的形态、大小、性质、边缘及其对周边组织的浸润情况予以清晰显示,定位准确;但超声检查受主观因素影响较大,检查结果很大程度上取决于检查医师的临床经验,且图像前后的重复性和可比性较差,直径<1cm的肿物常被遗漏[14]。乳腺红外线检查是一种利用人体热分布差异获取可视化图像的影像学技术。乳腺红外线检查具有简便、无创、灵敏度高、血管影像显示清晰等优点,可降低漏诊的风险;但红外线检查也有局限性,其不能清晰反映组织病变的形态、位置和钙化程度,直径<2cm乳腺癌组织诊断的准确率较低[15]。乳腺CT检查密度分辨率高,能避免乳腺组织重叠影响,精确显示致密乳腺内隐匿病灶的形态、大小和边缘等情况,通过CT值差异可有效区分囊性、实性和脂肪性肿块;但当组织成份相近时,通过肉眼或CT值鉴别病变组织较为困难,且CT检查的辐射剂量较大,易受部分容积效应影响[16-17]。对于新诊断的乳腺癌患者,正电子发射计算机体层显像仪(positron"emission"tomography"and"computed"tomography,PET/CT)可提供病灶详细的功能与代谢等信息,提供病灶的精确解剖定位,反映肿瘤的恶性程度。一次PET/CT显像可获得全身各方位的断层图像,具有灵敏、准确、特异性及定位精确等特点,可达到早期发现病灶和诊断疾病的目的;但PET/CT的辐射剂量也相对较高。相比之下,正电子发射磁共振成像对肝脏和骨转移的敏感度更高,且辐射剂量只有PET/CT的一半左右[18]。
乳腺MRI检查对软组织的分辨率高,在肿瘤的良恶性诊断和分子分型中的应用价值较高,且无电离辐射。乳腺MRI检查能够清晰显示致密型乳腺和假体植入乳腺后的乳腺肿瘤,也能发现X线钼靶或超声检查未能检出的肿块,乳腺癌检出率高,能够有效降低乳腺肿块漏诊和误诊的发生率。同时,磁共振引导可提高组织活检的安全性和有效性。乳腺MRI技术不断改进,特别是在高场设备设备、超高场设备、乳腺专用线圈、柔性线圈、快速成像序列和人工智能(artificial"intelligence,AI)的支持下,其敏感度和特异性都得到显著提高。乳腺MRI技术能同时对双侧乳腺进行成像,从任意角度均可观察乳腺结构,不会受到患者体型和病灶位置的限制[19]。乳腺MRI检查可进行多序列联合扫描,不同序列功能各异,联合扫描可弥补各自的不足,如常规MRI对钙化不敏感,但磁敏感加权成像能够发现微小钙化病灶。乳腺MRI不仅可对病变组织进行形态学观察,还可对病变组织进行功能学评估和定性诊断。DWI可通过判定组织中水分子的随机运动情况来判定病变组织的性质,用于区分乳腺良性和恶性病变,并可减少传统DCE-MRI的假阳性结果,减少不必要的活检操作[20-21]。与传统DWI相比,DTI可提供有关扩散方向性的更多信息。有研究者在3T"MRI上应用量化的DTI参数区分良性和恶性乳腺病变[22]。体素内不相干运动可使用多b值DWI分析组织的血流灌注和扩散率,通过双指数曲线拟合得到真实扩散系数、灌注相关扩散系数和灌注分数等参数,有助于区分乳腺病变[23]。扩散峰度成像可描述非高斯分布的扩散特征,使用平均峰度和平均扩散等参数提高乳腺恶性病变诊断的敏感度和准确性。研究表明,与传统DWI、DCE-MRI相比,平均峰度在乳腺癌检测方面具有更高的准确性,曲线下面积为0.979,具有预测肿瘤侵袭性成像标志物的潜在效用[24]。MRS是可用来评估组织化学成分的专用MRI序列,MRS通过检测病变组织中的胆碱及其衍生物分析病变组织的成分,从而判定病变的性质[25]。MRS可作为常规乳腺MRI的补充序列,提高诊断特异性,从而减少不必要的穿刺活检。另有研究表明,MRS有助于评估乳腺MRI发现的可疑非肿块样改变[26]。
3""乳腺MRI在乳腺癌中的应用现状
乳腺MRI常规序列利用组织的T1和T2值产生图像对比。功能序列分为两类,一类是DCE-MRI,通过钆基造影剂反映乳腺肿瘤的血管充盈情况,提供肿瘤血液的动力学信息;另一类是通过提供肿瘤组织的密度、硬度、细胞特征和代谢信息,揭示肿瘤微观结构的异质性。多项研究表明,乳腺MRI可检测出大多数腋窝腺癌女性的原发乳腺癌[27-29]。乳腺MRI可术前确定病变范围,了解肿瘤蔓延及胸肌筋膜、肌肉受累情况,有助于手术计划的制定[30]。对于存在乳腺癌易感基因1/2突变或其他高危遗传综合征患者,术前乳腺MRI有助于发现同侧或对侧乳腺癌[31-32]。研究指出,时间-信号强度曲线半定量参数联合DWI可用于区分恶性和良性乳腺病变,其诊断的灵敏度为83.33%,特异度为97.14%[33]。MRE获得的基于结构的组织硬度定量生物标志物提供弹性、黏度、复剪切模量的幅度和相角参数,这些参数可用于区分良性和恶性乳房肿瘤。研究显示,使用相角参数可提高乳腺癌病变的诊断准确性,结合MRE和MRI的曲线下面积从仅用MRI"BI-RADS的0.84提升到0.92[34]。
随着AI技术和影像组学的发展,利用AI手段对影像数据进行分析可提高病变组织检出和诊断的准确率[35]。Shoshan等[36]研究发现,AI能够提高放射科医师的工作效率。在一项多中心回顾性研究中,应用结合机器学习的多参数MRI放射组学分析,研究者可更好地评估临床乳腺MRI建议活检的可疑增强乳腺肿瘤,有助于准确诊断乳腺癌,同时减少不必要的良性乳腺组织活检[37]。Fan等[38]使用一种基于DCE-MRI的放射组学分析技术预测乳腺癌的分子亚型。Peterson等[39]将乳腺MRI放射组学特征连同人口统计学、化疗、病理数据输入TumorScope"Predict生物物理模拟平台,预测不同亚型乳腺癌对新辅助治疗的体积反应。Chitalia等[40]对95例原发性、侵袭性乳腺癌患者术前行DCE-MRI检查,并进行至少10年随访,发现不同影像学表型患者的无复发生存率有显著差异,高异质性表型患者的预后最差。
虽然乳腺MRI较X线钼靶、超声及CT有诸多优势,但也存在一些局限性,限制了其应用和推广。乳腺MRI检查存在一些绝对或相对禁忌证患者,主要包括体内或体表装有起搏器或其他铁磁性物质者、妊娠早期妇女、幽闭恐惧症者、对钆螯化合物过敏者。另外,乳腺MRI检查的灵敏度较高,会增加不必要的组织活检或手术,可能会延误确定性治疗或导致过度治疗[41]。同时,乳腺MRI检查费用相对较高、耗时长、操作复杂等因素也限制了其广泛应用和推广。
4""小结与展望
乳腺癌已位居我国女性肿瘤发病之首位。乳腺癌筛查对于早期发现和治疗至关重要。乳腺X线钼靶和超声是良好的初筛手段,MRI和CT能进一步明确病变性质及肿瘤分期,对于深部、多中心、多病灶、致密型乳腺病变,MRI比X线钼靶、超声、CT更能准确检测出乳腺癌,其敏感度高达0.97[42]。目前,乳腺MRI快速检查方案已在临床得到应用,影响乳腺MRI应用和推广的因素也在减少。借助AI和影像组学等技术,乳腺MRI技术在乳腺病变的诊断、治疗方案的选择、疗效评估和预后判断等方面展现出更加广阔的应用前景。
利益冲突:所有作者均声明不存在利益冲突。
[参考文献]
[1] WINTERS"S,"MARTIN"C,"MURPHY"D,"et"al."Breast"cancer"epidemiology,"prevention,"and"screening[J]."Prog"Mol"Biol"Transl"Sci,"2017,"151:"1–32.
[2] SUNG"H,"FERLAY"J,"SIEGEL"R"L,"et"al."Global"cancer"statistics"2020:"GLOBOCAN"estimates"of"incidence"and"mortality"worldwide"for"36"cancers"in"185"countries[J]."CA"Cancer"J"Clin,"2021,"71(3):"209–249.
[3] WANG"Y,"YAN"Q,"FAN"C,"et"al."Overview"and"countermeasures"of"cancer"burden"in"China[J]."Sci"China"Life"Sci,"2023,"66(11):"2515–2526.
[4] 何思怡,"李贺,"曹毛毛,"等."全球及我国女性乳腺癌疾病负担年龄分布及变化趋势[J]."中国肿瘤,"2023,"32(1):"1–7.
[5] 刘威,"王黎君,"齐金蕾,"等."1990-2017年中国女性乳腺癌疾病负担分析[J]."中华流行病学杂志,"2021,"42(7):"1225–1230.
[6] NOLAN"E,"LINDEMAN"G"J,"VISVADER"J"E."Deciphering"breast"cancer:"From"biology"to"the"clinic[J]."Cell,"2023,"186(8):"1708–1728.
[7] CÖMERT"D,"VAN"GILS"C"H,"VELDHUIS"W"B,"et"al."Challenges"and"changes"of"the"breast"cancer"screening"paradigm[J]."J"Magn"Reson"Imaging,"2023,"57(3):"706–726.
[8] HENDRICK"R"E."Breast"MRI:"Fundamentals"and"technical"aspects[M]."New"York:"Springer,"2008.
[9] 高道利,"王文婉,"胡永伟,"等."乳腺癌二级预防——上海266064名妇女乳房自我检查效果的评估[J]."中国肿瘤,"2008,"17(4):"264–269.
[10] 沈松杰,"孙强."中国女性乳腺癌筛查现状及适宜模式探索[J]."协和医学杂志,"2018,"9(4):"298–302.
[11] PESAPANE"F,"SUTER"M"B,"ROTILI"A,"et"al."Will"traditional"biopsy"be"substituted"by"radiomics"and"liquid"biopsy"for"breast"cancer"diagnosis"and"characterisation?[J]."Med"Oncol,"2020,"37(4):"29.
[12] 周嘉音,"尤超,"顾雅佳."影像组学在乳腺癌的应用研究进展[J]."国际医学放射学杂志,"2022,"45(2):"174–179.
[13] SECHOPOULOS"I,"TEUWEN"J,"MANN"R."Artificial"intelligence"for"breast"cancer"detection"in"mammography"and"digital"breast"tomosynthesis:"State"of"the"art[J]."Semin"Cancer"Biol,"2021,"72(6):"214–225.
[14] GUO"R,"LU"G,"QIN"B,"et"al."Ultrasound"imaging"technologies"for"breast"cancer"detection"and"management:"A"review[J]."Ultrasound"Med"Biol,"2018,"44(1):"37–70.
[15] 曹学胜,"刘彪,"郑进天,"等."乳腺癌影像学检查方法的应用及最新进展[J]."中国医药指南,"2016,"14(13):"36–37.
[16] BOONE"J"M,"KWAN"A"L,"YANG"K,"et"al."Computed"tomography"for"imaging"the"breast[J]."J"Mammary"Gland"Biol"Neoplasia,"2006,"11(2):"103–111.
[17] 辛宏伟,"徐启怀,"徐晓剑,"等."早期乳腺癌CT检查的诊断价值分析[J]."中国现代医生,"2013,"51(3):"92–93.
[18] MELSAETHER"A"N,"RAAD"R"A,"PUJARAnbsp;A"C,"et"al."Comparison"of"whole-body"18F"FDG"PET/MR"imaging"and"whole-body"18F"FDG"PET/CT"in"terms"of"lesion"detection"and"radiation"dose"in"patients"with"breast"cancer[J]."Radiology,"2016,"281(1):"193–202.
[19] OBERMANN"M,"NOHAVA"L,"FRASS-KRIEGL"R,"et"al."Panoramic"magnetic"resonance"imaging"of"the"breast"with"a"wearable"coil"vest[J]."Invest"Radiol,"2023,"58(11):"799–810.
[20] CLAUSER"P,"KRUG"B,"BICKEL"H,"et"al."Diffusion-weighted"imaging"allows"for"downgrading"MR"BI-RADS"4"lesions"in"contrast-enhanced"MRI"of"the"breast"to"avoid"unnecessary"biopsy[J]."Clin"Cancer"Res,"2021,"27(7):"1941–1948.
[21] RAHBAR"H,"ZHANG"Z,"CHENEVERT"T"L,"et"al."Utility"of"diffusion-weighted"imaging"to"decrease"unnecessary"biopsies"prompted"by"breast"MRI:"A"trial"of"the"ECOG-ACRIN"cancer"research"group"(A6702)[J]."Clin"Cancer"Res,"2019,"25(6):"1756–1765.
[22] TSOUGOS"I,"BAKOSIS"M,"TSIVAKA"D,"et"al."Diagnostic"performance"of"quantitative"diffusion"tensor"imaging"for"the"differentiation"of"breast"lesions"at"3 T"MRI[J]."Clin"Imaging,"2019,"53:"25–31.
[23] IIMA"M,"YANO"K,"KATAOKA"M,"et"al."Quantitative"non-Gaussian"diffusion"and"intravoxel"incoherent"motion"magnetic"resonance"imaging:"Differentiation"of"malignant"and"benign"breast"lesions[J]."Invest"Radiol,"2015,"50(4):"205–211.
[24] HUANG"Y,"LIN"Y,"HU"W,"et"al."Diffusion"Kurtosis"at"3.0T"as"an"in"vivo"imaging"marker"for"breast"cancer"characterization:"Correlation"with"prognostic"factors[J]."J"Magn"Reson"Imaging,"2019,"49(3):"845–856.
[25] BARTELLA"L,"THAKUR"S"B,"MORRIS"E"A,"et"al."Enhancing"nonmass"lesions"in"the"breast:"Evaluation"with"proton"1H"MR"spectroscopy[J]."Radiology,"2007,"245(1):"80–87.
[26] GERAGHTY"P"R,"VAN"DEN"BOSCH"M"A,"SPIELMAN"D"M,"et"al."MRI"and"1H"MRS"of"the"breast:"Presence"of"a"choline"peak"as"malignancy"marker"is"related"to"k21"value"of"the"tumor"in"patients"with"invasive"ductal"carcinoma[J]."Breast"J,"2008,"14(6):"574–580.
[27] LEE"S"G,"OREL"S"G,"WOO"I"J,"et"al."MR"imaging"screening"of"the"contralateral"breast"in"patients"with"newly"diagnosed"breast"cancer:"Preliminary"results[J]."Radiology,"2003,"226(3):"773–778.
[28] OREL"S"G,"WEINSTEIN"S"P,"SCHNALL"M"D,"et"al."Breast"MR"imaging"in"patients"with"axillary"node"metastases"and"unknown"primary"malignancy[J]."Radiology,"1999,"212(2):"543–549.
[29] MORRIS"E"A,"SCHWARTZ"L"H,"DERSHAW"D"D,"et"al."MR"imaging"of"the"breast"in"patients"with"occult"primary"breast"carcinoma[J]."Radiology,"1997,"205(2):"437–440.
[30] MORRIS"E"A,"SCHWARTZ"L"H,"DROTMAN"M"B,"et"al."Evaluation"of"pectoralis"major"muscle"in"patients"with"posterior"breast"tumors"on"breast"MR"images:"Early"experience[J]."Radiology,"2000,"214(1):"67–72.
[31] SASLOW"D,"BOETES"C,"BURKE"W,"et"al."American"Cancer"Society"guidelines"for"breast"screening"with"MRI"as"an"adjunct"to"mammography[J]."CA"Cancer"J"Clin,"2007,"57(2):"75–89.
[32] BEVERS"T"B,"HELVIE"M,"BONACCIO"E,"et"al."Breast"cancer"screening"and"diagnosis,"version"3.2018,"NCCN"clinical"practice"guidelines"in"oncology[J]."J"Natl"Compr"Canc"Netw,"2018,"16(11):"1362–1389.
[33] 焦鎏鎏,"张禹."MRI动态增强曲线半定量参数联合DWI在乳腺良恶性肿瘤诊断中的作用[J]."中国临床医学影像杂志,"2022,"33(9):"633–637.
[34] BALLEYGUIER"C,"LAKHDAR"A"B,"DUNANT"A,"et"al."Value"of"whole"breast"magnetic"resonance"elastography"added"to"MRI"for"lesion"characterization[J]."NMR"Biomed,"2018,"31(1):"e3795.
[35] VERBURG"E,"VAN"GILS"C"H,"VAN"DER"VELDEN"B"H"M,"et"al."Validation"of"combined"deep"learning"triaging"and"computer-aided"diagnosis"in"2901"breast"MRI"examinations"from"the"second"screening"round"of"the"dense"tissue"and"early"breast"neoplasm"screening"trial[J]."Invest"Radiol,"2023,"58(4):"293–298.
[36] SHOSHAN"Y,"BAKALO"R,"GILBOA-SOLOMON"F,"et"al."Artificial"intelligence"for"reducing"workload"in"breast"cancer"screening"with"digital"breast"tomosynthesis[J]."Radiology,"2022,"303(1):"69–77.
[37] DAIMIEL"NARANJO"I,"GIBBS"P,"REINER"J"S,"et"al."Radiomics"and"machine"learning"with"multiparametric"breast"MRI"for"improved"diagnostic"accuracy"in"breast"cancer"diagnosis[J]."Diagnostics"(Basel),"2021,"11(6):"919.
[38] FAN"M,"ZHANG"P,"WANG"Y,"et"al."Radiomic"analysis"of"imaging"heterogeneity"in"tumours"and"the"surrounding"parenchyma"based"on"unsupervised"decomposition"of"DCE-MRI"for"predicting"molecular"subtypes"of"breast"cancer[J]."Eur"Radiol,"2019,"29(8):"4456–4467.
[39] PETERSON"J"R,"COLE"J"A,"PFEIFFER"J"R,"et"al."Novel"computational"biology"modeling"system"can"accurately"forecast"response"to"neoadjuvant"therapy"in"early"breast"cancer[J]."Breast"Cancer"Res,"2023,"25(1):"54.
[40] CHITALIA"R"D,"ROWLAND"J,"MCDONALD"E"S,"et"al."Imaging"phenotypes"of"breast"cancer"heterogeneity"in"preoperative"breast"dynamic"contrast"enhanced"magnetic"resonance"imaging"(DCE-MRI)"scans"predict"10-year"recurrence[J]."Clin"Cancer"Res,"2020,"26(4):"862–869.
[41] O'FLYNN"E"A,"LEDGER"A"E,"DESOUZA"N"M."Alternative"screening"for"dense"breasts:"MRI[J]."AJR"Am"J"Roentgenol,"2015,"204(2):"W141–W149.
[42] ZHANG"X"H,"XIAO"C."Diagnostic"value"of"nineteen"different"imaging"methods"for"patients"with"breast"cancer:"A"network"Meta-analysis[J]."Cell"Physiol"Biochem,"2018,"46(5):"2041–2055.
(收稿日期:2023–11–09)
(修回日期:2024–06–01)
(上接第134页)
[25] Tahiliani"M,"Koh"K"P,"Shen"Y,"et"al."Conversion"of"5-methylcytosine"to"5-hydroxymethylcytosine"in"mammalian"DNA"by"MLL"partner"Tet1[J]."Science,"2009,"324(5929):"930–935.
[26] CHEN"Y"T,"SHEN"J"Y,"CHEN"D"P,"et"al."Identification"of"cross-talk"between"m6A"and"5mC"regulators"associated"with"onco-immunogenic"features"and"prognosis"across"33"cancer"types[J]."J"Hematol"Oncol,"2020,"13(1):"22.
[27] Erstad"D"J,"Fuchs"B"C,"Tanabe"K"K."Molecular"signatures"in"hepatocellular"carcinoma:"A"step"toward"rationally"designed"cancer"therapy[J]."Cancer,"2018,"124(15):"3084–3104.
[28] Petri"B"J,"Klinge"C"M."M6A"readers,"writers,"erasers,"and"the"m6A"epitranscriptome"in"breast"cancer[J]."J"Mol"Endocrinol,"2023,"70(2):"e220110.
[29] CHEN"M,"WONG"C"M."The"emerging"roles"of"N6-methyladenosine"(m6A)"deregulation"in"liver"carcinogenesis[J]."Mol"Cancer,"2020,"19(1):"44.
[30] Shen"L,"Song"C"X,"He"C,"et"al."Mechanism"and"function"of"oxidative"reversal"of"DNA"and"RNA"methylation[J]."Annu"Rev"Biochem,"2014,"83:"585–614.
[31] Song"Y,"He"S,"Ma"X,"et"al."RBMX"contributes"to"hepatocellular"carcinoma"progression"and"sorafenib"resistance"by"specifically"binding"and"stabilizing"BLACAT1[J]."Am"J"Cancer"Res,"2020,"10(11):"3644–3665.
[32] Liu"Z,"Wang"Q,"Wang"X,"et"al."Circular"RNA"cIARS"regulates"ferroptosis"in"HCC"cells"through"interacting"with"RNA"binding"protein"ALKBH5[J]."Cell"Death"Discov,"2020,"6:"72.
[33] Lee"C"C,"Chang"W"H,"Chang"Y"S,"et"al."Alternative"splicing"in"human"cancer"cells"is"modulated"by"the"amiloride"derivative"3,"5-diamino-6-chloro-"N-(N-(2,6-dichlorobenzoyl)carbamimidoyl)pyrazine-2-carboxide[J]."Mol"Oncol,"2019,"13(8):"1744–1762.
[34] Mezzalira"S,"De"Mattia"E,"Guardascione"M,"et"al."Circulating-free"DNA"analysis"in"hepatocellular"carcinoma:"A"promising"strategy"to"improve"patients’"management"and"therapy"outcomes[J]."Int"J"Mol"Sci,"2019,"20(21):"5498.
[35] Singh"P,"Kairuz"D,"Arbuthnot"P,"et"al."Silencing"hepatitis"B"virus"covalently"closed"circular"DNA:"The"potential"of"an"epigenetic"therapy"approach[J]."World"J"Gastroenterol,"2021,"27(23):"3182–3207.
(收稿日期:2023–11–13)
(修回日期:2024–05–31)