APP下载

旱地石灰性土壤长期施氮提高小麦籽粒中铁铜锌含量

2024-12-31高玉罗一诺薛欣张慕欣惠晓丽李小涵石美王朝辉

植物营养与肥料学报 2024年8期
关键词:微量元素氮肥籽粒

摘要: 【目的】明确氮肥用量引起的小麦籽粒铁、锰、铜、锌含量变化及土壤作物营养机制,为优化氮肥管理,实现小麦优质丰产提供理论依据。【方法】利用2004 年在黄土高原南部陕西杨凌开始的氮肥用量长期定位试验,在施磷(P2O5) 100 kg/hm2 的基础上,设0、80、160、240 和320 kg/hm2 5 个氮水平,在2013—2016 年3 个小麦收获期采集小麦植株和土壤样品,测定各器官生物量、铁锰铜锌含量及土壤有效铁锰铜锌含量,采用回归分析方法分析施氮量、小麦籽粒产量和微量元素含量之间的关系,计算获得最高籽粒产量和铁锰铜锌含量及其收获指数的氮肥用量。【结果】与不施氮相比,施氮提高了小麦产量和籽粒铁、铜、锌含量,降低了锰含量。籽粒铁含量与施氮量呈二元一次方程关系,小麦产量达最高(6116 kg/hm2) 时的施氮量为212 kg/hm2,籽粒铁含量达最高(43.9 mg/kg) 时施氮量为218 kg/hm2,铁收获指数最高时的施氮量为92 kg/hm2。锌铜含量及其收获指数均与施氮量呈线性关系,施氮量每增加100 kg/hm2,籽粒铜和锌含量分别提高0.4 和3.5 mg/kg。籽粒锰含量与施氮量呈负线性加平台关系,施氮量为57 kg/hm2 时,籽粒锰含量达最低37.5 mg/kg。与不施氮相比, 施氮处理耕层土壤有效锰含量提高7.8%,有效铁、铜、锌含量无显著变化,平均为5.9,1.3 和0.54 mg/kg。【结论】在黄土高原旱地石灰性土壤上,长期施用氮肥提高了冬小麦籽粒铁、铜、锌含量和吸收量,降低了锰含量和吸收量,主要归因于作物吸收量提高及铁向籽粒的分配增强,籽粒锰含量降低主要与产量提高引起的养分稀释效应有关。综合考虑产量和籽粒铁锰铜锌养分含量,该地区实现小麦高产目标5810 kg/hm2 时,氮肥用量应为122 kg/hm2,在最高产量施氮量212 kg/hm2 基础上可减施氮肥42%,此时籽粒铁、锰、铜、锌含量较高,分别为42.1、37.5、4.0 和25.1 mg/kg。

关键词: 氮肥; 小麦产量; 籽粒; 微量元素

植物必需微量元素铁、锰、铜、锌也是人体健康必需的微量元素,缺乏会带来贫血、侏儒症等疾病[1−2]。全球约有1/3 人口存在缺乏微量元素铁、锌等营养不良问题,主要集中在以谷类作物为主食的人群[ 3 − 4 ]。我国小麦种植面积和总产量分别占全球的11% 和17%[5],小麦籽粒中锰平均含量为43 mg/kg,接近人体健康营养推荐值32~44 mg/kg[6]的上限,铁、铜、锌平均含量仅为43.8、4.6 和31.4 mg/kg[6],远低于人体健康营养推荐值59、10 与40~60 mg/kg[7−8]。因此,优化小麦籽粒微量营养元素含量对我国人民微量元素营养健康有重要意义 。

生物强化是提高谷类作物微量矿质营养元素含量,改善人体营养的有效措施。在北京东北旺的田间试验结果表明,施氮量从0 增加到130 kg/hm2时,小麦籽粒铁、铜、锌含量分别提高61%、50%和63%[9]。在河北沧州的田间试验结果表明,施氮157 kg/hm2 时,小麦籽粒铁、锰、铜、锌含量分别显著增加8%、21%、23% 和178%[10]。但施用氮肥并不总是表现为籽粒微量元素含量的提高,同样在河北沧州的田间试验表明,施用氮肥157 kg/hm2 时小麦籽粒锰含量降低8%,铁含量无显著变化[11]。在陕西咸阳施用氮肥162 kg/hm2 时,同样得到小麦籽粒锰含量降低10%,铁、铜、锌含量无显著变化的结果[12]。

氮肥用量增加会引起土壤酸化,增加土壤中铁、锰、铜、锌有效性,对作物养分吸收产生积极影响[13]。波兰棕壤盆栽试验结果发现,施氮130~170 mg/kg可使土壤有效锌、铁含量均增加3%,铜增加9%,锰增加12%[14]。土壤养分充足的情况下,施用氮肥能够促进植株根系对养分的吸收利用[15]。土耳其钙质粘壤土的盆栽试验证明,施氮量增加时,小麦根系对锌的吸收增加3 倍[16]。安纳托利亚钙质粘土的盆栽试验显示,施用氮肥250 mg/kg,小麦铁和锌吸收量均提高了4 倍[17]。黄淮冬麦区潮褐土上的田间试验表明,施氮不超过360 kg/hm2 时,能促进小麦铁、铜和锌吸收,抑制锰吸收[18]。

关于施用氮肥对小麦籽粒及土壤微量元素的影响已有报道,但结果和结论存在差异,而且旱地石灰性土壤上的研究尤为缺乏。因此,本研究利用黄土高原石灰性土壤上开展的氮肥用量长期定位试验,分析小麦籽粒铁锰铜锌含量、吸收量、收获指数和土壤有效养分的变化,以期明确长期施用氮肥的条件下小麦籽粒铁、锰、铜、锌含量变化与其吸收转移和土壤养分供应的关系,为优化氮素管理,实现旱地小麦优质丰产提供理论依据。

1 材料与方法

1.1 试验地概述

氮肥用量长期定位试验始于2004 年10 月,位于陕西杨陵西北农林科技大学农作一站(34°16′N,108°04′E),地处黄土高原南部,海拔525 m,多年平均气温12.9℃ ,年均降水量550 mm,60% 降水集中在7—9 月,属于半湿润易旱地区。种植制度为冬小麦―夏休闲。试验区地势平坦,土壤类型为黄土母质发育而来的土垫旱耕人为土,土壤质地为中壤土。2004 年试验开始前耕层土壤(0—20 cm) 基础肥力为:有机质13.8 g/kg,全氮1.1 g/kg (凯氏定氮法),硝态氮5.4 mg/kg (1 mol/L KCl 浸提),铵态氮2.4 mg/kg (1 mol/L KCl 浸提),速效磷15.0 mg/kg(0.5 mol/L NaHCO3 浸提),速效钾182.4 mg/kg(1 mol/L NH4OAc 浸提),有效铁、锰、铜、锌含量分别为4.8、14.1、1.4、0.5 mg/kg (DTPA-TEACaCl2浸提),pH 8.3 (水土比2.5∶1)。

1.2 试验设计与田间管理

长期定位试验采用单因素完全随机区组设计,每年肥料用量保持一致,在施磷(P2O5) 100 kg/hm2 的基础上,设5 个施氮水平,即0、80、160、240 和320 kg/hm2。氮肥为含氮 46% 的尿素,磷肥为含P2O546% 的重过磷酸钙,所有肥料均作为基肥在播种前撒施,然后旋耕使其与耕层土壤混匀。试验重复4 次,小区面积 40 m2 (4 m×10 m)。选用的小麦品种为小偃22 号,每年10 月中旬播种,来年6 月初收获,播量约为155 kg/hm2,播种深度为5 cm,行距为15 cm。田间管理与当地农户一致,整个生育期无灌水,使用除草剂和杀虫剂进行杂草和病虫害控制。

1.3 样品采集与测定

在2013—2014、2014—2015、2015—2016 年3 个小麦收获期,每小区随机均匀选取100 穗小麦植株,连根拔起后用不锈钢剪刀剪去根系,将地上部风干后脱粒,分为茎叶、颖壳(包含穗轴) 和籽粒3 部分。各器官取部分样品先用自来水、后用超纯水清洗,90℃ 烘30 min 后65℃ 烘干至恒重,测定含水量,计算收获指数。烘干的植物样品用球磨仪(碳化钨研磨罐,MM400,德国) 研磨,然后装入塑料自封袋保存。同时,每小区选取4 个1 m × 1 m 样方的小麦,进行人工收获,收获的样品风干后脱粒,称量籽粒重,随机称取部分籽粒,65℃ 烘干至恒重,测定含水量,计算产量和生物量。产量和生物量均以烘干重表示。小麦收获后,每个小区随机选取5个点,采集0—40 cm 土壤,每10 cm 为1 层,同层样品混匀作为1 个分析样品,自然风干后研磨,过1 mm 尼龙筛,装入自封袋保存。

研磨后的植物样品用浓HNO3 和H2O2 微波消解,电感耦合等离子质谱仪(ICP-MS,美国) 测定消解液中的铁锰铜锌含量。土壤样品用DTPA-CaCl2-TEA 溶液浸提(pH 7.3),土水比1∶2,原子吸收分光光度计(日立Z-2000,日本) 测定浸提液中铁锰铜锌的含量。

1.4 数据统计分析与计算

试验数据用Excel 2016 处理,SAS 9.2 统计分析。采用LSD 最小显著差异法进行多重比较,显著性差异水平为5%,用SigmaPlot 10.0 绘图。相关参数及计算公式如下:

收获指数(%)=籽粒产量/(籽粒产量+茎叶生物量+颖壳生物量)×100

养分吸收量(g/hm2)=各器官养分含量×各器官生物量/1000

地上部养分吸收量(g/hm2)=籽粒养分吸收量+茎叶养分吸收量+颖壳养分吸收量

养分收获指数(%)=籽粒养分吸收量/地上部养分吸收量 ×100

2 结果与分析

2.1 冬小麦产量、生物量和收获指数对施氮量的响应

从3 年平均结果(图1) 看,施用氮肥显著提高小麦产量、生物量和收获指数。回归分析结果表明,产量与施氮量呈二次回归关系,在施氮212 kg/hm2时达最大值6116 kg/hm2。施氮后小麦产量增幅为33.0%~38.1%。生物量与施氮量呈线性加平台关系,在施氮量为82 kg/hm2 时,达到最大值12642kg/hm2;收获指数与施氮量呈线性正相关关系,施氮量每增加100 kg/hm2 时,收获指数提高1.3%, 在施氮320 kg/hm2 时,收获指数最高,达48.6%。

2.2 小麦籽粒铁、锰、铜、锌含量对施氮量的响应

施用氮肥显著提高冬小麦籽粒铁、铜、锌含量,降低锰含量(图2)。回归分析显示,铁含量与施氮量呈二次回归关系,施氮218 kg/hm2 时达到最大值43.9 mg/kg。铜、锌含量与施氮量呈线性正相关,施氮量每增加100 kg/hm2 时,籽粒铜、锌含量分别提高0.4 和3.5 mg/kg。锰含量与施氮量呈线性加平台关系,在施氮量57 kg/hm2 时达到最小值37.5 mg/kg。

2.3 土壤有效铁、锰、铜、锌对施氮量的响应

从不同年份的测定结果看,施用氮肥对0—20 cm土壤有效铁、锰、铜、锌含量无显著影响(表1),但3年的平均结果(表1) 显示,长期施用氮肥320 kg/hm2时0—20 cm 土层土壤有效锰含量较不施用氮肥处理显著提高7.8%,有效铁、铜、锌含量均无显著变化,其中0—20 cm 土层土壤有效铁、锰、铜、锌含量均高于20—40 cm 土层。可见,氮肥施用可以显著提高0—20 cm 土层土壤有效锰含量。

2.4 小麦铁、锰、铜、锌吸收量和收获指数对施氮量的响应

施用氮肥可以显著提高小麦籽粒与地上部铁吸收量和收获指数(图3)。籽粒、地上部铁吸收量与施氮量均呈线性加平台关系,分别在施氮量82、83 kg/hm2 时达最大吸收量244.8、2187 g/hm2。地上部铁收获指数与施氮量也呈线性加平台关系,在施氮量92 kg/hm2 时达最大值12.5%。施氮后小麦籽粒铁吸收量增幅为65.0%~73.8%。可见,施用氮肥能促进小麦铁吸收及向籽粒的分配。

施用氮肥可以显著提高小麦籽粒和地上部锰吸收量,但对锰收获指数没有显著影响(图4)。籽粒和地上部锰吸收量均与施氮量呈线性加平台关系,分别在施氮量98 和93 kg/hm2 时达到最大值221.1 和494.8 g/hm2,施氮后小麦籽粒锰吸收量增幅为20.2%~27.0%。锰收获指数没有显著变化,平均为46.2%。可见,施用氮肥可以促进小麦锰吸收,但对锰向籽粒的分配没有显著影响。

施用氮肥可以显著提高小麦籽粒与地上部铜吸收量(图5)。籽粒和地上部铜吸收量均与施氮量呈二次回归关系,分别在施氮量200 和238 kg/hm2 时达到最大值25.7 和46.1 g/hm2;施氮后小麦籽粒铜吸收量增幅为72.9%~106.3%。施氮提高了铜收获指数,在施氮量为240 kg/hm2 时,与对照相比差异显著。可见,施氮能够促进小麦铜吸收与向籽粒的分配。

施用氮肥可以显著提高冬小麦籽粒锌和地上部锌吸收量(图6)。籽粒与地上部锌吸收量均与施氮量呈二次回归关系,在分别施氮286 和293 kg/hm2 时达到最大值177.7 与240.4 g/hm2,施氮后小麦籽粒锌吸收量增幅为51.2%~106.1%。施氮提高了锌收获指数,在施氮量为160 和240 kg/hm2 时,与对照相比差异显著。可见,施氮能够促进小麦锌吸收与向籽粒的分配。

2.5 兼顾小麦产量和籽粒铁锰铜锌含量的施氮量分析

综合分析施氮量、土壤有效铁锰铜锌、籽粒铁锰铜锌与小麦产量的关系发现(图7),产量最大值为6116 kg/hm2 时,对应的施氮量为212 kg/hm2,当产量为最高产量95% 时,对应的施氮量为122 kg/hm2,此时产量为5814 kg/hm2,籽粒铁和锰含量分别为42.1 和37.5 mg/kg,铜和锌含量分别为4.0 和25.1mg/kg。当超过这一施氮量时,产量增幅减小,籽粒铁锰含量不再增加,铜锌含量持续增加,在最高产量时,铁锰含量分别为43.9 和37.5 mg/kg,铜锌含量分别为4.3 和28.3 mg/kg。随施氮量增加,土壤有效锰含量增加,在施氮320 kg/hm2 时达到最高,为12.1 mg/kg;有效铁、铜、锌含量无显著变化,平均为5.9、1.3 和0.54 mg/kg。因此,结合经济效益和养分水平考虑,在生产中要控制施氮量为122 kg/hm2。

3 讨论

3.1 小麦产量及籽粒铁锰铜锌含量对氮肥用量的响应

本研究发现,旱地石灰性土壤施用氮肥,小麦产量显著增加,在施氮212 kg/hm2 时达到最大值6116 kg/hm2。籽粒铁、铜、锌含量均显著增加,分别在施氮量为218、320 和320 kg/hm2 达到最大值43.9、4.5 和31.1 mg/kg。锰含量显著降低,在施氮57 kg/hm2 时达到最小值37.5 mg/kg。作物对养分的吸收量随生物量提高而增加,吸收量增加速率大于生物量提高速率时表现为养分富集,含量增加;反之,表现为养分稀释,含量降低[19−25]。瑞典南部和中部的田间试验表明,增加施氮量显著提高冬小麦产量,而锰、铜和锌含量没有明显变化,籽粒铁含量显著增加,主要是由于氮肥用量较高时地上部铁的积累速度高于生物量增加速度,锰、铜和锌积累与生物量积累的增加速率保持一致[15]。本研究中,施氮后小麦产量增幅为33.0%~38.1%,高于籽粒锰吸收量增加的幅度20.2%~27.0%,因此籽粒锰含量降低;铁、铜和锌的籽粒吸收量增幅分别为65.0%~73.8%,72.9%~106.3% 和51.2%~106.1%,均高于产量增幅,因此表现为含量增加。

3.2 氮肥施用引起的小麦籽粒铁锰铜锌变化与土壤有效养分的关系

本研究发现,黄土高原旱地石灰性土壤增施氮肥后,0—20 cm 土层土壤有效锰含量显著提高,在施氮320 kg/hm2 时达到12.1 mg/kg;有效铁、铜、锌含量无显著变化,平均分别为5.9,1.3 和0.54 mg/kg;20—40 cm 土层土壤有效铁、锰、铜含量均无显著变化,施氮提高了20—40 cm 土层土壤有效锌含量,在施氮量为240 kg/hm2 时,与对照相比差异显著。在辽宁沈阳草甸土上的定位试验发现,长期施用氮肥能降低土壤pH,显著提高有效铁、锰、铜、锌含量[26]。北京潮褐土上的田间试验亦表明,长期施用氮肥降低了土壤pH,促进了土壤锰活化,耕层土壤有效锰含量显著提高[27]。陕西关中平原塿土的定位试验表明,土壤微量元素铁、锰、铜、锌供应受限时,施用氮肥会引起小麦籽粒有效铁、锰、铜、锌含量降低,微量元素充足的土壤中则不会出现此现象[28]。这是由于土壤微量元素含量较低时,作物微量元素吸收量随施氮量的增加速率低于产量增加速率所致。河南郑州棕壤上19 年的长期定位试验也表明,小麦籽粒铁、锰含量与土壤有效铁、锰含量显著正相关[29]。在摩洛哥钙质土上的试验还表明,小麦籽粒铜含量与土壤铜供应呈极显著的正相关关系[30],而陕西关中平原的试验表明,长期施用氮肥作物铁、锌的携出量增加,而土壤有效铁、锌含量下降[28]。本研究中,与不施氮相比,小麦籽粒铁、铜、锌含量显著增加,0—20 cm 土层土壤有效铁、铜、锌含量无显著变化,主要原因可能是本试验中氮肥投入对土壤铁、铜、锌活化的部分被小麦植株铁、铜、锌的携出提高量所抵消[28],因此表现为土壤有效铁、铜、锌含量无显著变化。

3.3 基于小麦产量和籽粒微量元素含量优化的氮肥管理

施用氮肥是小麦丰产优质的重要措施。考虑经济收益和氮肥高效利用,黄淮海麦区小麦最佳施氮量为202 kg/hm2,此时产量为最高产量的97%,施氮量较最高产量时的施氮量可降低27%[31]。在渭北旱塬,在施P2O5 100 kg/hm2 的基础上施氮 150 kg/hm2,小麦产量为最高产量的96%,施氮量比最高产量施氮量降低30%,籽粒氮磷钾锌含量均处于较高水平[32]。因此,在保证高产的基础上适当降低氮肥用量,可实现小麦高产优质和经济效益协同提高。本研究中,产量为最高产量的95% 时施氮量为122kg/hm2,比最高产量施氮量可减施氮肥42%,此时,锰含量为 37.5 mg/kg,符合人体健康营养推荐值32~44 mg/kg。籽粒铁、铜、锌含量分别为42.1、 4.0和25.1 mg/kg。可见,在减施氮肥的情况下,虽然保证了产量和锰含量,但籽粒铁、铜、锌含量仍低于国际上推荐的含量,即59、10 与40~60 mg/kg [7−8],居民饮食中需注意其他来源的铁、铜、锌补充。

4 结论

黄土旱塬区施用氮肥在提高小麦产量的同时,可以显著提高小麦籽粒铁、铜、锌含量,降低锰含量。冬小麦籽粒铁、铜、锌含量的提高主要归于作物对这些养分吸收量的提高及铁向籽粒转移的增强,籽粒锰含量降低与产量提高引起的养分稀释效应有关。综合考虑产量和籽粒微量营养元素含量,以实现小麦高产(5810 kg/hm2) 为生产目标,该地区的推荐氮肥用量为122 kg/hm2,相较最高产量施氮量(212 kg/hm2) 减少42%,籽粒锰含量为37.5 mg/kg,符合人体健康营养推荐值,铁、铜、锌含量分别为42.1、4.0 和25.1 mg/kg,仍低于满足人体营养需求的养分含量。

参 考 文 献:

[ 1 ]Miroslav N, Nina N, Ljiljana K, et al. The assessment of soilavailability and wheat grain status of zinc and iron in Serbia:Implications for human nutrition[J]. Science of the TotalEnvironment, 2016, 553: 141−148.

[ 2 ]Trethowan R M, Reynolds M, Sayre K, Ortiz-Monasterio I. Adaptingwheat cultivars to resource conserving farming practices and humannutritional needs[J]. Annals of Applied Biology, 2005, 146(4):405−413.

[ 3 ]Welch R M, Graham R D. Breeding for micronutrients in staple foodcrops from a human nutrition perspective[J]. Journal of ExperimentalBotany, 2004, 55: 353−364.

[ 4 ]Graham R, Senadhira D, Beebe S, et al. Breeding for micronutrientdensity in edible portions of staple food crops: Conventional approaches[J]. Field Crops Research, 1999, 60(1/2): 57−80.

[ 5 ]Food and Agriculture Organization of the United Nations. Food andagriculture data(DB/OL). [2024−07−04]. https://www.fao.org/faostat/zh/#home.

[ 6 ]褚宏欣, 牟文燕, 党海燕, 等. 我国主要麦区小麦籽粒微量元素含量及营养评价[J]. 作物学报, 2022, 48(11): 2853−2865.

Chu H X, Mu W Y, Dang H Y, et al. Evaluation on concentration andnutrition of micro-elements in wheat grains in major wheatproduction regions of China[J]. Acta Agronomica Sinica, 2022,48(11): 2853−2865.

[ 7 ]Bouis H E, Welch R M. Biofortification: A sustainable agriculturalstrategy for reducing micronutrient malnutrition in the globalsouth[J]. Crop Science, 2010, 50: 20−30.

[ 8 ]Cakmak I. Enrichment of cereal grains with zinc: Agronomic orgenetic biofortification[J]. Plant and Soil, 2008, 302(1/2): 1−17.

[ 9 ]Shi R L, Zhang Y Q, Chen X P, et al. Influence of long-term nitrogenfertilization on micronutrient density in grain of winter wheat[J].Journal of Cereal Science, 2010, 51(1): 165−170.

[10]方保停, 张胜全, 王敏, 等. 节水栽培条件下冬小麦籽粒微量元素和蛋白质含量对施氮的反应[J]. 麦类作物学报, 2008, 28(1): 97−101.

Fang B T, Zhang S Q, Wang M, et al. Responses of concentrations oftrace element and protein in winter wheat to nitrogen applicationunder water-saving cultivation condition[J]. Journal of TriticeaeCrops, 2008, 28(1): 97−101.

[11]姜丽娜, 郑冬云, 蒿宝珍, 等. 氮肥对小麦不同品种籽粒微量元素含量的影响[J]. 西北农业学报, 2009, 18(6): 97−102.

Jiang L N, Zheng D Y, Hao B Z, et al. Effects of nitrogen onmicronutrient concentration and accumulation in grains of wheat[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2009, 18(6):97−102.

[12]李可懿, 王朝辉, 赵护兵, 等. 黄土高原旱地小麦与豆科绿肥轮作及施氮对小麦产量和籽粒养分的影响[J]. 干旱地区农业研究, 2011,29(2): 110–116.

Li K Y, Wang Z H, Zhao H B, et al. Effect of rotation with legumesand N fertilization on yield and grain nutrient contents of wheat indryland of the Loess Plateau [J]. Agricultural Research in the AridAreas, 2011, 29(2): 110–116.

[13]Sharma, S, Dhaliwal S S. Rice residue incorporation and nitrogenapplication: effects on yield and micronutrient transformations underrice-wheat cropping system[J]. Journal of Plant Nutrition, 2020.43(18): 2697-2711.

[14]Shiwakoti S, Zheljazkov V D, Gollany H T, et al. Micronutrientsdecline under long-term tillage and nitrogen fertilization[J]. ScientificReports, 2019, 9(1): 12020.

[15]Hamnér K, Weih M, Eriksson J, Kirchmann H. Influence of nitrogensupply on macro- and micronutrient accumulation during growth ofwinter wheat[J]. Field Crops Research, 2017, 213: 118−129.

[16]Erenoglu E B, Kutman U B, Ceylan Y, et al. Improved nitrogennutrition enhances root uptake, root-to-shoot translocation andremobilization of zinc (65Zn) in wheat[J]. New Phytologist, 2010189(2): 438−448.

[17]Kutman U B, Yildiz B, Cakmak I. Improved nitrogen status enhanceszinc and iron concentrations both in the whole grain and theendosperm fraction of wheat[J]. Journal of Cereal Science, 2011,53(1): 118−125.

[18]常旭虹, 赵广才, 王德梅, 等. 生态环境与施氮量协同对小麦籽粒微量元素含量的影响[J]. 植物营养与肥料学报, 2014, 20(4): 885−895.

Chang X H, Zhao G C, Wang D M, et al. Effects of ecologicalenvironment and nitrogen application rate on microelement contentsof wheat grain[J]. Journal of Plant Nutrition and Fertilizers, 2014,20(4): 885−895.

[19]Fan M S, Zhao F J, Fairweather-Tait S J, et al. Evidence of decreasingmineral density in wheat grain over the last 160 years[J]. Journal ofTrace Elements in Medicine and Biology, 2008, 22(4): 315−324.

[20]Gooding M J, Fan M, McGrath S P, et al. Contrasting effects ofdwarfing alleles and nitrogen availability on mineral concentrationsin wheat grain[J]. Plant and Soil, 2012, 360(1/2): 93−107.

[21]Zhang W, Xue Y F, Chen X P, et al. Zinc nutrition for highproductivity and human health in intensive production of wheat[J].Advances in Agronomy, 2020, 163: 179−217.

[22]李峰, 田霄鸿, 陈玲, 李生秀. 栽培模式、施氮量和播种密度对小麦子粒中锌、铁、锰、铜含量和携出量的影响[J]. 土壤肥料, 2006,(2): 42−46.

Li F, Tian X H, Chen L, Li S X. Effect of planting model, Nfertilization and planting density on concentration and uptake of Zn,Fe, Mn and Cu in grains of winter wheat[J]. Soil and Fertilizer, 2006,(2): 42−46.

[23]Zhao Q Y, Cao W Q, Chen X P, et al. Global analysis of nitrogenfertilization effects on grain zinc and iron of major cereal crops[J].Global Food Security, 2022, 33: 100631.

[24]惠晓丽, 王朝辉, 罗来超, 等. 长期施用氮磷肥对旱地冬小麦籽粒产量和锌含量的影响[J]. 中国农业科学, 2017, 50(16): 3175−3185.

Hui X L, Wang Z H, Luo L C, et al. Winter wheat grain yield and Znconcentration affected by long-term N and P application in dryland[J]. Scientia Agricultura Sinica, 2017, 50(16): 3175−3185.

[25]党红凯, 李瑞奇, 张馨文, 等. 超高产冬小麦铜素的吸收、积累和分配[J]. 中国农业科学, 2010, 43(24): 5019−5027.

Dang H K, Li R Q, Zhang X W, et al. Study on the absorption,accumulation and distribution of copper in super-high-yielding winterwheat[J]. Scientia Agricultura Sinica, 2010, 43(24): 5019−5027.

[26]杨丽娟, 李天来, 付时丰, 邱忠祥. 长期施肥对菜田土壤微量元素有效性的影响[J]. 植物营养与肥料学报, 2006, 12(4): 549−553.

Yang L J, Li T L, Fu S F, Qiu Z X. Effect of long-term fertilizationon soil trace element availability in vegetable field[J]. Journal ofPlant Nutrition and Fertilizers, 2006, 12(4): 549−553.

[27]刘恩科, 赵秉强, 胡昌浩, 等. 长期施氮、磷、钾化肥对玉米产量及土壤肥力的影响[J]. 植物营养与肥料学报, 2007, 13(5): 789−794.

Liu E K, Zhao B Q, Hu C H, et al. Effects of long-term application ofN, P and K fertilizer on maize yield and soil fertility[J]. Journal ofPlant Nutrition and Fertilizers, 2007, 13(5): 789−794.

[28]李志军, 李平儒, 史银光, 张树兰. 长期施肥对关中塿土微量元素有效性的影响[J]. 植物营养与肥料学报, 2010, 16(6): 1456−1463.

Li Z J, Li P R, Shi Y G, Zhang S L. Effects of long-term fertilizermanagement regimes on availability of soil micronutrient elements[J]. Journal of Plant Nutrition and Fertilizers, 2010, 16(6): 1456−1463.

[29]Li B Y, Huang S M, Wei M B. Dynamics of soil and grainmicronutrients as affected by long-term fertilization in an aquicinceptisol[J]. Pedosphere, 2010, 20(6): 725−735.

[30]Fouad A, Saad D, Kacem M, et al. Efficacy of copper foliar spray inpreventing copper deficiency of rainfed wheat (Triticum aestivum L.)grown in a calcareous soil[J]. Journal of Plant Nutrition, 2020,43(11): 1617−1626.

[31]Zhang Y T, Wang H Y, Lei Q L, et al. Optimizing the nitrogenapplication rate for maize and wheat based on yield and environmenton the Northern China Plain[J]. Science of the Total Environment,2018, 618: 1173−1183.

[32]惠晓丽, 马清霞, 王朝辉, 等. 基于旱地小麦高产优质的氮肥用量优化[J]. 植物营养与肥料学报, 2020, 26(2): 233−244.

Hui X L, Ma Q X, Wang Z H, et al. Optimization of nitrogen ratebased on high yield and high quality of dryland wheat[J]. Journal ofPlant Nutrition and Fertilizers, 2020, 26(2): 233−244.

基金项目:国家现代农业产业技术体系建设专项( CARS-3);国家重点研发计划项目( 2018YFD0200400)。

猜你喜欢

微量元素氮肥籽粒
籽粒苋的饲用价值和高产栽培技术
籽粒苋的特性和种植技术
氮肥供应充足 春耕生产有保障
ICP-OES法测定钢和铁中微量元素
江淮小氮肥 耕耘六十年——纪念安徽小氮肥诞生六十周年
抓住机遇 主动作为 努力推进我国氮肥市场稳步前行
解析中微量元素
玉米机械脱粒籽粒含水量与破碎率的相关研究
2017春季各地氮肥市场掠影
商麦1619 籽粒灌浆的特性