土壤磷素地表径流提取系数研究进展
2024-12-31张亚丽党文辉尹甜梦张银杰张登晓穆博刘世亮张兴昌
摘要: 土壤磷素地表径流提取系数(phosphorus extraction coefficient,ECp) 是模拟表层土壤可溶性磷随地表径流迁移,估算农业磷非点源污染负荷模型中的一个重要参数。当前ECp 的相关研究存在内涵模糊,确定方法各异,变异范围和影响机制也不够清晰等问题。本文梳理了国内外相关研究中ECp 的提取方法、影响因素,为提高农业磷非点源污染评估的精度提供理论依据。ECp 定义为地表径流溶解态磷(dissolved phosphorus,DP) 浓度与表层土壤可溶性磷含量的比率。该系数通常基于降雨试验,通过建立地表径流DP 和表层土壤磷含量的线性回归方程,用回归线的斜率表示ECp,因此其概念本质主要体现在统计学意义上。ECp 受降雨、土壤、植被覆盖和农田管理措施等多种因素影响,变异范围较大。ECp 通常与土壤黏粒含量、吸附性、植被覆盖度等因素呈反比,而与土壤初始含水量呈正比。非石灰性土壤ECp 值一般大于石灰性土壤。为简化计算,ECp 在NPS 污染模型中通常被设为一个定值。例如,在化学物质、径流和土壤侵蚀 (chemicals, runoff, and erosion fromagriculture management,CREAMS) 及农业非点源 (agricultural nonpoint source,AGNPS) 模型中,ECp 值设为7.5,而在土壤侵蚀和作物生产力评价 (erosion/productivity impact calculator,EPIC) 和水土评估工具 (soil andwater assessment tools, SWAT) 模型中,ECp 值则设为5.7。因此,未来研究仍需重视ECp 的物理内涵,精准测算多次降雨平均和动态ECp,阐明土壤磷素地表径流提取的动力机制;加强地表径流和表层土壤中可溶性磷素含量间的非线性关系的研究,提高ECp 值确定方法的适用性;深入分析不同区域ECp 的变异特征和影响因素,针对施肥频繁且易发生复杂强烈水力侵蚀的坡耕地,尤其需要提出ECp 的校正值;用核定后或者监测获得的ECp 统计值代替现有NPS 污染模型中的常数,以提高土壤磷素流失负荷模拟精度。
关键词: 土壤磷素; 地表径流; 提取系数; 农业非点源污染
降雨条件下土壤中磷素的溶出和迁移是农业非点源污染(non-point source, NPS) 的一条重要途径,是导致土壤质量退化、养分有效性降低、地表水体污染和生态环境恶化的主要原因之一[1−2]。许多研究发现,地表径流中磷素浓度(dissolved phosphorus, DP)与表层土壤可溶性磷含量存在显著相关性,可以用来预测地表径流DP 负荷量,因而提出了土壤磷素地表径流提取系数(phosphorus extraction coefficient,ECp) 的概念[3−5]。ECp 的提出基于一个核心假设,即在产流条件下,表层土壤磷素在固液相之间存在一个相对平衡比例,地表径流中的DP 主要来自于土壤水−径流中可溶性磷素的分子扩散作用。地表径流DP 浓度与表层土壤可溶性磷素含量的比率,即为磷素提取系数ECp。在国外许多NPS 污染和水土流失评价机理模型中,地表径流DP 流失模块都采用了E C p 来测算土壤可溶性磷素向地表径流的迁移量[6−9]。在这些模型中,DP 流失量均为表层土壤可溶性磷素浓度、地表径流量和ECp 的乘积,趋向于认为ECp 为一个常数。
自20 世纪70 年代后期,国际上开始土壤磷素流失机理方面的研究,并将相关成果应用到一些NPS 污染模型中[2, 10]。进入80 年代末,NPS 污染模型开始与地理信息系统结合并快速发展,模型模拟尺度进一步扩大,引发了学者们对污染物负荷模型参数精度研究的关注[8−9]。自90 年代中后期到21 世纪初,ECp 影响因素和变异范围研究进入活跃期,然而,近10 年来相关研究较少,这主要归因于两方面的挑战:首先,ECp 影响因素多且具有较多的不确定性,其率定通常需要借助大量的室内或田间降雨试验,难度较大;其二,大型NPS 污染机理模型往往集成了复杂的水文、侵蚀和污染物迁移过程,其在流域月年尺度的模拟效果好于地块尺度单场降雨[2],表明较长时间和较大空间尺度的模拟一定程度上会降低部分参数的敏感性,尤其是类似于ECp 之类基于小尺度试验结果的参数。随着NPS 污染模型研究的不断深入,模型中一些缺失或简化的模块已经不利于进一步揭示NPS 污染的复杂机理[1]。与发达国家相比,我国NPS 污染模型研究始于20 世纪80 年代的湖泊富营养化调查,土壤磷素流失机理研究在90 年代才开始起步[10−11]。虽然近年来NPS 污染模型发展迅速,但主要依赖国外已有模型开展应用研究,较少结合我国特定区域实际情况,对模型模块或参数进行必要的修正或改进,在土壤磷素地表流失方面更关注泥沙吸附态磷素的流失。
ECp 和测算泥沙吸附态磷素流失量的磷素泥沙富集率(phosphorus enrichment ration,ERp) 一样,都是揭示降雨条件下土壤磷素流失机制和估算磷素输出量的重要参数,反映了土壤、水文条件、地形地貌和农田管理措施等因素的综合影响。然而,在现有研究中关于ECp 的研究成果远不及ERp 丰富,尤其在国内学术界的相关研究更少。因此,本文针对近年来土壤ECp 的研究现状和进展进行综述,提出今后的研究方向。这既有助于诠释表层土壤磷素在水土界面的迁移过程和机制,还可为提高农业NPS污染模型的模拟精度,促进坡耕地水土资源保护和农田养分有效管理提供科学依据。
1 土壤磷素地表径流提取系数内涵与确定方法
1.1 土壤磷素地表径流提取系数内涵
ECp 概念是在模拟表层土壤溶质随地表径流迁移研究中被提出的。早在1967 年,Huff 等[12]认为能够与水相互作用的表层土壤是土壤悬浮微粒的“有效”部分。Bailey 等[13]在1974 年提出土壤表层存在一定厚度的混合层(mixing zone),是表层土壤可溶性物质能够参与地表径流迁移的关键土层,厚度为0.2~0.6 cm。Frere[14]通过模拟试验,发现该混合层厚度一般不超过1 cm。Donigian 等[15]在1977 年研发农业径流管理模型(agricultural runoff management, ARM)时,假定混合层内雨水与土壤水完全混合,径流、入渗水、土壤水中可溶性物质数量或浓度相等。Knisel[16]在1980 年研发农业管理中化学物质、径流和土壤侵蚀(chemicals, runoff, and erosion from agriculturemanagement, CREAMS) 模型中,也认为产流条件下表层土壤物质固液相存在一个相对平衡的比例,地表径流溶解态物质主要来自于土壤水−径流中可溶性物质的分子扩散作用。为了测算土壤溶质水土界面迁移量,学者将地表径流与表层土壤可溶性物质浓度的比率定义为地表径流提取系数(extraction coefficient,EC),磷素径流提取系数ECp 即为地表径流DP 浓度与表层土壤可溶性磷素浓度的比率[5, 16]。
为了简化模拟过程,ARM 模型将ECp 认定是一个常数,如在估算Watkinsville Georgia 地区田间土壤养分流失量时,ECp 采用的是常数0.075[15](和后期Sharpley 等[7]和Vadas 等[17]研究保持一致,统一量纲折算后为7.5),与氮的EC 值一样。CREAMS 模型认为,EC 与土壤孔隙度有关,对于给定土壤,EC可视为常数[16]。在磷素流失负荷模拟中,ECp 主要依据地表径流DP 与表层土壤可溶性磷素浓度的相关关系测算,因此其概念主要体现在统计学意义上[3, 18]。ECp 是估算土壤磷素在水土界面迁移负荷量的关键因子,是否具有明确的物理意义,还有待深入研究。
1.2 土壤磷素地表径流提取系数确定方法
ECp 确定方法是在NPS 污染模型的建立和发展过程中提出的,主要通过天然或模拟降雨试验观测数据测算。土壤可溶性磷素包括液相磷和弱吸附性磷,是土壤活性磷,又称生物有效磷(bio-availablephosphorus,BAP) 的主要组成部分[19−21],因此可直接利用土壤BAP 预测地表DP 流失量。很多学者认为,随着表层土壤有效磷BAP 增加,地表径流中DP 也会增加,两者呈显著的线性相关关系[3, 5, 17, 22−23]。因此,可根据试验数据建立径流DP 和土壤有效磷BAP的线性回归方程,纵轴与横轴分别代表径流DP 浓度(μg/L) 和土壤有效磷BAP 浓度(mg/kg),回归线的斜率为ECp。有学者认为土壤磷素随地表径流迁移量变异性很大,不宜用一种或平均的关系来解释土壤和径流DP 之间的相关性[21, 24]。Sharpley 等[2, 24]通过分析实测数据发现,地表径流和土壤中磷素除线性相关外,还有指数和分段线性相关等关系。Ramíre-Závila 等[21]发现,降雨前施入有机磷和无机磷都会使径流中DP 浓度显著增加,土壤BAP 与径流DP 不再呈线性相关关系,因此无法用这种方法测算ECp。
2 土壤磷素地表径流提取系数的测算结果与影响因素
2.1 土壤磷素地表径流提取系数测算结果
土壤BAP 的浸提测试方法较多,所测定的并不是土壤中某一形态的磷,也不具有真正“数量”的概念,只是代表土壤的相对供磷水平[24−26]。研究人员通过多种土壤浸提方法(如Bray-Kurtz 法[27]、Mehlich-3 法[ 2 8 ]、Morgan 法[ 2 9 ]、Olsen 法[ 3 0 ]和蒸馏水浸提法[ 3 1 ]等) 来获得浸提液并测定表层土壤BAP 含量,进而确定ECp。Fang 等[ 2 3 ]利用长×宽×高=0.61 m×0.15 m×0.10 m、坡度4% 的土槽,在60 mm/h 降雨强度下进行30 min 室内模拟降雨试验,发现不同提取方法测得的土壤BAP 浓度与径流中DP 浓度的线性回归方程斜率存在较大差异,通过径流DP 与Mehlich-3 法、Olsen 法和Bray-Kurtz 法土壤BAP 计算得出ECp 分别为5.83、9.41 和9.86。检索90 年代以来的ECp 相关文献,遴选一个月内未施肥土壤试验的分析结果,我们也发现ECp 与土壤BAP 浸提测样方法有关(表1)。例如,Bray-1 法[27]的ECp 为0.6~15.0,Mehlich-3 法[28]的ECp 为0.4~7.0,由去离子水浸提法的ECp 为4.3~28.1,Olsen 法[30]的ECp 则为3.3~9.3,这些结果均存在一定的变异。通过土槽试验获得的结果中,大部分Mehlich-3 法测得的ECp为1.5~2.6[4, 32−33]。Fang 等[23]所得的ECp 为5.8,Allen等[34]所得ECp 最大值为4.0,这可能与土壤磷含量范围(前者为0~150 mg/kg,后者为0~800 mg/kg) 的差异有关。在田间耕地试验获得的结果中,Mehlich-3法得到的ECp 范围主要集中在1.2~3.0。Cox 等[35]基于5 次5% 黏粒含量土壤的降雨试验数据,计算得到ECp 值为3.9,可能是黏粒含量低导致土壤磷吸附能力较弱,土壤磷素更容易被地表径流解吸[36]。当土壤磷含量存在垂直分层时,表层土壤中磷含量通常最高,并随深度增加而降低。因此,可以从较浅表土层中提取出比深层土壤更多的磷素,由前者测算出的ECp 一般会低于后者。根据Torbert 等[37]研究,对于石灰性和非石灰性土壤,利用0—15 cm 土层土壤磷含量测算的ECp 分别为0—2.5 cm 土层的6.76和14.93 倍。Vadas 等[17]分析了美国9 个州土壤ECp的测算结果,发现不同土壤Mehlich-3 法所测ECp取值范围为1.2~3.0,水浸提法所测ECp 取值在6.0~18.3;对所有观测数据进行线性回归分析后,测出Mehlich-3 法所测ECp 值为2.0,水浸提法测的ECp 值为11.2,接近上述变异范围的平均值,因此提出对于大多数土壤、水文和农田管理条件,在用模型估算土壤磷素地表流失量时,ECp 值可采用2.0 或者11.2。根据Mehlich[28]研究,土壤中不稳定无机磷含量是Mehlich3-P 的一半,因此Vadas 等[38]认为土壤不稳定无机磷ECp 取值4 比较合适。由于试验条件的差异 (表1),所测算的ECp 值通常无法直接比较,在具体区域应用时应充分调研和分析,以确定ECp 的合理取值。
2.2 土壤磷素地表径流提取系数影响因素
土壤磷素地表流失量的影响因素很多,包括降雨[50]、土壤[51]、植被[52]、地形条件[53]、耕作方法、施肥[2, 54]等,这方面研究已经取得了较为丰富的成果,而ECp 影响因素的研究相对较少。已有研究表明,ECp 受降雨条件[55]、径流量[43]、土壤黏粒含量[35]、施肥量[49]、土壤吸附能力[56]、土壤CaCO3 含量[37]、土壤初始含水量[22]和农艺管理措施[17, 36]等因素的影响,其数值具有一定的变异性。ECp 主要取决于地表径流DP 与表层土壤中可溶性磷素浓度的比值,在某种情况下如果两者都增加,则难以明确ECp 的变化结果。比如施肥会增加表层土壤可溶性磷的含量,但地表径流DP 浓度也会随之增加,因此ECp 值是否增加存在不确定性[4, 49]。目前较为一致的结论是ECp与土壤黏粒含量、吸附性、植被覆盖度等呈负相关,与土壤初始含水量呈正相关[22, 35, 43, 49, 55−58]。此外,非石灰性土壤ECp 大于石灰性土壤[37]。Sharpley 等[24]通过分析1975—1991 年草地和耕地土壤磷素流失试验数据,测算出草地ECp 值为4.1~7.0,耕地为8.3~12.5,草地的平均ECp 值(6.0) 低于耕地(10.5),表明耕地土壤磷素地表径流迁移风险大于草地。对于近期施过肥的土壤,当土壤中的磷含量达到一定水平时,土壤对磷素的吸持能力接近饱和,此时磷素的流失量会随着土壤磷含量提高而急剧增加[ 2 , 5 4 ]。Sharpley[56]在10 种土壤中施入不同量的有机肥后研究发现,土壤磷吸附度低的土壤类型下地表径流DP 浓度较高,ECp 与土壤饱和度的对数值呈极显著的负线性相关关系。Knisel[16]在测算土壤磷素流失量时,用磷素土壤分配系数(phosphorus soil partitioningcoefficient, PHOSKD) 表示表层1 cm 土壤可溶性磷素含量与地表径流DP 浓度的比值,发现PHOSKD 为ECp 倒数的1000 倍,认为PHOSKD 与土壤黏粒含量有关。
许多研究表明,降雨条件下土壤磷素的流失形态主要以泥沙颗粒态为主,径流DP 的流失量较少[59−62]。但受地被覆盖、施肥耕作和侵蚀等因素影响,DP 流失比例有时最大可达87.7%,而低的不足1%,变异范围较大[63−65]。尤其是当坡面发生强烈侵蚀后,土壤弱吸附性磷素会被径流冲刷—解吸进入地表径流;当表层土壤被剥蚀后,混合层以下的可溶性磷素也会通过对流−弥散等作用进入地表径流,引起径流DP浓度急剧增高[66−67]。Sharpley 等[41]通过对比Pote 等[22]、McDowell 等[4]和Sharpley 等[68]关于草场、免耕、少耕和传统耕作农田的试验结果,发现耕作土壤ECp是草地的4.96 倍,认为增加地表土壤覆盖率减少了土壤和降雨径流的相互作用,减少了土壤侵蚀量,ECp 也随之减少,提出ECp 值与侵蚀模数(erosionmodulus,Em) 呈指数相关,方程为ECp=1.25 Em 0.30(R2=0.90)。Little 等[69]根据Alberta 流域春季融雪和夏季天然降雨试验,测算出不同施肥量坡地ECp 值均高于Wright 等[70]利用该流域土壤进行室内模拟降雨试验的结果,可能是大尺度天然降雨下土壤侵蚀量更大的缘故。
3 土壤磷素地表径流提取系数应用
降雨产流条件下土壤溶质坡面流失受到多种因素影响,基于降雨—径流—土壤混合层的物理模型[ 7 1 − 7 3 ]虽然对过程有很好的机理模拟,但其过于复杂,使其在污染物流失量模拟预测中不易推广。磷指数法[74−75]测算的并不是磷的实际流失量,而是反映磷潜在流失风险高低的相对值;基于土地利用分类的磷素输出系数法[76−77]假定相同土地利用类型的输出系数固定不变,污染物输出量与该类土地的面积呈线性关系,对降雨、土壤和农业管理等因素的影响考虑不足。因此,土壤侵蚀和作物生产力评价(erosion/productivity impact calculator, EPIC) 模型[78]、农业非点源(agricultural nonpoint source, AGNPS) 污染模型[79]和水土评估工具(soil and water assessmenttools, SWAT)[80−81]等模型普遍采用了CREAMS 模型中的提取系数法(表2)。在这些模型中,地表径流DP流失量均为表层土壤可溶性磷浓度与地表径流量和ECp 的乘积,各模型趋向于认为ECp 为一个常数[40]。SWAT[82−83]和EPIC[78]模型中地表径流DP 测算则采用了ECp 的倒数,系统默认是常数175 (按量纲折算成ECp 为5.7),用户亦可自行调整。
基于Lake Allatoona 流域土壤各种形态磷素含量[82]和该流域径流DP 与不同测试方法BAP 的相关关系[ 4 5 ],Radcliffe 等[ 8 3 ]推算出该区域强风化土壤ECp 的阈值范围为4.14~9.80,折算成磷素土壤分配系数PHOSKD 为102~242,平均值接近SWAT 模型中的系统默认值(175)。但在Sharpley 等[82]关于微风化或钙质土壤的研究结果中,PHOSKD 值分别为55 和42,与175 差异较大。农业管理系统中地下水污染负荷(groundwater loading effects of agriculturalmanagement systems, GLEAMS)[57]和区域非点源流域环境响应(areal nonpoint source watershed environmentresponse simulation, ANSWERS )[ 5 8 ]模型均采用了Knisel 等[ 1 6 ]提出的PHOSKD 参数,计算公式为PHOSKD=100+2.5×土壤黏粒含量,可知PHOSKD 都大于100,折算成ECp 后小于10。在上述模型中,磷素泥沙富集率ERp 均为变量。CREAMS 模型[16]设定ERp 与土壤侵蚀模数呈对数线性关系,AGNPS 模型在此基础上增加了土壤质地因子[77],EPIC 模型[78]和SWAT 模型[80]均认为ERp 与径流含沙量有关。这与ECp 或其倒数为一常数或接近常数不同。
4 主要问题与研究展望
4.1 土壤磷素径流提取系数的内涵及确定方法
现有研究中ECp 通常是基于多场次降雨试验,根据土壤−径流磷素含量相关关系确定,更多体现统计学意义[2−4, 18]。然而,由于缺少对ECp 的物理内涵及其影响因素研究,无法更好地揭示地表径流对土壤磷素提取的过程和机理。未来研究应聚焦于明确物理意义的ECp,测算各场次降雨的平均ECp (即地表径流DP 平均浓度与表层土壤BAP 含量比值) 和动态ECp (即各采样时段径流DP 浓度与表层土壤BAP含量比值)。使ECp 既可反映表层土壤磷素在土水界面的流失风险和地表流失量,亦可阐述土壤磷素地表径流提取的动力机制和影响因素。此外受土壤侵蚀、施肥和水文条件等因素影响,径流DP 浓度与表层土壤BAP 含量并不一定为线性相关,存在径流DP浓度突然增加的“突变点”现象[2, 69, 84]。因此,需要通过模拟和自然降雨试验,基于径流DP 与土壤BAP平均浓度的线性和非线性相关关系,更新拓展统计意义ECp 的确定方法,提高其在NPS 污染模型中的适用性。
4.2 降雨条件下土壤磷素径流提取的动力机制
磷素在土壤中容易被固定,施入的磷肥很难向土壤深层迁移,因此土壤磷素流失与土壤侵蚀过程关系密切[85−86]。目前,针对水蚀条件下土壤磷素流失机制研究和模拟,主要集中在溅蚀或溅蚀−片蚀过程,较少深入分析细沟侵蚀产生之后水沙急剧变化对不同形态磷流失动态的影响和复杂机制[67]。现有ECp 理论研究大多基于小坡长、缓坡度、裸地饱和土壤且土壤侵蚀可忽略不计的模拟降雨试验数据,假定表层土壤磷素固液相存在一个相对平衡的比例,并认为表层土壤可溶性磷主要以分子扩散作用进入地表水体[23, 31, 35, 37],缺少水蚀条件下地表径流对土壤磷素提取的多种动力机制研究。因此,今后在施肥频繁和侵蚀强度较大区域,应该结合坡面水力侵蚀演变过程,探讨ECp 与试验处理、坡面径流含沙量和产沙率等水沙输移参数的作用关系,揭示ECp 对复杂水力侵蚀的响应特征和动力机制。
4.3 土壤磷素径流提取系数的影响因素和变异特征
现有ECp 研究虽然实现了简化表征地表径流DP流失过程的目的,但将多种影响因素试验数据混在一起分析,对单因素的量化研究不足,无法阐明各因素对 ECp 的影响机制。此外,由于试验设置不同,无法直接分析所测算ECp 值的合理性,在具体NPS 污染模型区域应用时也缺乏足够的遴选依据。因此,应该先从 ECp 早期的研究尺度—坡地开始,细化试验处理和控制水平,注重降雨、土壤、植被覆盖、地形地貌和农业管理措施等单因素对 ECp 的影响,确定ECp 的变异范围和离散特征,构建研究区域ECp 与试验处理的对照表。同时,应将研究尺度从坡地扩大到坡沟系统或流域尺度,确定ECp 的空间变异性,拓展土壤磷素地表径流提取的影响机制研究。
4.4 土壤磷素径流提取系数在NPS 污染模型中的应用
现有NPS 污染模型为了简化土壤磷素水土界面迁移过程,大多将ECp 定义为一个常数或者与土壤有关的变量[79−81]。国外有学者在应用上述模型时,会根据已有研究和观测结果确定合理的ECp 取值[17, 38, 83]。我国的NPS 污染监测站点密度较低,基础研究数据较为欠缺,给模型应用带来一定的困难[11]。学者们通常是直接采用NPS 污染模型中系统默认的ECp值[87−88],或者通过降雨试验观测不同条件下土壤磷素流失量和浓度的变化[89−90],鲜有将两者结合起来核算ECp 值。未来研究应一方面着重于开展多因素、长序列试验研究,核定统计学意义ECp 的变异范围,为现有NPS 污染模型中地表径流DP 流失参数率定提供依据。同时,还应结合试验研究,构建有物理意义的ECp 与关键影响因素的方程,进一步验证后,将其作为一个物理变量嵌入到NPS 污染模型磷素流失模块中,改进这些模型并提高其模拟精度。
参 考 文 献:
[ 1 ]Ge X F, Chen X Y, Liu M X, et al. Toward a better understanding ofphosphorus nonpoint source pollution from soil to water and theapplication of amendment materials: Research trends[J]. Water, 2023,15(8): 1531.
[ 2 ]Sharpley A N, McDowell R W, Weld J L, Kleinman P J A. Assessingsite vulnerability to phosphorus loss in an agricultural watershed[J].Journal of Environmental Quality, 2001, 30(6): 2026−2036.
[ 3 ]Hartz T K, Johnstone P R. Relationship between soil phosphorusavailability and phosphorus loss potential in runoff and drainage[J]. Informa UK Limited, 2006, 37(11): 1525−1536.
[ 4 ]McDowell R W, Sharpley A N. Approximating phosphorus releasefrom soils to surface runoff and subsurface drainage[J]. Journal ofEnvironmental Quality, 2001, 30(2): 508−520.
[ 5 ]Daniel T C, Edwards D R, Sharpley A N. Effect of extractable soilsurface phosphorus on runoff water quality[J]. Transactions of theASAE, 1993, 36(4): 1079−1085.
[ 6 ]Wang Z Z, Zhang T Q, Tan C S, Qi Z M. Modeling of phosphorusloss from field to watershed: A review[J]. Journal of EnvironmentalQuality, 2020, 49(5): 1203−1224.
[ 7 ]Sharpley A N, Bergstrom L, Aronsson H, et al. Future agriculturewith minimized phosphorus losses to waters: Research needs anddirection[J]. Ambio, 2015, 44: 163−179.
[ 8 ]Knisel W G, Douglas-Mankin K R. CREAMS/GLEAMS: Model use,calibration, and validation[J]. American Society of Agricultural andBiological Engineers, 2012, 55(4): 1291−1302.
[ 9 ]Saravanan S, Singh L, Sathiyamurthi S, et al. Predicting phosphorusand nitrate loads by using SWAT model in Vamanapuram RiverBasin, Kerala, India[J]. Environmental Monitoring and Assessment,2023, 195(1): 186.
[10]Luo M, Liu X X, Legesse N, et al. Evaluation of agricultural nonpointsource pollution: A review[J]. Water, Air, amp; Soil Pollution,2023, 234(10): 657.
[11]李家科, 彭凯, 郝改瑞, 等. 黄河流域非点源污染负荷定量化与控制研究进展[J]. 水资源保护, 2021, 37(1): 90−102.
Li J K, Peng K, Hao G R, et al. Research progress on quantificationand control of non-point source pollution load in the Yellow RiverBasin[J]. Water Resources Protection, 2021, 37(1): 90−102.
[12]Huff D D, Kruger P. The chemical and physical parameters in ahydrological transport model for radioactive aerosols[J]. Processes ofInternational Hydrology Symposia, 1967, 1: 128−135.
[13]Bailey G W, Swank R R, Nicholson H P. Predicting pesticide runoff fromagricultural lands: A Conceptual model[J]. Journal of EnvironmentalQuality, 1974, 3(2): 95−102.
[14]Frere M H. The nutrient sub model. CREAMS: A field scale modelfor chemical, runoff, and erosion from agricultural managementsystem[R]. Washington, D. C: USDA Conservation Report No. 26.US Government Print Office, 1980.
[15]Donigian A S, Beyerlein D C. Agricultural runoff management(ARM) model. Version II: Refinement and testing[M]. Athens, GA:US Environment Protection Agency, 1977.
[16]Knisel W G. CREAMS: A field scale model for chemicals, runoff,and erosion from agricultural management system[M]. Washington,D. C : Department of Agriculture, Science and Education Administration,1980.
[17]Vadas P A, Kleinman P J A, Sharpley A N, Turner B L. Relating soilphosphorus to dissolved phosphorus in runoff: A single extractioncoefficient for water quality modeling[J]. Journal of EnvironmentalQuality, 2005, 34(2): 572−580.
[18]Pote D H, Daniel T C, Nichols D J, et al. Relationship betweenphosphorus levels in three Ultisols and phosphorus concentrations inrunoff[J]. Journal of Environmental Quality, 1999, 28: 170−175.
[19]Islam M, Siddique K H, Padhye L P, et al. A critical review of soilphosphorus dynamics and biogeochemical processes for unlockingsoil phosphorus reserves[J]. Advances in Agronomy, 2024, 185:153−249.
[20]方晰, 陈金磊, 王留芳, 等. 亚热带森林土壤磷有效性及其影响因素的研究进展[J]. 中南林业科技大学学报, 2018, 38(12): 1−12.
Fang X, Chen J L, Wang L F, et al. Research progress on soilphosphorus availability and its influential factors in subtropicalforests[J]. Journal of Central South University of Forestry amp;Technology, 2018, 38(12): 1−12.
[21]Ramíre-Závila J J, Sotomayor-Ramírez D, Martínez-Rodríguez G A.Phosphorus in runoff from two highly weathered soils of thetropics[J]. Canadian Journal of Soil Science, 2011, 91(2): 267−277.
[22]Pote D H, Daniel T C, Nichols D J, et al. Seasonal and soil-dryingeffects on runoff phosphorus relationships to soil phosphorus[J]. SoilScience Society of America Journal, 1999, 63(4): 1006−1012.
[23]Fang F, Brezonik P L, Mulla D J, Hatch L K. Estimating runoffphosphorus losses from calcareous soils in the Minnesota Riverbasin[J]. Journal of Environmental Quality, 2002, 31(6): 1918−1929.
[24]Sharpley A N, Daniel T C, Sims J T. Determining environmentallysound soil phosphorus levels[J]. Journal of Soil and WaterConservation, 1996, 51(2): 160−166.
[25]Reis J V D, Alvarez V H V, Durigan R D, et al. Interpretation of soilphosphorus availability by Mehlich-3 in soils with contrastingphosphorus buffering capacity[J]. Revista Brasileira de Ciência doSolo, 2020, 44: e0190113.
[26]Shahriaripour R, Tajabadipour A, Esfandiarpoor I, Mozafary V. Acomparison of 5 soil phosphorus extraction methods applied todifferent soils of South of Iran[J]. Communications in Soil Scienceand Plant Analysis, 2018, 49(18): 2284−2290.
[27]Bray R H, Kurtz L T. Determination of total, organic, and availableforms of phosphorus in soils[J]. Soil Science, 1945, 59(1): 39−45.
[28]Mehlich A. Mehlich 3 soil test extractant: A modification of Mehlich2 extractant[J]. Communications in Soil Science amp; Plant Analysis.,1984, 15(12): 1409−1416.
[29]Morgan M F. Chemical soil diagnosis by the universal soil testingsystem[R]. New Haven, Connecticut : Connecticut ExperimentStation Bulletin, 1941.
[30]Olsen S R, Cole C V, Watanabe F S, et al. Estimation of availablephosphorus in soils by extraction with sodium bicarbonate[M].Washington, DC: US Department of Agriculture, 1954.
[31]杨育红, 阎百兴. 土壤磷向地表径流迁移的提取系数研究[J]. 水土保持学报, 2010, 24(1): 61−64.
Yang Y H, Yan B X. A single extraction coefficient for phosphorusfrom soil to runoff[J]. Journal of Soil and Water Conservation, 2010,24(1): 61−64.
[32]Weld J L, Sharpley A N, Beegle D B, Gburek W J. Identifyingcritical sources of phosphorus export from agricultural watersheds[J].Nutrient Cycling in Agroecosystems, 2001, 59: 29−38.
[33]Penn C J, Mullins G L, Zelazny L W, et al. Estimating dissolvedphosphorus concentrations in runoff from three physiographic regionsof Virginia[J]. Soil Science Society of America Journal, 2006, 70(6):1967−1974.
[34]Allen B L, Mallarino A P, Klatt J G, et al. Soil and surface runoffphosphorus relationships for five typical USA Midwest soils[J].Journal of Environmental Quality, 2006, 35(2): 599−610.
[35]Cox F R, Hendricks S E. Soil test phosphorusand clay content effectson runoff water quality[J]. Journal of Environmental Quality, 2000,29: 1582−1586.
[36] Sharpley A N. Effect of soil properties on the kinetics of phosphorus desorption[J]. Soil Science Society of America Journal, 1983, 47(3):462−467.
[37]Torbert H A, Daniel T C, Lemunyon J L, Jones R M. Relationship ofsoil test phosphorus and sampling depth to runoff phosphorus incalcareous and noncalcareous soils[J]. Journal of EnvironmentalQuality, 2002, 31(4): 1380−1387.
[38]Vadas P A, Harmel R D, Kleinman P J A. Transformations of soiland manure phosphorus after surface application of manure to fieldplots[J]. Nutrient Cycling in Agroecosystems, 2007, 77: 83−99.
[39]Pote D H, Daniel T C, Sharpley A N, et al. Relating extractable soilphosphorus to phosphorus losses in runoff[J]. Soil Science Society ofAmerica Journal, 1996, 60(3): 855−859.
[40]Aase J K, Bjorneborg D L, Westermann D T. Phosphorus runoff fromtwo water sources on a calcareous soil[J]. Journal of EnvironmentalQuality, 2001, 30(4): 1315−1323.
[41]Sharpley A N, Kleinman P J A, McDowell R W. Modelingphosphorus transport in agricultural watersheds: Processes andpossibilities[J]. Journal of Soil and Water Conservation, 2002, 57(6):425−439.
[42]Daverede I C, Kravchenko A N, Hoeft R G, et al. Phosphorus runoff:effect of tillage and soil phosphorus levels[J]. Journal ofEnvironmental Quality, 2003, 32(4): 1436−1444.
[43]Andraski T W, Bundy L G, Kilian K C. Manure history and longtermtillage effects on soil properties and phosphorus losses inrunoff[J]. Journal of Environmental Quality, 2003, 32(5): 1782−1789.
[44]Andraski T W, Bundy L G. Relationships between phosphorus levelsin soil and in runoff from corn production systems[J]. Journal ofEnvironmental Quality, 2003, 32(1): 310−316.
[45]Schroeder P D, Radcliffe D E, Cabrera M L, Belew C D. Relationshipbetween soil test phosphorus and phosphorus in runoff: Effects of soilseries variability[J]. Journal of Environmental Quality, 2004, 33(4):1452−1463.
[46]Turner B L, Kay M A, Westermann D T. Phosphorus in surfacerunoff from calcareous arable soils of the semiarid western UnitedStates[J]. Journal of Environmental Quality, 2004, 33(5): 1814−1821.
[47]Soldat D J, Petrovic A M, Ketterings Q M. Effect of soil phosphoruslevels on phosphorus runoff concentrations from turf grass[J]. Water,Air, and Soil Pollution, 2009, 199: 33−44.
[48]Rheault D G. Relationship between soil phosphorus and runoffphosphorus losses from plot scale rainfall simulations on Manitobasoils[D]. Winnipeg, Manitoba : MS Thesis of University of Manitoba,2012.
[49]Duncan E W, King K W, Williams M R, et al. Linking soilphosphorus to dissolved phosphorus losses in the Midwest[J].Agricultural amp; Environmental Letters, 2017, 2(1): 170004.
[50]Ramos M C, Lizaga I, Gaspar L, et al. Effects of rainfall intensity andslope on sediment, nitrogen and phosphorous losses in soils withdifferent use and soil hydrological properties[J]. Agricultural WaterManagement, 2019, 226: 105789.
[51]Williams M R, Penn C J, King K W, McAfee S J. Surface‐to‐tiledrain connectivity and phosphorus transport: Effect of antecedent soilmoisture[J]. Hydrological Processes, 2023, 37(3): e14831.
[52]Subedi A, Franklin D, Cabrera M, et al. Grazing systems to retain andredistribute soil phosphorus and to reduce phosphorus losses in runoff[J]. Soil Systems, 2020, 4(4): 66.
[53]马丽娜, 蒋勇军, 张彩云, 汪啟容. 岩溶槽谷区坡面土壤磷素流失过程与影响因素: 以中梁山龙凤槽谷试验场为例[J]. 水土保持学报,2020, 34(6): 265−274.
Ma L N, Jiang Y J, Zhang C Y, Wang Q R. Process of soil phosphorusloss on a slope of karst trough valley and influencing factors: A casestudy of Longfeng trough valley test site in Zhongliang Mountain,Chongqing, China[J]. Journal of Soil and Water Conservation, 2020,34(6): 265−274.
[54]仲金平, 郑子成, 李廷轩, 何晓玲. 磷肥不同施用量对紫色土坡面胶体态磷流失的影响[J]. 中国农业科学, 2024, 57(8): 1547−1559.
Zhong J P, Zheng Z C, Li T X, He X L. Effect of phosphorusfertilizer application rates on the loss of colloidal phosphorus onpurple soil slopes[J]. Scientia Agricultura Sinica, 2024, 57(8):1547−1559.
[55]Dougherty W J, Nash D M, Cox J W, et al. Small-scale, highintensityrainfall simulation under-estimates natural runoff Pconcentrations from pastures on hill-slopes[J]. Australian Journal ofSoil Research, 2008, 46(8): 694−702.
[56]Sharpley A N. Dependence of runoff phosphorus on extractable soilphosphorus[J]. Journal of Environmental Quality, 1995, 24: 920−926.
[57]Leonard R A, Knisel W G, Still D A. GLEAMS: Groundwaterloading effects of agricultural management systems[J]. Transactionsof the ASAE, 1987, 30(5): 1403−1418.
[58]Faycal B, Dillaha A T. ANSWERS-2000: Non-point-source nutrientplanning model[J]. Journal of Environmental Engineering, 2000,126(11): 1045−1055.
[59]Martínez-Mena M, Carrillo-López E, Boix-Fayos C, et al. Long-termeffectiveness of sustainable land management practices to controlrunoff, soil erosion, and nutrient loss and the role of rainfall intensityin Mediterranean rainfed agroecosystems[J]. Catena, 2020, 187:104352.
[60]Han X X, Xiao J, Wang L Q, et al. Identification of areas vulnerableto soil erosion and risk assessment of phosphorus transport ina typical watershed in the Loess Plateau[J]. Science of the TotalEnvironment, 2021, 758: 143661.
[61]Zhou Y, Li S Y, Huang Y R, et al. Modeling of rainfall inducedphosphorus transport from soil to runoff with consideration ofphosphorus-sediment interactions[J]. Journal of Hydrology, 2022,609: 127732.
[62]Chen M H, Li Y, Wang C Z, et al. Modelling rainfall-inducedphosphorus loss with eroded clay and surface runoff[J]. HydrologicalProcesses, 2023, 37(2): e14817.
[63]Williams M R, King K W. Changing rainfall patterns over theWestern Lake Erie Basin (1975−2017): Effects on tributary dischargeand phosphorus load[J]. Water Resources Research, 2020, 56(3):e2019WR025985.
[64]Nash D M, Weatherley A J, Kleinman P J, Sharpley A N. Estimatingdissolved phosphorus losses from legacy sources in pastures: Thelimits of soil tests and small-scale rainfall simulators[J]. Journal ofEnvironmental Quality, 2021, 50(5): 1042−1062.
[65]Wolka K, Biazin B, Martinsen V, Mulder J. Soil and waterconservation management on hill slopes in Southwest Ethiopia.I. Effects of soil bunds on surface runoff, erosion and loss of nutrients[J]. Science of the Total Environment, 2021, 757: 142877.
[66]范晓娟, 张丽萍, 邓龙洲, 等. 侵蚀程度差异诱发的坡面产流—产沙—总磷流失特征[J]. 环境科学学报, 2019, 39(2): 459−468.
Fan X J, Zhang L P, Deng L Z, et al. The characteristics of runoffsedimentyield and total phosphorus loss induced by the soils ofdifferent erosion degree[J]. Acta Scientiae Circumstantiae, 2019,39(2): 459−468.
[67]Zhang Y L, Li X Y, Zhang X C, Li H E. Investigating rainfallduration effects on chemicals transport from soil to surface runoffon loess slope under artificial rainfall condition[J]. Soil and WaterResearch, 2019, 14(4): 183−194.
[68]Sharpley A N, Smith S J. Wheat tillage and water quality in theSouthern Plains[J]. Soil Tillage Research, 1994, 30(1): 33−38.
[69]Little J L, Nolan S C, Casson J P, Olson B M. Relationships betweensoil and runoff phosphorus in small Alberta watersheds[J]. Journal ofEnvironmental Quality, 2007, 36(5): 1289−1300.
[70]Wright C R, Amrani M, Akbar M A, et al. Determining phosphorusrelease rates to runoff from selected Alberta soils using laboratoryrainfall simulation[J]. Journal of Environmental Quality, 2006, 35(3):806−814.
[71]Tong J X, Ye M. A new soil mixing layer model for simulatingconservative solute loss from initially saturated soil to surfacerunoff[J]. Journal of Hydrology, 2020, 590: 125514.
[72]Huang C, Tong J X, Ye M. Global sensitivity analysis for a predictionmodel of soil solute transfer into surface runoff[J]. Journal ofHydrology, 2021, 599: 126342.
[73]Shao F F, Tao W H, Wang Q J, et al. A modified model forpredicting nutrient loss in runoff using a time-varying mixinglayer[J]. Journal of Hydrology, 2021, 603: 127091.
[74]Twombly C R, Faulkner J W, Collick A S, Easton Z M. Identificationof phosphorus index improvements through model comparisonsacross topographic regions in a small agricultural watershed inVermont (USA)[J]. Soil Science Society of America Journal, 2021,85(4): 1226−1241.
[75]Andini A P, Purwanto P, Sudarno S. Assessing water quality ofCiujung River in Lebak Regency by using pollution index[J].Advanced Science Letters, 2017, 23(3): 2462−2464.
[76]Mao Y P, Zhang H, Cheng Y H, et al. The characteristics of nitrogenand phosphorus output in China's highly urbanized Pearl River Deltaregion[J]. Journal of Environmental Management, 2023, 325:116543.
[77]Cheng X, Chen L D, Sun R H, Jing Y C. An improved exportcoefficient model to estimate non-point source phosphorus pollutionrisks under complex precipitation and terrain conditions[J].Environmental Science amp; Pollution Research, 2018, 25(21): 20946−20955.
[78]Williams J R, Sharpley A N, Taylor D. The erosion-productivityimpact calculator[M]. Boardman J, Foster I D L, Dearing J A. Soilerosion on agricultural land. New York: John Wiley and Sons, 1990.
[79]Young R A, Onstad C A, Bosch D D, Anderson W P. AGNPS: Anonpoint-source pollution model for evaluating agricultural watersheds[J]. Journal of Soil and Water Conservation, 1989, 44(2):168−173.
[80]Arnold J, Srinivasan R, Neitsch S, et al. Soil and water assessmenttool (SWAT): Global applications[M]. Bangkok, Thailand: WorldAssociation of Soil and Water Conservation, Bangkok. 2009.
[81]Arnold J G, Kiniry J R, Srinivasan R, et al. Soil and water assessmenttools input/output documentation (Version 2012). 2011. https://swat.tamu.edu/docs/.
[82]Sharpley A N, Jones C A, Gray C, Cole C V. A simplified soil andplant phosphorus model: II. Prediction of labile, organic, and sorbedphosphorus[J]. Soil Science Society of America Journal, 1984, 48(4):805−809.
[83]Radcliffe D E, Lin Z, Risse L M, et al. Modeling phosphorus in theLake Allatoona watershed using SWAT: I. Developing phosphorusparameter values[J]. Journal of Environmental Quality, 2009, 38(1):111−120.
[84]张焕朝, 张红爱, 曹志洪. 太湖地区水稻土磷素径流流失及其Olsen磷的“突变点”[J]. 南京林业大学学报(自然科学版), 2004,28(5): 6−10.
Zhang H C, Zhang H A, Cao Z H. Research on phosphorus runofflosses from paddy soils in the Taihu Lake region and its Olsen-P“change-point”[J]. Journal of Nanjing Forestry University (NaturalSciences Edition), 2004, 28(5): 6−10.
[85]Remund D, Liebisch F, Liniger H P, et al. The origin of sedimentand particulate phosphorus inputs into water bodies in the SwissMidlands: A twenty-year field study of soil erosion[J]. Catena, 2021,203: 105290.
[86]Alewell C, Ringeval B, Ballabio C, et al. Global phosphorus shortagewill be aggravated by soil erosion[J]. Nature Communications, 2020,11(1): 4546.
[87]Wang K, Onodera S I, Saito M, et al. Estimation of phosphorustransport influenced by climate change in a rice paddy catchmentusing SWAT[J]. International Journal of Environmental Research,2021, 15(4): 759−772.
[88]Shrestha N K, Rudra R P, Daggupati P, et al. A comparativeevaluation of the continuous and event-based modelling approachesfor identifying critical source areas for sediment and phosphoruslosses[J]. Journal of Environmental Management, 2021, 277: 111427.
[89]胡良, 杜伟, 常博焜, 等. 不同磷水平塿土的表面性质及其对磷素流失特征的影响[J]. 土壤学报, 2023, 60(2): 424−434.
Hu L, Du W, Chang B K, et al. The surface properties of Lou soilwith different phosphorus levels and their effects on the loss ofphosphorus[J]. Acta Pedologica Sinica, 2023, 60(2): 424−434.
[90]谭德水, 江丽华, 张骞, 等. 南四湖过水区不同施肥模式下农田养分径流特征初步研究[ J ] . 植物营养与肥料学报, 2 0 1 1 , 1 7 ( 2 ) :464−471.
Tan D S, Jiang L H, Zhang Q, et al. Characteristics of nutrient runofflosses in farmland of Nansi Lake basin under different fertilizationpatterns[J]. Journal of Plant Nutrition and Fertilizers, 2011, 17(2):464−471.
基金项目:河南省科技攻关项目(222102320041);国家自然科学基金项目(32302684,41907079)。