APP下载

缺氧诱导因子-1α在脊髓损伤中作用机制的研究进展

2024-12-31张潇顾文波罗迪袁海峰

中国现代医生 2024年23期
关键词:脊髓神经功能炎症

[摘要]"脊髓损伤(spinal"cord"injury,SCI)是一种严重的神经系统疾病。缺氧诱导因子(hypoxia-inducible"factor,HIF)-1α作为HIF家族主要成员之一,其在缺氧条件下可调节细胞的增殖、代谢和存活。研究表明,HIF-1α在SCI中发挥重要作用。HIF-1α可减轻损伤部位的炎症反应,促进损伤部位的修复和再生。HIF-1α还可调节神经元的存活和轴突再生,有助于神经功能的恢复。此外,HIF-1α的表达水平及活性的调节可有效改善SCI的治疗效果。因此,HIF-1α作为重要的调控因子,可为SCI的治疗提供新的治疗靶点和研究思路。本文对HIF-1α在SCI中的研究现状进行综述,总结HIF-1α介导SCI的作用机制,并展望其发展趋势。

[关键词]"脊髓损伤;缺氧诱导因子-1α;炎症反应;缺血缺氧;血管生成;细胞凋亡

[中图分类号]"R744""""""[文献标识码]"A""""""[DOI]"10.3969/j.issn.1673-9701.2024.23.029

脊髓损伤(spinal"cord"injury,SCI)是一种严重的神经系统疾病,每年有多达50万人患SCI,无论损伤发生在脊髓的哪个部位,SCI都可能导致损伤节段以下机体功能的永久性丧失或衰退[1]。SCI分为创伤性损伤和非创伤性损伤2种类型。创伤性SCI通常是由急性脊柱骨折或脱位等因素引起的,患者通常会出现各种难以恢复的运动、感觉和括约肌功能障碍;最常见的非创伤性SCI是一种进行性退行性疾病,如椎间盘突出和黄韧带增生等引起的脊髓慢性机械压迫[2]。

1""概述

SCI的初始阶段主要涉及轴突和细胞膜的破裂、髓鞘碎片、水肿和炎症反应;随后,增殖和激活的小胶质细胞和星形胶质细胞开始分泌一系列因子,以应对急性损伤引发的反应,促进伤口愈合,形成瘢痕和空洞[3]。创伤性SCI会破坏脊髓的结构和功能,导致神经元和轴突丧失及髓鞘破裂,此外还会引起炎症反应和细胞凋亡;非创伤性SCI所引起的慢性机械压迫会导致脊髓的血液供应不足和缺氧,进而引发炎症反应和细胞凋亡[4]。

SCI发生后,损伤区域内的微环境会发生显著改变,缺血缺氧便是显著变化之一。在这种状态下,脊髓微环境的稳态平衡受到破坏,这对于维持脊髓的正常功能构成巨大挑战[5]。缺氧诱导因子(hypoxia-inducible"factor,HIF)-1α在应对缺氧环境、维持细胞生存方面起重要作用,其在炎症、氧化、细胞死亡和肿瘤发生等过程中广泛表达[6-10]。在SCI过程中,HIF-1α的激活如何影响炎症反应、细胞凋亡、血管生成和神经保护等过程,进而影响SCI的修复和再生是当前研究的关键问题之一。

2""HIF-1α在SCI中的作用

2.1""炎症因素

炎症反应在SCI的病理过程中起至关重要的作用。炎症反应的失控可导致细胞损伤的加剧,使SCI患者的病情进一步恶化。Ni等[11]揭示zeste同源物2增强子(enhancer"of"zeste"homology"2,EZH2)、微RNA(microRNA,miRNA)-146a-5p和HIF-1α在炎症和糖酵解过程中的作用,使用脂多糖诱导小胶质细胞的炎症反应,并构建SCI动物模型发现,EZH2可通过介导miR-146a-5p/HIF-1α缓解急性SCI大鼠的炎症和糖酵解过程。Li等[12]降低SCI大鼠模型体内HIF-1α水平,发现肿瘤坏死因子-α(tumor"necrosis"factor-α,TNF-α)、白细胞介素(interleukin,IL)-1β、IL-6和IL-18的水平降低;同时体外模型中发现,HIF-1α的灭活可降低circ"0001723的促炎作用,且沉默NOD样受体热蛋白结构域相关蛋白3(NOD-like"receptor"thermal"protein"domain"associated"protein"3,NLRP3)可促进自噬而抑制circ"0001723的促炎作用,表明HIF-1α通过circ"0001723介导miR-380-3p/"NLRP3降低SCI中的炎症反应。Xu等[13]研究发现,CD73可抑制NLRP3炎症小体复合物的激活,并降低孔形成蛋白GSDMD的成熟,这可在一定程度上降低小胶质细胞的细胞焦亡;而SCI发生后,HIF-1α的累积可促使CD73过表达,CD73表达的增加又会促进HIF-1α的表达,从而形成正反馈调节。Ma等[14]将光生物调节连续4周作用于脊髓钳夹雄性小鼠,并构建巨噬细胞炎症和光生物调节干预体外模型,结果发现光生物调节可作用于Notch1-HIF-1α/核因子κB信号通路,抑制巨噬细胞神经毒性因子和炎症因子的释放,从而使小鼠发生SCI后运动功能得以更好地恢复。SCI发生后过度的炎症反应可能会加剧细胞损伤,从而加剧SCI。因此,抑制过度炎症反应是当前SCI治疗的必经之路。HIF-1α可能成为SCI发生后抑制炎症反应的潜在靶点之一。

2.2""氧化/缺氧因素

HIF-1α在氧化反应和缺氧环境中发挥重要作用。研究表明,抑制脯氨酰4-羟化酶可减少HIF-1α的表达,增加组织对缺氧环境的耐受性并改善疾病预后[15]。Wu等[16]研究一种新型脯氨酰羟化酶抑制剂FG-4592,其可提高神经元PC-12细胞的存活率,激活HIF-1α阻断剂YC-1,下调HIF-1α的表达,从而促进SCI小鼠模型神经功能的恢复。David等[17]激活HIF-1α的转录途径,施万细胞中VP16-HIF-1α逆转录病毒的表达使得HIF-1α的表达增加5.9倍,施万细胞的生存率提高34.3%。Fan等[18]探讨经缺氧预处理的神经干细胞移植对SCI的影响,研究认为HIF-1α的下游基因趋化因子受体4及其配体基质细胞衍生因子1被认为是干细胞移植的关键因素。Chen等[19]研究证实,HIF-11血管内皮生长因子(vascular"endothelial"growth"factor,VEGF)激活剂ML228可增强HIF-1α/VEGF信号通路的活性,进而改善局部缺氧缺血环境,促进神经功能的恢复。Zhou等[20]研究认为,高压氧可促进VEGF的表达,抑制HIF-1α的表达,这可能与SCI修复保护呈负相关。SCI发生后,微环境缺氧加剧,势必会影响到氧化反应,促进HIF-1α的表达,降低缺氧及氧化反应所引起的负面结果,从而促进SCI患者神经功能的恢复,改善其预后。

2.3""血管生成因素

血管在支持神经系统的微环境中具有重要作用,内源性血管生成是SCI修复的基础条件。Huang等[21]研究M2型巨噬细胞来源的外泌体在SCI中的促进血管生成作用,发现促血管生成因子HIF-1α和VEGF的表达随着M2型巨噬细胞外泌体的增加而上调,表明M2型巨噬细胞外泌体通过激活HIF-1α/VEGF信号通路促进SCI发生后神经功能恢复和血管生成。Tao等[22]通过大鼠实验发现,SCI发生后大鼠miR-195的水平显著降低,但B细胞淋巴瘤2(B-cell"lymphoma"2,Bcl2)、VEGF和HIF-1α的表达增加。Tang等[23]在SCI大鼠腹腔内注射去铁胺1~2周后,发现去铁胺可促进HIF-1α、VEGF的表达,从而促进血管新生。Shen等[24]研究认为,瞬时受体电位通道5可抑制HIF-1α的表达,并促进血管生成相关蛋白的表达,从而减少炎症反应的发生。因为HIF-1α特殊的靶点作用,通常在调节HIF-1α表达的同时,也会影响VGEF及其血管生成蛋白的表达。

2.4""细胞凋亡因素

神经元细胞凋亡是造成脊髓不可逆损伤的主要原因之一。SCI患者血脊髓屏障的完整性和微循环机制尚不清楚。Wu等[25]研究褪黑素对SCI小鼠模型血脊髓屏障的影响,结果表明褪黑素可抑制SCI小鼠基质金属蛋白酶-3/水通道蛋白4/HIF-1α/"VEGF/"VEGF受体2的表达,保护紧密连接蛋白、内皮细胞和周细胞,减少细胞凋亡数量,从而促进血脊髓屏障的修复。Luo等[26]实验发现,在氧化应激条件下,HIF-1α在缺氧预处理骨髓间充质干细胞的存活中起关键作用,沉默HIF-1α可促进骨髓间充质干细胞的凋亡,而HIF-1α诱导剂FG-4592可减少骨髓间充质干细胞的凋亡。HIF-1α是参与线粒体细胞死亡的靶点。Li等[27]研究发现,脯氨酰羟化酶抑制剂DMOG可促进HIF-1α的表达,介导HIF-1α/Bcl2相互作用蛋白3信号通路,抑制凋亡蛋白的表达,促进神经存活,还可通过调节微管的稳定性促进轴突再生。Wang等[28]研究证实,HIF-1α/miR-204/"Bcl-2信号通路诱导缺氧神经元细胞死亡。SCI后抑制细胞凋亡可减轻继发性SCI,从而促进SCI后神经功能的恢复和重建。

2.5""其他因素

Han等[29]研究成年大鼠SCI后即刻注射携带HIF-1α的重组腺病毒并观察其治疗机制,认为携带HIF-1α的重组腺病毒可将骨髓间充质干细胞动员到损伤区域,并提高神经营养因子-3和脑源性神经营养因子的表达水平,从而改善SCI大鼠神经功能的恢复。Wang等[30]研究发现,缺氧预处理的骨髓间充质干细胞可上调脊髓组织中HIF-1α的表达水平,从而对SCI细胞起保护作用。

Xiong等[31]实验发现,丙酮酸直接通过腹膜复苏作用于脯氨酰羟化酶2及其下游HIF-1α/Bcl2相互作用蛋白3信号通路,激活自噬,对脊髓缺血再灌注损伤具有一定的保护作用。而Wei等[32]认为,HIF对SCI后脯氨酰羟化酶的抑制并不能促进运动恢复。α-触核蛋白是一种突触前蛋白,其可从损伤神经元中释放并激活小胶质细胞。Qiao等[33]在大鼠中分离原代小胶质细胞,检测HIF-1α"mRNA和蛋白的表达水平,结果发现α-突触核蛋白以剂量大小刺激HIF-1α在小胶质细胞中积累,此外过表达的HIF-1α与c-Src可共同促进小胶质细胞中小窝蛋白-1的表达和磷酸化,从而引起小胶质细胞迁移。

Fan等[34]认为,增强大鼠SCI后神经营养因子的分泌可促进大鼠神经功能的恢复,这是SCI治疗的可行之策。Yuan等[35]将周细胞外泌体移植到SCI小鼠体内,外泌体可提高内皮细胞调节血流的能力,保护血脊髓屏障,减轻水肿,降低HIF-1α等的表达水平,从而发挥治疗作用。Wang等[36]使用成年大鼠SCI模型调查引起水通道蛋白1和水通道蛋白4表达上调的机制,发现2-甲氧基雌二醇可抑制SCI后HIF-1α、VEGF、水通道蛋白41和水通道蛋白4表达的上调,故而推断HIF-1α抑制剂是治疗SCI水肿的潜在药物。

3""未来与展望

目前,SCI的治疗主要依靠症状和影像学检查结果评估SCI的严重程度和脊髓形态,但这些方法仅能反映损伤已经发生的情况。未来,临床诊治SCI的方法将更加多元化和精确化,将更加注重早期干预和预测。脊髓内微环境紊乱将成为未来研究的重点之一。HIF-1α在SCI中发挥重要作用,其参与调控炎症反应、氧化代谢、血管生成、细胞凋亡和组织再生等修复过程。因此,HIF-1α可能成为未来SCI早期诊断和治疗评估的重要指标。在国内外学者的共同努力下,HIF-1α在治疗SCI方面的研究已取得重要进展。这些研究不仅阐明了SCI的相关机制,还指出了新的治疗路径。然而,仍需对HIF-1α进行更深入、更全面的研究,以进一步探索其在SCI中的作用机制和潜在治疗效果。这将为SCI的治疗提供新的思路和方法,为解决这一全球性难题做出重要贡献。

未来SCI的相关研究应集中于以下几个方面:①进一步研究HIF-1α在SCI中的调控机制,包括其与其他分子的相互作用和信号通路的调节。②探索HIF-1α在早期诊断和治疗评估中的应用潜力,开发新的检测方法和指标,以提高SCI的诊断准确性和治疗效果。③研究HIF-1α作为治疗靶点的可行性和安全性,研发新的药物和治疗策略,以实现对SCI的精准治疗。

利益冲突:所有作者均声明不存在利益冲突。

[参考文献]

[1] HOLMES"D."Spinal-cord"injury:"Spurring"regrowth[J]."Nature,"2017,"552(7684):"S49.

[2] DAVID"G,"MOHAMMADI"S,"MARTIN"A"R,"et"al."Traumatic"and"nontraumatic"spinal"cord"injury:"Pathological"insights"from"neuroimaging[J]."Nat"Rev"Neurol,"2019,"15(12):"718–731.

[3] HUTSON"T"H,"DI"GIOVANNI"S."The"translational"landscape"in"spinal"cord"injury:"Focus"on"neuroplasticity"and"regeneration[J]."Nat"Rev"Neurol,"2019,"15(12):"732–745.

[4] FOUAD"K,"POPOVICH"P"G,"KOPP"M"A,"et"al."The"neuroanatomical-functional"paradox"in"spinal"cord"injury[J]."Nat"Rev"Neurol,"2021,"17(1):"53–62.

[5] XU"Y,"ZHU"Z"H,"XU"X,"et"al."Neuron-derived"exosomes"promote"the"recovery"of"spinal"cord"injury"by"modulating"nerve"cells"in"the"cellular"microenvironment"of"the"lesion"area[J]."Mol"Neurobiol,"2023,"60(8):"4502–4516.

[6] KIM"J"W,"JEON"N,"SHIN"D"E,"et"al."Regeneration"in"spinal"disease:"Therapeutic"role"of"hypoxia-inducible"factor-1"alpha"in"regeneration"of"degenerative"intervertebral"disc[J]."Int"J"Mol"Sci,"2021,"22(10):"5281.

[7] TESSEMA"B,"SACK"U,"SEREBROVSKA"Z,"et"al."Effects"of"hyperoxia"on"aging"biomarkers:"A"systematic"review[J]."Front"Aging,"2021,"2:"783144.

[8] TANG"Y"Y,"WANG"D"C,"WANG"Y"Q,"et"al."Emerging"role"of"hypoxia-inducible"factor-1α"in"inflammatory"autoimmune"diseases:"A"comprehensive"review[J]."Front"Immunol,"2022,"13:"1073971.

[9] CHEN"W,"WU"P,"YU"F,"et"al."HIF-1α"regulates"bone"homeostasis"and"angiogenesis,"participating"in"the"occurrence"of"bone"metabolic"diseases[J]."Cells,"2022,"11(22):"3552.

[10] TANAKA"N,"SAKAMOTO"T."Mint3"as"a"potential"target"for"cooling"down"HIF-1α-mediated"inflammation"and"cancer"aggressiveness[J]."Biomedicines,"2023,"11(2):"549.

[11] NI"S,"YANG"B,"XIA"L,"et"al."EZH2"mediates"miR-146a-5p/HIF-1α"to"alleviate"inflammation"and"glycolysis"after"acute"spinal"cord"injury[J]."Mediators"Inflamm,"2021,"2021:"5591582.

[12] LI"X,"LOU"X,"XU"S,"et"al."Hypoxia"inducible"factor-1"(HIF-1α)"reduced"inflammation"in"spinal"cord"injury"via"miR-380-3p/"NLRP3"by"circ"0001723[J]."Biol"Res,"2020,"53(1):"35.

[13] XU"S,"WANG"J,"ZHONG"J,"et"al."CD73"alleviates"GSDMD-mediated"microglia"pyroptosis"in"spinal"cord"injury"through"PI3K/AKT/Foxo1"signaling[J].nbsp;Clin"Transl"Med,"2021,"11(1):"e269.

[14] MA"Y,"LI"P,"JU"C,"et"al."Photobiomodulation"attenuates"neurotoxic"polarization"of"macrophages"by"inhibiting"the"Notch1-HIF-1α/NF-κB"signalling"pathway"in"mice"with"spinal"cord"injury[J]."Front"Immunol,"2022,"13:"816952.

[15] BAO"W,"QIN"P,"NEEDLE"S,"et"al."Chronic"inhibition"of"hypoxia-inducible"factor"prolyl"4-hydroxylase"improves"ventricular"performance,"remodeling,"and"vascularity"after"myocardial"infarction"in"the"rat[J]."J"Cardiovasc"Pharmacol,"2010,"56(2):"147–155.

[16] WU"K,"ZHOU"K,"WANG"Y,"et"al."Stabilization"of"HIF-1α"by"FG-4592"promotes"functional"recovery"and"neural"protection"in"experimental"spinal"cord"injury[J]."Brain"Res,"2016,"1632:"19–26.

[17] DAVID"B"T,"CURTIN"J"J,"GOLDBERG"D"C,"et"al."Hypoxia-inducible"factor"1α"(HIF-1α)"counteracts"the"acute"death"of"cells"transplanted"into"the"injured"spinal"cord[J]."eNeuro,"2020,"7(3):"ENEURO.0092–19.2019.

[18] FAN"X,"WEI"H,"DU"J,"et"al."Hypoxic"preconditioning"neural"stem"cell"transplantation"promotes"spinal"cord"injury"in"rats"by"affecting"transmembrane"immunoglobulin"domain-containing[J]."Hum"Exp"Toxicol,"2022,"41:"9603271211066587.

[19] CHEN"H,"LI"J,"LIANG"S,"et"al."Effect"of"hypoxia-inducible"factor-1/vascular"endothelial"growth"factor"signaling"pathway"on"spinal"cord"injury"in"rats[J]."Exp"Ther"Med,"2017,"13(3):"861–866.

[20] ZHOU"Y,"LIU"X"H,"QU"S"D,"et"al."Hyperbaric"oxygen"intervention"on"expression"of"hypoxia-inducible"factor-1α"and"vascular"endothelial"growth"factor"in"spinal"cord"injury"models"in"rats[J]."Chin"Med"J"(Engl),"2013,"126(20):"3897–3903.

[21] HUANG"J"H,"HE"H,"CHEN"Y"N,"et"al."Exosomes"derived"from"M2"macrophages"improve"angiogenesis"and"functional"recovery"after"spinal"cord"injury"through"HIF-1α/VEGF"axis[J]."Brain"Sci,"2022,"12(10):"1322.

[22] TAO"B,"SHI"K."Decreased"miR-195"expression"protects"rats"from"spinal"cord"injury"primarily"by"targeting"HIF-1α[J]."Ann"Clin"Lab"Sci,"2016,"46(1):"49–53.

[23] TANG"G,"CHEN"Y,"CHEN"J,"et"al."Deferoxamine"ameliorates"compressed"spinal"cord"injury"by"promoting"neovascularization"in"rats[J]."J"Mol"Neurosci,"2020,"70(9):"1437–1444.

[24] SHEN"N,"WANG"L,"WU"Y,"et"al."Adeno-associated"virus"packaged"TRPC5"gene"therapy"alleviated"spinal"cord"ischemic"reperfusion"injury"in"rats[J]."Neuroreport,"2020,"31(1):"29–36.

[25] WU"Q,"JING"Y,"YUAN"X,"et"al."Melatonin"treatment"protects"against"acute"spinal"cord"injury-induced"disruption"of"blood"spinal"cord"barrier"in"mice[J]."J"Mol"Neurosci,"2014,"54(4):"714–722.

[26] LUO"Z,"WU"F,"XUEnbsp;E,"et"al."Hypoxia"preconditioning"promotes"bone"marrow"mesenchymal"stem"cells"survival"by"inducing"HIF-1α"in"injured"neuronal"cells"derived"exosomes"culture"system[J]."Cell"Death"Dis,"2019,"10(2):"134.

[27] LI"Y,"HAN"W,"WU"Y,"et"al."Stabilization"of"hypoxia"inducible"factor-1α"by"dimethyloxalylglycine"promotes"recovery"from"acute"spinal"cord"injury"by"inhibiting"neural"apoptosis"and"enhancing"axon"regeneration[J]."J"Neurotrauma,"2019,"36(24):"3394–3409.

[28] WANG"X,"LI"J,"WU"D,"et"al."Hypoxia"promotes"apoptosis"of"neuronal"cells"through"hypoxia-inducible"factor-1α-microRNA-204-B-cell"lymphoma-2"pathway[J]."Exp"Biol"Med"(Maywood),"2016,"241(2):"177–183.

[29] HAN"X,"CHEN"Y,"LIU"Y,"et"al."HIF-1α"promotes"bone"marrow"stromal"cell"migration"to"the"injury"site"and"enhances"functional"recovery"after"spinal"cord"injury"in"rats[J]."J"Gene"Med,"2018,"20(12):"e3062.

[30] WANG"Z,"FANG"B,"TAN"Z,"et"al."Hypoxic"preconditioning"increases"the"protective"effect"of"bone"marrow"mesenchymal"stem"cells"on"spinal"cord"ischemia/reperfusion"injury[J]."Mol"Med"Rep,"2016,"13(3):"1953–1960.

[31] XIONG"Y,"XIA"Y,"DENG"J,"et"al."Direct"peritoneal"resuscitation"with"pyruvate"protects"the"spinal"cord"and"induces"autophagy"via"regulating"PHD2"in"a"rat"model"of"spinal"cord"ischemia-reperfusion"injury[J]."Oxid"Med"Cell"Longev,"2020,"2020:"4909103.

[32] WEI"G"Z,"SARASWAT"OHRI"S,"KHATTAR"N"K,"et"al."Hypoxia-inducible"factornbsp;prolyl"hydroxylase"domain"(PHD)"inhibition"after"contusive"spinal"cord"injury"does"not"improve"locomotor"recovery[J]."PLoS"One,"2021,"16(4):"e0249591.

[33] QIAO"H,"HE"X,"ZHANG"Q,"et"al."Α-synuclein"induces"microglial"cell"migration"through"stimulating"HIF-1α"accumulation[J]."J"Neurosci"Res,"2017,"95(9):"1809–1817.

[34] FAN"W"L,"LIU"P,"WANG"G,"et"al."Transplantation"of"hypoxic"preconditioned"neural"stem"cells"benefits"functional"recovery"via"enhancing"neurotrophic"secretion"after"spinal"cord"injury"in"rats[J]."J"Cell"Biochem,"2018,"119(6):"4339–4351.

[35] YUAN"X,"WU"Q,"WANG"P,"et"al."Exosomes"derived"from"pericytes"improve"microcirculation"and"protect"blood-spinal"cord"barrier"after"spinal"cord"injury"in"mice[J]."Front"Neurosci,"2019,"13:"319.

[36] WANG"Y"F,"FAN"Z"K,"CAO"Y,"et"al."2-methoxyestradiol"inhibits"the"up-regulation"of"AQP4"and"AQP1"expression"after"spinal"cord"injury[J]."Brain"Res,"2011,"1370:"220–226.

(收稿日期:2024–03–07)

(修回日期:2024–05–30)

猜你喜欢

脊髓神经功能炎症
人工3D脊髓能帮助瘫痪者重新行走?
脯氨酰顺反异构酶Pin 1和免疫炎症
欢迎订阅《感染、炎症、修复》杂志
间歇性低氧干预对脑缺血大鼠神经功能恢复的影响
姜黄素对脊髓损伤修复的研究进展
欢迎订阅《感染、炎症、修复》杂志
不同程度神经功能缺损的脑梗死患者血尿酸与预后的相关性研究
辛伐他汀对脑出血大鼠神经功能的保护作用及其机制探讨
炎症小体与肾脏炎症研究进展
中西医结合治疗脊柱骨折合并脊髓损伤25例